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Abstract: The release of hazardous materials into the atmosphere on the battlefield or in populated areas must be considered for future 
scenarios. Given a warning based on detections at a few sensors, it should be useful to rapidly provide an estimate of the location, time of 
release, and amount of material released. Such information could lead to refined predictions of the hazardous area and support follow-on 
actions to investigate the cause and nature of the hazardous release. In September 2007, a short-range test – Fusing Sensor Information from 
Observing Networks (FUSION) Field Trial 2007 (FFT 07) – designed to collect data to support development of prototype source term 
estimation (STE) algorithms was conducted. A comparative investigation of STE algorithms began in 2008. First, a subset of sensor data 
from selected FFT 07 trials was provided to participating algorithm developers. Next, developers provided “blind” STE predictions which 
were then independently compared to the parameters of the actual release. A total of eight different STE algorithm developers participated in 
this exercise. A total of fourteen full and partial sets of predictions were received with some exercise participants providing multiple sets of 
predictions based on different algorithms they have been developing. Linear regression analysis considered several variables that might 
influence results including the number of sensors (four versus sixteen), the release type (instantaneous versus continuous), the time of the 
release (day versus night), meteorological inputs (“research-grade” inputs versus “simulated” operational inputs), and the number of sources 
(single versus double versus triple versus quad releases). Both backward and stepwise regressions were conducted to explore the variables 
that might most affect predictive performance. The results of these analyses are used to ascertain trends among different sets of STE 
predictions and are presented here. 
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INTRODUCTION 
Given a warning based on detection of hazardous materials at only a few sensors, it could be useful to rapidly provide an 
estimate of the source location, time of release, and amount of material released.  Such an estimate can lead to refined 
predictions of the area affected by the release and can support near-term follow-on actions to investigate the cause and nature 
of the release.  In some cases, refined predictions that could result from such source term estimation (STE) can support 
tactical decisions (e.g., which roads to travel on and which to avoid). For longer-range situations (tens of kilometres), 
accurate estimates of the source can allow for improved hazard-area predictions that could better support warnings and 
possible evacuation, efficient mission-oriented protective posture gear usage, or perhaps medical response.  
 
In September 2007, a short-range (~500 meters), highly instrumented test was conducted at the U.S. Army’s Dugway 
Proving Ground (DPG) (Storwold, 2007).  This test, referred to as Fusing Sensor Information from Observing Networks 
(FUSION) Field Trial 2007 (FFT 07), was designed to collect data to support the further development of prototype 
algorithms.  FFT 07 was sponsored by DTRA-Joint Science and Technology Office for Chemical and Biological Defense 
(JSTO-CBD) and was conceived of and planned within the Technical Panel 9 for Hazard Assessment (TP9) of The Technical 
Cooperation Program (TTCP) Chemical, Biological, and Radiological Defense (CBD) group, thus making this effort an 
international (in this case, U.S., U.K., Canada, and Australia) collaboration. 
 
The reasons for conducting FFT 07 were numerous. First, the experiment was meant to provide a set of data that STE model 
developers can use to improve their algorithms.  Next, the collected information could be used to assist in identifying the 
strengths and weaknesses of the different modelling approaches chosen by the developers.  Finally, assessment of STE 
algorithms using data collected during FFT 07, was meant to help the Department of Defense identify the current state of the 
STE algorithms in general (the “state of the art”). 
 
A comparative investigation of STE algorithms began in 2008.  The general method of this investigation was to first provide 
participating developers with a subset of sensor data that was collected on selected FFT 07 trials.  Next, developers provided 
“blind” predictions that were compared to parameters of the actual release.  Phase I of this investigation consisted of 104 
individual cases of simulated sensor data that were distributed in September 2008.  Table 1 lists the composition of Phase I 
cases.  These cases simulated continuous streams of concentration data for ingestion by STE algorithms.  Each case selected 
for Phase I evaluation was created using available digiPID data.  
 

Table 1. Composition of Phase I cases that were distributed to STE algorithm developers to provide predictions. 
 

Condition All Trials Single Double Triple Quad
none 104 40 40 16 8
Puff 52 20 20 8 4
Cont 52 20 20 8 4

Daytime 52 20 20 8 4
Nighttime 52 20 20 8 4

Daytime/Puff 26 10 10 4 2
Daytime/Cont 26 10 10 4 2

Nighttime/Puff 26 10 10 4 2
Nighttime/Cont 26 10 10 4 2

Phase I Release Case Composition
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Phase I consisted of cases that equally sampled the parameters that were potentially expected to most significantly affect the 
quality of STE predictions.  These parameters included time of day of the tracer release (day or night), type of tracer release 
(continuous or instantaneous), and number of sensors reporting data (4 or 16).  To provide some realism in the 
meteorological inputs to the STE algorithms, for some cases the developers were provided with surface wind velocity 
observations and a vertical wind velocity profile from sites up to 1-2 km removed from the tracer releases and sampler grid, 
instead of the more detailed meteorological observations made at the centre location of the sampler grid itself.  An additional 
sampled parameter that could affect the quality of STE predictions was the number of sources (single, double, triple, or 
quad).  FFT 07 individual puff trials involved multiple (up to 10) realizations.  These puffs were released by firing air 
cannons every few minutes resulting in “trains of puffs” periodically traversing the digiPID grid.  Hence, for puff releases, 
some distributed cases included a single realization of the puff(s), while some of the distributed cases included multiple (up 
to 10) realizations.  The full structure of the Phase I cases and further details on the composition of the phases of the 
evaluation and construction of the cases are available in Platt, et al., 2008a, 2008b. 
 
A total of eight different STE algorithm developers participated in this exercise.  A total of 14 full and partial sets of 
predictions were received with some exercise participants providing multiple sets of predictions based on different algorithms 
that they have been developing.  Table 2 depicts the organizations that participated in Phase I together with the composition 
of predicted cases that they provided.  Red denotes that a full set of predictions was provided; blue denotes that predictions 
were provided for at least 50 percent of the distributed cases.  Table 3 briefly lists some basic capabilities of each of the STE 
algorithms that include ability to predict number (e.g., single, double, triple, or quad source) and types of sources (e.g., 
continuous or instantaneous puff release). 
 

Table 2. Organizations participating in Phase I together with the composition of predicted cases they provided broken down into several 
categories including release type, time of day, and number of sources.  The red font values denote that a full set of predictions was provided; 

blue font values denote that the predictions were provided for at least 50 percent of the distributed cases. 
 

Organization Total Cont Puff Daytime Nighttime Single Double Triple Quad
Aerodyne 104 52 52 52 52 40 40 16 8

Boise-State 33 14 19 21 12 13 13 4 3
Buffalo / GA 104 52 52 52 52 40 40 16 8
Buffalo / SA 70 34 36 34 36 26 26 12 6

DSTL 35 5 30 20 15 12 14 7 2
ENSCO / Set 1 102 51 51 50 52 39 39 16 8
ENSCO / Set 2 104 52 52 52 52 40 40 16 8
ENSCO / Set 3 42 24 18 19 23 13 15 10 4

NCAR / Variational 38 3 35 20 18 16 14 4 4
NCAR / Phase I 38 3 35 20 18 16 14 4 4

Sage-Mgt 104 52 52 52 52 40 40 16 8
PSU / Gaussian 50 26 24 25 25 18 20 8 4
PSU / SCIPUFF 50 26 24 25 25 18 20 8 4

PSU / MEFA 35 19 16 17 18 13 16 5 1

Composition of the Prediction Sets Recieved

 
 

Table 3. Basic capabilities of each of the STE algorithms that submitted predictions to the Phase I of the exercise. 
 

Organization Number of Sources Type
Aerodyne Multi Cont/Puff

Boise-State Single Cont/Puff
Buffalo / GA Multi Cont/Puff
Buffalo / SA Mostly Single Cont/Puff

DSTL Single Puff
ENSCO / Set 1 Multi Cont/Puff
ENSCO / Set 2 Single Cont
ENSCO / Set 3 Single Cont

NCAR / Variational Single Puff
NCAR / Phase I Single Puff

Sage-Mgt Single Cont/Puff
PSU / Gaussian Single Cont/Puff
PSU / SCIPUFF Single Cont/Puff

PSU / MEFA Multi Cont/Puff

Algorithm Capabilities

 
 
STE ALGORITHM PERFORMANCE TRENDS 
The goal of these evaluations is not to declare a “winning” algorithm, but rather to learn by examining the strengths and 
weaknesses of each of the proposed methodologies, because different approaches may best apply to different sets of tracer 
release scenarios (i.e., daytime versus night-time, single- versus double- source release, richer information available from 
simulated sensors versus poorer) or for different specific applications (e.g., near real-time versus forensic).  In this way, 
algorithm developers can learn from each other.  The main motivation behind the evaluation matrix is an attempt to trade off 
the ability to cover the evaluation of a substantial number of potential variables that might influence algorithm performance 
with the desire to keep the sample sizes large enough to be able to arrive at reasonably robust conclusions.  Therefore, we 
decided to start our analysis with the evaluation of algorithm performance trends instead of analyzing each individual 
algorithm.   
 
As depicted in Table 3, the individual STE algorithms participating in Phase I evaluations have different capabilities with 
respect to predicting numbers and types of sources.  In order to make a fair comparison among these algorithms, for each 



HARMO13 - 1-4 June 2010, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 

Session 8 — Inverse dispersion modelling 903 

individual case for which a prediction was submitted, common metrics that are applicable to all of the algorithms needed to 
be defined.  We selected two metrics: the distance between the averaged predicted and averaged observed source term 
locations, and the ratio of the observed and predicted release mass from all sources.  Figure 1 illustrates the distance metric 
calculation.  From the 14 sets of STE algorithm predictions, 12 algorithms provided enough information to calculate the mass 
ratio and all 14 algorithms provided enough data to calculate our distance metric. 
 

 
Figure 1. Example of the distance metric computation and total mass calculation used to compare algorithms for individual cases. 

 
 
LINEAR REGRESSION ANALYSIS DESCRIPTION AND RESULTS 
This section describes the use of linear regression to the examination of source term estimation algorithms.  In very general 
terms, this effort was an attempt to determine which of the underlying factors such as diurnal condition, number of release 
sources, type of release, and several other independent variables, had the greatest effect on the estimation of the mass ratio 
(the ratio of reported to actual mass) or mean offset distance.  Two regression techniques were used in this study: backward 
regression and stepwise regression. 
 
Backward regression begins with all the independent variables in the regression equation, and then proceeds to eliminate 
those for which the associated sum of squares is not significant. In contrast, stepwise regression only allows independent 
variables into the regression equation if their associated sum of squares is significant, and eliminates previously admitted 
variables if their effect is substantially diminished by other variables in the equation. 
 
Thus, roughly speaking, stepwise regression tests each independent variable to determine whether or not it should enter the 
regression equation, and again, if it should remain in the equation after others are admitted. Backward regression initially 
treats all variables as belonging to the equation, then eliminates those whose contribution is substandard. For reference, 
please see Draper and Smith (1966) and Seber (1977). 
 
We chose the following independent regression variables: 1) “Diurnal,” defined as either Night or Day release time; 2) “Met 
Num,” defined as either “Close-in” met corresponding to meteorology obtained at the centre of the digiPID grid, or 
“Operational” met, which corresponded to using meteorological stations approximately 1-2 km away; 3) “Sources” denoting 
the number of sources used in the definition of a case (single, double, triple, quad); 4) “Sensors” denoting  the number of 
simulated sensors used in the definition of a case (4 or 16); 4) “Puff/Real,” defined as: “-1” if case is constructed from a 
continuous trial, “0” if case is constructed using single realization of a puff trials, and “1” if case is constructed using 
multiple realizations of a puff trial.  The “Puff/Real” independent variable is expected to succinctly represent two distinct 
parameters that could affect quality of STE predictions: continuous vs. instantaneous/puff releases and single vs. multiple 
releases from the same location. 
 
The list of dependent regression variables included: “Mean,” defined as the distance between averaged predicted and 
averaged observed source term locations for the individual case as shown in Figure 1, and “Mass Ratio,” defined as a ratio of 
predicted to observed total mass of the material used to define a particular case.  
 
The results for stepwise and backward regressions are summarized in Tables 4 and 5, respectively.  To simplify viewing 
these tables, the coloured background in the table entries is coded according to which independent variable is called by the 
particular significant factor. 
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Table 4. Table of significant factors for backward regression. This table is divided into two sections, one for each dependent variable.  Each 
section contains the proportion of variance explained by regression (adjusted R2), independent variables selected by backward regression, 

standard coefficient for that variable, unstandardized coefficient, and significance level.  All computations were performed using SPSS 15.0 
with a removal criterion of 10 percent significance as determined by the appropriate partial F-test.  Background cell colours are used to 

designate and group individual variables that were considered significant by the regression analysis. 
 

model dependent R2 significant factor significant factor significant factor
ENSCO 3 Mass Ratio 0.379 Puff Real (0.51, 2.49. 0) Sources (-0.447, -1.9, 0.001)

Buffalo SA Mass Ratio 0.273 Sources (-0.348, -0.723, 0.002) Met Num (0.235, 0.632, 0.031) Diurnal (0.231, 0.508, 0.029)

DSTL Mass Ratio 0.254 Puff Real (-0.567, -287.1, 0.001) Sources (-0.376, -75.9, 0.026)
ENSCO 2 Mass Ratio 0.221 Puff Real (0.37, 1.3, 0.0) Sources (-0.32, -0.93,0) Sensors (0.17, 0.074, 0.06)

PSA Gaussian Mass Ratio 0.209 Puff Real (0.46, 0.059, 0.01) SourceS (-0.407, -0.037, 0.02)
PSU SCIPUFF Mass Ratio 0.203 Sources (-0.5, -0.011, 0.035)

Buffalo GA Mass Ratio 0.172 Sources (-0.365, -2.376, 0) Puff Real (0.183, 1.417, 0.044) Diurnal (0.177, 1.224, 0.051)
ENSCO 1 Mass Ratio 0.15 Puff Real (0.398, 14.64, 0)

Aerodyne Mass Ratio 0.096 Puff Real (0.262, 0.852, 0.006) Sensors (-0.212, -0.089, 0.026)
NCAR Phase I Mass Ratio 0 constant

NCAR Variation Mass Ratio 0
SAGE Mgt August Mass Ratio 0

Boise State Mass Ratio NO DATA
PSU MEFA Mass Ratio NO DATA

model dependent R2 significant factor significant factor significant factor

DSTL Mean 0.67 Puff Real (-0.725, -1.105, 0) Sources (0.212,0.129, 0.056)
NCAR Phase I Mean 0.266 Sources (0.534, 0.09, 0.001)

NCAR Variation Mean 0.204 Sources (0.475, 0.09, 0.003)
ENSCO 3 Mean 0.148 Sources (-0.366, -0.031, 0.015) Sensors (0.258, 0.003, 0.08)

PSA Gaussian Mean 0.102 Sources(0.306, 0.055, 0.029) Puff Real (-0.254, -0.057, 0.069)
SAGE Mgt August Mean 0.083 Sources (0.303, 0.204, 0.002)

ENSCO 1 Mean 0.043 Met Num (0.228, 0.009, 0.021)
ENSCO 2 Mean 0.04 Sensors (-0.173, -0.002, 0.076) Met Num (0.169, 0.017, 0.083)

Aerodyne Mean 0.033 Sensors (-0.206, -0.003, 0.036)
Boise State Mean 0 constant

Buffalo GA Mean 0 constant
Buffalo SA Mean 0
PSU MEFA Mean 0 constant

PSU SCIPUFF Mean 0 constant  
 
Table 5. Table of significant factors for stepwise regression.  As in the previous Table 4, Table 5 is divided into two sections, one for each 
dependent variable.  Each section contains the proportion of variance explained by regression (adjusted R2), independent variables selected 
by stepwise regression, standard coefficient for that variable, unstandardized coefficient, and significance level.  All computations were 
performed using SPSS 15.0 with an entry criterion of 5% and an elimination criterion of 10% significance as determined by the appropriate 
partial F-tests.  Background cell colours are used to designate and group individual variables that were considered significant by the 
regression analysis. 
 

model dependent R2 significant factor significant factor significant factor

ENSCO 3 Mass Ratio 0.379 Puff Real (0.51, 2.49. 0) Sources (-0.447, -1.9, 0.001)
Buffalo SA Mass Ratio 0.273 Sources (-0.348, -0.723, 0.002) Met Num (0.235, 0.632, 0.031) Diurnal (0.231, 0.508, 0.029)

DSTL Mass Ratio 0.254 Puff Real (-0.567, -287.1, 0.001) Sources (-0.376, -75.9, 0.026)
PSU SCIPUFF Mass Ratio 0.203 Sources (-0.5, -0.011, 0.035)

ENSCO 2 Mass Ratio 0.201 Puff Real (0.37, 1.3, 0) Sources (-0.32, -0.93, 0)
ENSCO 1 Mass Ratio 0.15 Puff Real (0.398, 14.64, 0)

Buffalo GA Mass Ratio 0.125 Sources (-0.365, -2.376, 0)
Aerodyne Mass Ratio 0.096 Puff Real (0.262, 0.852, 0.006) Sensors (-0.212, -0.089, 0.026)

NCAR Phase I Mass Ratio 0
NCAR Variation Mass Ratio 0

PSU Gaussian Mass Ratio 0
SAGE Mgt August Mass Ratio 0

Boise State Mass Ratio NO DATA
PSU MEFA Mass Ratio NO DATA

model dependent R2 significant factor significant factor significant factor

DSTL Mean 0.641 Puff Real (-0.807, -1.23, 0)
NCAR Phase I Mean 0.266 Sources (0.534, 0.09, 0.001)

NCAR Variation Mean 0.204 Sources (0.475, 0.09, 0.003)
ENSCO 3 Mean 0.101 Sources (-0.35, -0.03, 0.023)

SAGE Mgt August Mean 0.083 Sources (0.303, 0.204, 0.002)
ENSCO 1 Mean 0.043 Met Num (0.228, 0.009, 0.021)

Aerodyne Mean 0.033 Sensors (-0.206, -0.003, 0.036)
Boise State Mean 0

Buffalo GA Mean 0
Buffalo SA Mean 0

ENSCO 2 Mean 0
PSU Gaussian Mean 0

PSU MEFA Mean 0
PSU SCIPUFF Mean 0  
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The regression outcomes were ranked in decreasing order of their respective (“adjusted”) coefficients of determination.  The 
coefficient of determination is referred to as R2 and is the square of the correlation between observations and values returned 
by the regression equation.  It is equal to the proportion of the variance in observed data that can be “explained” by 
regression (G. Seber, 1977).  The adjusted R2, which determined the ordering, takes into account the number of variables in 
the model and is equal to 1 – (1 - R2)(n-1)/(n -p - 1), where p is the number of independent variables in regression equation 
and n is the number of observations.  The point of using the adjusted R2 is to force models to be economical by penalizing 
excessive numbers of independent variables.  This is in contrast to the (unadjusted) R2, which increases with the number of 
independent variables. 
 
Two types of regression coefficients are presented in this paper: standardized and unstandardized. The former refers to 
regression coefficients obtained after transforming all data so that the dependent variable and all independent variables have a 
mean of zero and a standard deviation of 1.0.  In some sense, this treats all data as being on an equal footing.  The 
unstandardized coefficients are the result of performing regression without this transformation.  For each model listed in 
Tables 4 and 5, both types of coefficients appear in parentheses after each independent variable that was selected by the 
regression process.  The level of significance – that is the probability of the same or more extreme observations under the null 
hypothesis that this coefficient was zero (loosely speaking, the probability that the coefficient is zero), also appears in 
parentheses after the coefficient. Models with gray backgrounds in Tables 4 and 5 are those for which there were no data or 
which regression was not significant.  
 
With respect to predicting miss distance between predicted and observed STE location, the regression analysis indicates: 

1. “Diurnal” (Day/Night) and “Met Num” variable representing “Close-In” versus “Operational” met options  is not a 
significant variable for both backward and stepwise regressions for almost all algorithms.   

2.  “Sources” variable representing number of sources used in the definition of a case is a significant predictor of 
algorithm performance for six algorithms.  Six algorithms are called by stepwise regression and four algorithms are 
called by backward regression. 

3. “Sensors” regression variable representing number of sensors (4 vs. 16) used in the definition of the case is a 
significant predictor of algorithms performance for only three algorithms.  This indicates that most STE algorithms 
do not benefit from having a larger number of sensors. 

4. “Puff Real” regression variable is a significant predictor for algorithm performance for two algorithms using 
backward regression and one algorithm using stepwise regression. 

 
With respect to mass ratio dependent variable, regression analysis indicates: 

1. “Diurnal” (Day/Night), “Met Num” (Close-In/Operational met) and “Sensors” (4 vs. 16) are not significant 
variables for most algorithms for both backward and stepwise regression. 

2. “Sources” independent regression variable representing number of sources used in the definition of a case is a 
significant predictor of algorithm performance for seven algorithms. 

3. “Puff Real” regression variable is a significant predictor for algorithm performance for seven algorithms. 
 

We would like to caution that regression analysis results should serve as a guide for further investigation of which 
algorithm/variable combinations are important. For instance, the regression analysis does not tell if the algorithm performed 
as expected with respect to a given variable. 
 
Phase II of this exercise is being planned to start in FY 10 and incorporate: 1) lessons learned from Phase I, 2) the addition of 
“bar-sensor” input data stream, and 3) the use of a simulated environment to supplement the field trial data. 
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