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Abstract: The release of hazardous materials into the gthee on the battlefield or in populated areas rbestonsidered for future
scenarios. Given a warning based on detectiondew @ensors, it should be useful to rapidly prevah estimate of the location, time of
release, and amount of material released. Suchmiation could lead to refined predictions of thedrdous area and support follow-on
actions to investigate the cause and nature dfidzardous release. In September 2007, a short-tasige Fusing Sensor Information from
Observing Networks (FUSION) Field Trial 2007 (FFT)0- designed to collect data to support developmémprototype source term
estimation (STE) algorithms was conducted. A corafpae investigation of STE algorithms began in 20B8st, a subset of sensor data
from selected FFT 07 trials was provided to pgptitihg algorithm developers. Next, developers ghedi“blind” STE predictions which
were then independently compared to the parametehe actual release. A total of eight differefEalgorithm developers participated in
this exercise. A total of fourteen full and parsets of predictions were received with some egerparticipants providing multiple sets of
predictions based on different algorithms they hbgen developing. Linear regression analysis censitlseveral variables that might
influence results including the number of senséwar(versus sixteen), the release type (instantaeersus continuous), the time of the
release (day versus night), meteorological inplieséarch-grade” inputs versus “simulated” operatianputs), and the number of sources
(single versus double versus triple versus quaghsels). Both backward and stepwise regressionsooarkicted to explore the variables
that might most affect predictive performance. Thsults of these analyses are used to ascertaidstramong different sets of STE
predictions and are presented here.
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INTRODUCTION

Given a warning based on detection of hazardousnat at only a few sensors, it could be usefulaudly provide an
estimate of the source location, time of release, amount of material released. Such an estinetelead to refined
predictions of the area affected by the releasecandsupport near-term follow-on actions to in\gt the cause and nature
of the release. In some cases, refined predictibat could result from such source term estima{®fiE) can support
tactical decisions (e.g., which roads to travelamd which to avoid). For longer-range situatiorengt of kilometres),
accurate estimates of the source can allow for angd hazard-area predictions that could better atipparnings and
possible evacuation, efficient mission-orientedtg@ective posture gear usage, or perhaps medicadmesp

In September 2007, a short-range (~500 metershlyhigstrumented test was conducted at the U.S.yArrDugway
Proving Ground (DPG) (Storwold, 2007). This tesferred to as Fusing Sensor Information from Olbegr Networks
(FUSION) Field Trial 2007 (FFT 07), was designed cmllect data to support the further developmentpaitotype
algorithms. FFT 07 was sponsored by DTRA-Joinefcé and Technology Office for Chemical and BiologRefense
(JSTO-CBD) and was conceived of and planned witrénTichnical Panel 9 for Hazard Assessment (TP3hefTechnical
Cooperation Program (TTCP) Chemical, Biological, andi®lagdical Defense (CBD) group, thus making this effan
international (in this case, U.S., U.K., Canada, Auastralia) collaboration.

The reasons for conducting FFT 07 were numeroust, Fhe experiment was meant to provide a setts# that STE model
developers can use to improve their algorithmsxtNie collected information could be used to stsisi identifying the
strengths and weaknesses of the different modedijmgroaches chosen by the developers. Finallgsas®nt of STE
algorithms using data collected during FFT 07, wasnt to help the Department of Defense identiéydirrent state of the
STE algorithms in general (the “state of the art”).

A comparative investigation of STE algorithms bega008. The general method of this investigati@s to first provide
participating developers with a subset of sensta theat was collected on selected FFT 07 trialextNdevelopers provided
“blind” predictions that were compared to paranetef the actual release. Phase | of this investigaconsisted of 104
individual cases of simulated sensor data that wWasteibuted in September 2008. Table 1 listsabmposition of Phase |
cases. These cases simulated continuous streatnsadntration data for ingestion by STE algorithrEsch case selected
for Phase | evaluation was created using availdigi®|D data.

Table 1. Composition of Phase | cases that wetshilised to STE algorithm developers to providedprgons.

Phase | Release Case Composition

Condition All Trials Single Double Triple Quad
none 104 40 40 16 8
Puff 52 20 20 8 4
Cont 52 20 20 8 4
Daytime 52 20 20 8 4
Nighttime 52 20 20 8 4
Daytime/Puff 26 10 10 4 2
Daytime/Cont 26 10 10 4 2
Nighttime/Puff 26 10 10 4 2
Nighttime/Cont 26 10 10 4 2
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Phase | consisted of cases that equally samplepattzeneters that were potentially expected to migsiificantly affect the
quality of STE predictions. These parameters uetlitime of day of the tracer release (day or hidipe of tracer release
(continuous or instantaneous), and number of sensgporting data (4 or 16). To provide some realim the
meteorological inputs to the STE algorithms, fomsocases the developers were provided with sunfdnd velocity
observations and a vertical wind velocity profiterh sites up to 1-2 km removed from the tracerasde and sampler grid,
instead of the more detailed meteorological obdema made at the centre location of the sampieritgelf. An additional
sampled parameter that could affect the qualitys®E predictions was the number of sources (sirdpeple, triple, or
quad). FFT 07 individual puff trials involved mple (up to 10) realizations. These puffs wereaskd by firing air
cannons every few minutes resulting in “trains offg’ periodically traversing the digiPID grid. Hee, for puff releases,
some distributed cases included a single realizaifathe puff(s), while some of the distributed eacluded multiple (up
to 10) realizations. The full structure of the B¥d cases and further details on the compositioth@ phases of the
evaluation and construction of the cases are dlaila Platt,et al, 2008a, 2008b.

A total of eight different STE algorithm developgrarticipated in this exercise. A total of 14 faihd partial sets of
predictions were received with some exercise ppdids providing multiple sets of predictions basedlifferent algorithms
that they have been developing. Table 2 depig®thanizations that participated in Phase | tagetith the composition
of predicted cases that they provided. Red dernbtasa full set of predictions was provided; blundtes that predictions
were provided for at least 50 percent of the disteéd cases. Table 3 briefly lists some basiclulipes of each of the STE
algorithms that include ability to predict numbexg., single, double, triple, or quad source) ayks of sources (e.g.,
continuous or instantaneous puff release).

Table 2. Organizations participating in Phase étbgr with the composition of predicted cases tiveyided broken down into several
categories including release type, time of day, mnmaber of sources. The red font values denoteathal set of predictions was provided;
blue font values denote that the predictions weogiged for at least 50 percent of the distributades.

Composition of the Prediction Sets Recieved

Organization Total Cont Puff Daytime |Nighttime| Single Double Triple Quad
Aerodyne 104 52 52 52 52 40 40 16 8
Boise-State 33 14 19 21 12 13 13 4 3
Buffalo / GA 104 52 52 52 52 40 40 16 8
Buffalo / SA 70 34 36 34 36 26 26 12 6
DSTL 35 5 30 20 15 12 14 7 2
ENSCO / Set 1 102 51 51 50 52 39 39 16 8
ENSCO/ Set 2 104 52 52 52 52 40 40 16 8
ENSCO/ Set 3 42 24 18 19 23 13 15 10 4
NCAR / Variational 38 3 35 20 18 16 14 4 4
NCAR / Phase | 38 3 35 20 18 16 14 4 4
Sage-Mgt 104 52 52 52 52 40 40 16 8
PSU / Gaussian 50 26 24 25 25 18 20 8 4
PSU / SCIPUFF 50 26 24 25 25 18 20 8 4
PSU / MEFA 35 19 16 17 18 13 16 5 1

Table 3. Basic capabilities of each of the STE #tlgms that submitted predictions to the Phasethefexercise.

Algorithm Capabilities
Organization Number of Sources Type
Aerodyne Multi Cont/Puff
Boise-State Single Cont/Puff
Buffalo / GA Multi Cont/Puff
Buffalo / SA Mostly Single Cont/Puff
DSTL Single Puff
ENSCO /Set 1 Multi Cont/Puff
ENSCO / Set 2 Single Cont
ENSCO / Set 3 Single Cont
NCAR / Variational Single Puff
NCAR / Phase | Single Puff
Sage-Mgt Single Cont/Puff
PSU / Gaussian Single Cont/Puff
PSU / SCIPUFF Single Cont/Puff
PSU / MEFA Multi Cont/Puff

STE ALGORITHM PERFORMANCE TRENDS

The goal of these evaluations is not to declareviariing” algorithm, but rather to learn by examigithe strengths and
weaknesses of each of the proposed methodologieaube different approaches may best apply toréliffesets of tracer
release scenarios (i.e., daytime versus night-tsimgle- versus double- source release, richerrmdtion available from

simulated sensors versus poorer) or for differ@eicsic applications (e.g., near real-time versoeffisic). In this way,

algorithm developers can learn from each othere fflain motivation behind the evaluation matrixrisastempt to trade off
the ability to cover the evaluation of a substdntiamber of potential variables that might influeragorithm performance
with the desire to keep the sample sizes large gintw be able to arrive at reasonably robust cemmhs. Therefore, we
decided to start our analysis with the evaluatidéralgorithm performance trends instead of analyzéagh individual

algorithm.

As depicted in Table 3, the individual STE algamth participating in Phase | evaluations have difiercapabilities with
respect to predicting numbers and types of sourtesorder to make a fair comparison among thegeréhms, for each
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individual case for which a prediction was subnditteommon metrics that are applicable to all ofalgorithms needed to
be defined. We selected two metrics: the distaratveen the averaged predicted and averaged obssotgce term
locations, and the ratio of the observed and predicelease mass from all sources. Figure 1iilites the distance metric
calculation. From the 14 sets of STE algorithndjmtons, 12 algorithms provided enough informatiorcalculate the mass
ratio and all 14 algorithms provided enough dateaioculate our distance metric.
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Figure 1. Example of the distance metric computagind total mass calculation used to compare #éfgosi for individual cases.

LINEAR REGRESSION ANALYSIS DESCRIPTION AND RESULTS

This section describes the use of linear regredsidhe examination of source term estimation algors. In very general
terms, this effort was an attempt to determine wid€the underlying factors such as diurnal conditinumber of release
sources, type of release, and several other indep¢variables, had the greatest effect on thenattin of the mass ratio
(the ratio of reported to actual mass) or meanebffisstance. Two regression techniques were uséud study: backward
regression and stepwise regression.

Backward regression begins with all the independaniables in the regression equation, and thenegax to eliminate
those for which the associated sum of squares tisigaificant. In contrast, stepwise regressionyailows independent
variables into the regression equation if theimagged sum of squares is significant, and elinggagireviously admitted
variables if their effect is substantially dimingghby other variables in the equation.

Thus, roughly speaking, stepwise regression tests endependent variable to determine whether oitrehould enter the
regression equation, and again, if it should renmaithe equation after others are admitted. Backwagdession initially
treats all variables as belonging to the equatibaen eliminates those whose contribution is suldstath For reference,
please see Draper and Smith (1966) and Seber (1977)

We chose the following independent regression ket 1) “Diurnal,” defined as either Night or Deslease time; 2) “Met
Num,” defined as either “Close-in” met corresponditmg meteorology obtained at the centre of the diiBrid, or
“Operational” met, which corresponded to using rosigical stations approximately 1-2 km away; Splrces” denoting
the number of sources used in the definition ofsec(single, double, triple, quad); 4) “Sensorgiadimg the number of
simulated sensors used in the definition of a ¢dser 16); 4) “Puff/Real,” defined as: “-1” if case constructed from a
continuous trial, “0” if case is constructed usisiggle realization of a puff trials, and “1” if @ss constructed using
multiple realizations of a puff trial. The “Puff/R independent variable is expected to succinalyresent two distinct
parameters that could affect quality of STE preéditt: continuous vs. instantaneous/puff releaselssamgle vs. multiple
releases from the same location.

The list of dependent regression variables includ&tean,” defined as the distance between avergmedicted and
averaged observed source term locations for thigithal case as shown in Figure 1, and “Mass Ratlefined as a ratio of
predicted to observed total mass of the materied s define a particular case.

The results for stepwise and backward regressiomsw@mmarized in Tables 4 and 5, respectively. sitwplify viewing
these tables, the coloured background in the thiees is coded according to which independeniabbe is called by the
particular significant factor.
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Table 4. Table of significant factors for backwaedression. This table is divided into two sectjare for each dependent variable. Each
section contains the proportion of variance exgdiby regression (adjusted R2), independent vasai#lected by backward regression,
standard coefficient for that variable, unstandaadicoefficient, and significance level. All contgions were performed using SPSS 15.0
with a removal criterion of 10 percent significareedetermined by the appropriate partial F-tBsickground cell colours are used to

designate and group individual variables that veeresidered significant by the regression analysis.

model dependent R2 significant factor significant factor significant factor
ENSCO 3 Mass Ratio 0.379
Buffalo SA Mass Ratio| 0.273 Diurnal (0.231, 0.508, 0.029)
DSTL Mass Ratio| 0.254 Puff Real (-0.567,-287.1, 0.001
ENSCO 2 Mass Ratio| Puff Real (0.37, 1.3, 0.0) Sensors (0.17, 0.074, 0.06)
PSA Gaussian] Mass Ratio|
PSU SCIPUFF| Mass Ratio|
Buffalo GA Mass Ratio . Diurnal (0.177, 1,224, 0.051)
ENSCO 1 Mass Ratio| 0.15 Puff Real (0.398, 14.64, 0)
Aerodyne Mass Ratio}] _ 0.096 Puff Real (0.262, 0.852, 0.006)) _Sensors (-0.212, -0.089, 0.026)
NCAR Phase || Mass Ratio| 0 constant
NCAR Variation] Mass Ratio 0
SAGE Mgt Augupt Mass Ratio| 0
Boise State Mass Ratio NO DATA
PSU MEFA Mass Ratio| NO DATA
model dependent R2 significant factor significant factor significant factor
DSTL Mean 0.67 Puff Real (-0.725. -1.105. 0
NCAR Phase | Mean 0.266
NCAR Variation Mean 0.204
ENSCO 3 Mean 0.148 Sensors (0.258, 0.003, 0.08)
PSA Gaussian Mean 0.102 Puff Real (-0.254, -0.057, 0.069
SAGE Mgt August  Mean 0.083
ENSCO 1 Mean 0.043
ENSCO 2 Mean 0.04 Sensors (-0.173, -0.002, 0.076
Aerodyne Mean 0.033 Sensors (-0.206, -0.003, 0.036
Boise State Mean 0 constant
Buffalo GA Mean (0] constant
Buffalo SA Mean 0
PSU MEFA Mean 0 constant
PSU SCIPUFF| Mean 0 constant

Table 5. Table of significant factors for stepwisgression. As in the previous Table 4, Tabledigled into two sections, one for each
dependent variable. Each section contains theoptiop of variance explained by regression (adjift®), independent variables selected
by stepwise regression, standard coefficient fat #ariable, unstandardized coefficient, and sigaifce level. All computations were
performed using SPSS 15.0 with an entry criteribs% and an elimination criterion of 10% significanas determined by the appropriate
partial F-tests. Background cell colours are usatesignate and group individual variables thaeveensidered significant by the
regression analysis.

model dependent R2 significant factor significant factor significant factor
ENSCO 3 Mass Ratio 0.379 Puff Real (0.51.2.49.0
Buffalo SA Mass Ratio 0.273 Diurnal (0.231, 0.508, 0.029)
DSTL Mass Ratio 0.254
PSU SCIPUFF]  Mass Ratio 0.203 ]
ENSCO 2 Mass Ratio 0.201 Puff Real (0.37, 1.3 0)
ENSCO 1 Mass Ratio 0.15 Puff Real (0.398, 14.64, 0
Buffalo GA Mass Ratio 0.125
Aerodyne Mass Ratio 0.096 Puff Real (0.262, 0.852, 0.006) Sensors (-0.212, -0.089, 0.026)
NCAR Phase | Mass Ratio 0
NCAR Variation Mass Ratio 0
PSU Gaussian Mass Ratio 0
SAGE Mgt Augu$t  Mass Ratio 0
Boise State Mass Ratio NO DATA
PSU MEFA Mass Ratio NO DATA
model dependent R2 significant factor significant factor significant factor
DSTL Mean
NCAR Phase | Mean
NCAR Variation Mean
ENSCO 3 Mean
SAGE Mgt Augu Mean
ENSCO 1 Mean
Aerodyne Mean . Sensors (-0.206,:0.003, 0.036)
Boise State Mean 0
Buffalo GA Mean (0]
Buffalo SA Mean 0
ENSCO 2 Mean 0
PSU Gaussian| Mean 0
PSU MEFA Mean 0
PSU SCIPUFF] Mean 0
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The regression outcomes were ranked in decreasiley of their respective (“adjusted”) coefficiemtisdetermination. The
coefficient of determination is referred to as R#8 @nthe square of the correlation between obsensgnd values returned
by the regression equation. It is equal to thepprion of the variance in observed data that can‘dxplained” by
regression (G. Seber, 1977). The adjusted R2,hndiétermined the ordering, takes into account tivalber of variables in
the model and is equal to 1 — (1 - R2)(n-1)/(n 4),-where p is the number of independent varialnlesgression equation
and n is the number of observations. The pointsirig the adjusted R2 is to force models to be aviad by penalizing
excessive numbers of independent variables. Fhis ¢ontrast to the (unadjusted) R2, which increagi¢h the number of
independent variables.

Two types of regression coefficients are preseirtethis paper: standardized and unstandardized. fohmer refers to
regression coefficients obtained after transfornaithglata so that the dependent variable and @éipendent variables have a
mean of zero and a standard deviation of 1.0. olmessense, this treats all data as being on anl éopiing. The
unstandardized coefficients are the result of periog regression without this transformation. Each model listed in
Tables 4 and 5, both types of coefficients appegparentheses after each independent variablesmhstselected by the
regression process. The level of significanceat ihthe probability of the same or more extrefnseovations under the null
hypothesis that this coefficient was zero (loosgheaking, the probability that the coefficient &x@), also appears in
parentheses after the coefficient. Models with dgragkgrounds in Tables 4 and 5 are those for wthiere were no data or
which regression was not significant.

With respect to predicting miss distance betweedlipted and observed STE location, the regressialysis indicates:

1. ‘“Diurnal” (Day/Night) and “Met Num” variable represting “Close-In” versus “Operational” met optiomsnot a
significant variable for both backward and stepwisgressions for almost all algorithms.

2. “Sources” variable representing number of sourcgsd in the definition of a case is a significargdictor of
algorithm performance for six algorithms. Six aitfuns are called by stepwise regression and flgarishms are
called by backward regression.

3. “Sensors” regression variable representing numibesensors (4 vs. 16) used in the definition of tase is a
significant predictor of algorithms performance ¢mly three algorithms. This indicates that mGBE&lgorithms
do not benefit from having a larger number of senso

4. “Puff Real” regression variable is a significant gictor for algorithm performance for two algorithrasing
backward regression and one algorithm using stepreigression.

With respect to mass ratio dependent variableessjon analysis indicates:
1. “Diurnal” (Day/Night), “Met Num” (Close-In/Operatical met) and “Sensors” (4 vs. 16) are not significan
variables for most algorithms for both backward atepwise regression.
2. “Sources” independent regression variable reprampmumber of sources used in the definition ofaaecis a
significant predictor of algorithm performance gmven algorithms.
3. “Puff Real” regression variable is a significantgiotor for algorithm performance for seven algarith

We would like to caution that regression analyssuits should serve as a guide for further invastg of which
algorithm/variable combinations are important. Fatance, the regression analysis does not teleifalgorithm performed
as expected with respect to a given variable.

Phase Il of this exercise is being planned to stafty 10 and incorporate: 1) lessons learned fRitase |, 2) the addition of
“bar-sensor” input data stream, and 3) the usesihalated environment to supplement the field ttaa.
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