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Abstract: The concentration of a pollutant in the atmosphiera random variable that can not be modelleeranistically with certainty.
Therefore there is a growing demand from regulatosfitutions to provide uncertainties regarding tiesults of environmental impact
assessment studies. This paper discusses a pistiafiihmework to estimate the impact of varioosirges of uncertainties on simulation
outputs used for environmental impact assessmadtest Using the common framework designed fortteatment of uncertainties in
industrial practice, a complete chain for the gifimation of uncertainties for environmental impastsessment studies has been developed.
A description of each step of the method developiidoe given as well as the preliminary resultsdeing on the uncertainties related to
ground-level concentrations.
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1. INTRODUCTION

Gaussian plume models are commonly used to reatizgonmental impact assessment (EIA) studies cevimuate the
potential risk associated with accidental releaSeallutants in the atmosphere. Despite continuouprovements in
atmospheric dispersion modelling, such models aagacterized by several sources of uncertaintigsaiticular:

= In the model inputs: the collection of input datayrbe inaccurate (emissions, dispersion site ctarsiics,
location of receptors) and the meteorological Bel@ither derived from measurements or numericather
prediction models) are uncertain.

= In the physical parameterizations: the parametiéoize. developed to account for particular physpraicesses may
be viewed as approximations of the reality and thdgiitional sources of uncertainties for numenmnatlelling.

In the last two decades, several studies trieddtivess the problem of uncertainties in air quatigdelling. In particular,
these previous works dealt with the identificatmnvarious sources of uncertainties and on theit@hsand uncertainty
analysis methods developed to quantify and/or redbem (e.g. Hannat al, 1998; Hill et al, 2002; Auldet al, 2003;
Demaél, 2007). For example, using a Computationatifdynamics model, Demaél (2007) has shown ttatrtherse of the
Monin-Obukhov length and the height of the polhiteelease were uncertain parameters which stranghacted ground
concentration predictions. A few other studiesdtirie apply probabilistic method (like ensemble jcgan) to air quality
forecasting by taking into account several souofascertainties associated with input data andsiglay parameterizations
(e.g. Dabberdt and Miller 2000 ; Mallet and Speris2008). To our knowledge, a few studies trietlanspose probabilistic
approaches to EAI studies, in particular considgrine whole sources of uncertainties associatett aitmospheric
dispersion modelling. Actually, the majority of Heeprevious works were mostly focused on a fewcgmunncertainties and
on specific case-studies only considering a feweorelogical conditions and thus were not (in thg@pplicable to long
term studies such as EIA ones.

In the present work, we went further on practiggdlecation, focusing on EIA studies at local scaéng a Gaussian plume
model. We proceeded as follows:
= Identifying and accurately characterizing all s@srof uncertainties by assigning probability dgnginctions to
uncertain variables (meteorology, emission, grichtmon, etc.). This may be done using datasetsipgiaphy or
even expert judgment (when no specific informatgavailable).
= Comparing two approaches to quantify uncertaintedated to input parameters: a direct one (propagabf
uncertainties at each time step) and an indireet (@onstruction of a probabilistic annual modelaagting for
uncertainties of meteorological variables).
=  Quantifying the effect of input variables uncertea on simulation outputs (annual mean or houecentiles) by
performing Monte-Carlo simulations.

We considered a Gaussian plume dispersion modé@ iascommon in EIA. As this kind of model may usarious
parameterizations of the atmospheric stability ¢RasGifford classes, Doury classes and similitutieory), the impact of
input uncertainties has been assessed for eablerf t

The paper is structured as follows. In section 2jeacription of the approach which has been deeeldp given. In
particular, each step of the chain of quantifiaatid uncertainties associated with ground levekeotration prediction will
be briefly described. Section 3 presents the fiestults which have been obtained focusing on thpaah of input
uncertainties on ground-level concentrations ptexic Some conclusions and perspectives will bevdria the section 4.
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2. DESCRIPTION OF THE CHAIN FOR THE QUANTIFICATION OF UNCER TAINTIES

Following the previous study of Brochetat al (2008), a chain for the quantification of unceries associated with
simulation outputs has been developed in accordaitbethe conceptual scheme for treatment of uagaies in industrial
practice defined by de Rocquigayal (2008). The approach which has been developaidpayed in Figure 1.
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Figure 1. Schematic diagram representing the approsed for the quantification of uncertaintieagged with ground-level
concentrations (adapted from de Rocquighgl (2008))

It is proposed here to briefly describe each stefh@ approach presented in Figure 1. A thorougher of uncertainty
analysis in atmospheric dispersion modelling cafobbad in Shankar Rao (2005).

2.1 Step 1: Definition of the problem

The first step of our uncertainty analysis consisié precisely defining the framework of the stuthat is: the goal of the
uncertainty study, the appropriate case-studydiggersion model to be used, the input variablesyariables and statistical
quantities of interest.

Case-study

The case under study considered a unique soupellatant of 50 m height with a diameter of 1 meT$ource is located at
the centre of a domain composed of 50 x 50 poisisgua horizontal resolution of 100 m. It was hymsised that the
release occurred in flat terrain (considering darm rugosity) and that the pollutant was an irger$. These simplifications
implied neglecting uncertainties associated wittpoggraphy, obstacles, source geometry, physical ehemical
transformations of pollutants.

Input variables and variables of interest

As the approach wanted to be exhaustive, it wagldeédo consider uncertainties related to mostef\ariables used as
input for the dispersion model which was used.drtipular, these are the variables defining theemm@iogy, the dispersion
site, the receptors and grid height as well asctieracteristics of the release. Note that for metegy only, a dataset
covering five years was used. It comprised windedpand direction, temperature, cloud cover andipitation. The other
variables related to meteorology were derived ftbis dataset using the meteorological pre-processADMS (Carruthers,
1994). Stability classes (Pasquill-Gifford and Dguwere computed using the cloud cover and winegmiata.

The annual mean and the f0Ofourly percentile of the ground-level concentnatimve been chosen as variables of interest
as these are variables that may be used in tyléastudies.

Dispersion model

The Gaussian plume model GANACHE has been chosamriduct the numerical experiments. This modeluisently
developed at Central School of Lyon (France) and mnsg various parameterizations of atmospheric Igtabihat is
similitude theory, Pasquill-Gifford and Doury class Although each type of parameterization has lised for numerical
applications, in the present paper, we will onlgu® on numerical experiments using similitude tieor

Quantities of interest and goal of the study

The main goal of the study was to quantify the iotfd input uncertainties on ground-level concetdrasimulations in the
framework of EIA studies. It was decided to adogrababilistic approach to estimate the dispersibthe results, using
mean values and standard deviation of the distdbwdf the variables of interest.
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2.2 Step2: Quantification of input uncertainties

This step consisted of assigning probability disttion function to each input variable considersduacertain (probability
density function (PDF) or cumulative density fupncti(CDF)). For a given variable, there are three saiy define its

probability distribution. When measurements of thasiable are available, it is possible to defitseHDF directly using these
data. When no data are available, it is possibldefine the PDF of the variable using either raséiom past studies
(bibliography) or expert judgment.

In the present study, two methods were carriedt@uterive and propagate PDF associated with inptibbles related to
meteorology:
= The so-calledlirect methodvhich consisted of adding uncertainties to eactearelogical variable for every time
step. At each time step, the value of a given bégiaquals its deterministic value plus a meastiies ancertainty.
Actually, the uncertainty added at each time stey ive viewed as a probable value of the error cismeement
associated with the variable which is considered.
= The so-called idirect methodwvhich consisted of generating a probabilistic nidden statistical analysis of input
data. For each meteorological variable, it condistefinding the PDF the best fitting its real distition. After
having defined each PDF, the second step was itnedifiear and rank correlations between inputaldes to
account for possible dependencies when buildingthbabilistic model. If these dependencies ardiaitly taken
into account using the direct approach, it needmtprecisely defined when using the indirect one.

The PDF of input variables related to the charésties of the release, the dispersion site, anéptees and grid heights were

mainly defined from expert judgment and did notMaetween direct and indirect methods. The PDF émeithput variables
for each of the direct and indirect methods aremiw Table 1.

Table 2. Definition of the probability density furans used for uncertain input variables.

Variable Direct approach Indirect approach
Wind speed (m3 Normal (mean = 0; sigma = 035 | Weibull

(o =3.6026;8 = 1.5086 = 0)
Wind direction (°) Normal (mean = 0; sigma = 3.7 | Truncated mixture of normal laws
Temperature (°C) Not used Normal (mean = 12.19; 8igii.76)
Cloud cover (oktas) Normal (mean = 0; sigma = 1) Ddd
Boundary layer height (m) Normal (mean = 0; sign2b¥ Weibull

(0= 343.15p = 0.92;y = 0)

Inverse of the Monin-Obukhov length (n)  Derivednfrother input variables Kernel Smoothing fitting

Dispersion site rugosity (m) Uniform (min = 0.4; x=a0.7) Uniform (min = 0.4; max = 0.7)
Temperature of the pollutant release Normal (me&f;sigma = 1) Normal (mean = 50; sigma = 1)
Speed of the pollutant release (f).s Normal (mean = 12; sigma = 1) Normal (mean =si@ma = 1)
Quantity of pollutant released (g)s Uniform (min = 7; max = 13) Uniform (min = 7; max13)

Grid and receptors height (m) Triangular Triangular

(min = 1; max = 2; mode = 1.5) (min = 1; max = 2; mode = 1.5)

2.3 Step3: Uncertainty propagation

This step of the uncertainty analysis consistegropagating the joint PDF of each input variabletigh the dispersion
model to generate the PDF of the model resultsishaf the variables of interest. Consideringithe reference method for
probabilistic modelling, Monte Carlo simulationsre@eised to propagate input uncertainties. Suchthadenvolves random
sampling from the PDF of each input variable andcessive models run until obtaining a statistidatribution of each
variable of interest. Monte Carlo methods have diydaeen applied to atmospheric models ranging fsanple Gaussian
plume models (Kocheat al., 1987; Irwinet al, 1987) to complex Computational Fluid Dynamics eledDemaél, 2007).

The period for uncertainty propagation has beenaed from five years to one year only considerirggdomputational cost
associated when using the five year period. Udiregsio-called direct method, 100 Monte Carlo runseveanducted per
time-step for the whole year of study. This repnése 876,000 integrations of the dispersion model approximately 5
days of computationsThe indirect method differed from the direct oneitagid not account for the temporal dimension.
Uncertainty propagation is then performed usingstricted number of Monte Carlo runs. Here, an imlyinumber of 8000
runs was used. Note that for the present studylidvaot consider possible dependencies betweer ugsiables when using
the indirect approach.

3. PRELIMINARY RESULTS
In this section, we will only focus on results rediag ground-level concentrations simulations.

! Arithmetic means based on the work of Hillal (2002).
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3.1 Comparisons between deterministic and probabaiic modellin
The Figure displays the mean annual concentratiwh the 108 hourly percentile derived from deterministic and
probabilistic runs that used the direct approadtuleed in sections 2.2 and 2.3.

0.15

Figure 2. Mean annual concentration (U@ mierived from (a) the deterministic run and (k8§ trect probabilistic approach. (c) and (d) as
(a) and (b) but for the 18thourly percentile of the predicted concentratiqng.m?®).

Apparently, the results derived from probabiligimulations are smoothed in comparison with deteistic ones. In terms
of annual mean concentrations, the probabilistiragch differed from the deterministic one by mordess 3 pg.min the
vicinity of the release (at a distance of approxgha250 m) that is, almost 10% of the deterministalue. The impact of
input uncertainties on the numerical predictiongodund-level concentrations is much more strikingew looking at the
results concerning the 100hourly percentile. In particular, the determiristun produced higher values than the
probabilistic approach over the whole simulatiomd (differences reaching more than 2000 fhamd 250 pg.i at 250

m and 1000 m of the release, respectively). Nudt the dispersion (i.e. the standard deviatiothefensemble results) of
the variables of interest remained very small (thas 1% of the ensemble mean) even at very shoger of the release (not
shown).

3.2 Comparisons between the direct and indirect ptmabilistic approaches

The comparison of the so-called direct and indireethods has been achieved performing numericaluledions

considering fixed receptors only. The receptorsehasen placed according to two particular winddtioms identified from

the dataset which has been used: one rather inéddirection D1) and the other frequently obsér(a@irection D2). For

each direction, four receptors have been placedraius distances of the release: 250, 500, 1002800 m. The results
obtained with the direct and indirect approachesshaown on Figure 3.

The mean annual concentrations predicted by thentethods (direct and indirect, Figurea) are laigedirection D2 and
tend to decrease when the distance from the reieaseases. Moreover, we can note that the dingptaach simulates
larger concentration values than the indirect @specially in the vicinity of the release. The elifnces between the two
approaches become negligible for the receptorsddcat 500 m or more from the source. The simula@@ percentiles
exhibit more discrepancies between the two metrasishe indirect one tends to strongly overestinthee simulated
concentrations derived from the direct approachufeb). Actually, the 100percentiles derived from the indirect approach
ranges between 2 to 4.5 times the results prowigatie direct method.
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Figure 3. (a) Mean annual concentration and (b} 1@urly percentile (ug.H) as a function of the distance from the releBse(resp.D2)
is used for the wind direction frequently (respehg) observed anBA (resp.IA) for the direct (resp. indirect) approach.

3.3 Uncertainty related to the location of receptcs

The definition of the location of receptors is pedn high uncertainties. For example, when defigfgpspital as a particular
receptor, one will choose the centre of the hokpitadefine the receptor location while this hoapitan not be simply
reduced to a single point. To have an idea of tiheedainty related to such a method to define dleation of receptors, we
reproduced the experiment described in sectiou&iry the direct approach only. Moreover, for eaateptor located both
in the D1 and D2 directions, we defined four poistisrounding it at a distance of more or less 5@wing this for each

receptor, we computed the normalised standard tieviaf the mean annual concentration and thé"iicentile between
this receptor and the four surrounding ones. Tlalt® showed that the normalised standard deviafagach variable of

interest ranged around 50% of the mean value irvitirity of the release, suggesting a high vatigbof the results and

thus a strong uncertainty related to the locatiotne receptors.

4. CONCLUSIONS AND FUTURE WORK

In this study, a chain for the quantification o&timpact of input uncertainties on ground-level gantrations simulations
has been developed. The experiments which have ¢meducted suggested that considering uncertairgiaged to input
data may involve different results than those ptesliby simple deterministic approaches. At thisipof the study, it has
not been possible to show which one of the diradtthe indirect approach was more appropriate ffolbgbilistic modelling

applied to long term impact assessment studiesilfirthe high uncertainty related to the definitiof single receptors for
specific establishments (schools, hospitals, éi@s)also been pointed out. It is planed to follavotigh this study mainly
focusing on the implementation of alternative utaiaty propagation methods (for example polynormlaos expansion),
the representation of dependencies between inpidbi@s when using the indirect approach and onréadization of

sensitivity analyses (that is ranking uncertairyrses as a function of their importance regardtiegsimulation results).
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