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Abstract: The often prohibitive costs of comprehensive field trials coupled with relatively cheap and abundant computational power leads to 
a strong desire to use modelling tools to supplement field testing of system components. These modelling tools must be capable of 
reproducing key environmental variables present during field testing and require rigorous validation. The Virtual THreat Response 
Emulation and Analysis Testbed (VTHREAT) modelling system is composed of a suite of models designed to provide a virtual Chemical, 
Biological, Radiological and Nuclear (CBRN) release environment. Two key variables that VTHREAT is designed to realistically simulate 
are agent concentration and wind velocity. Typical validation studies compare mean predicted and observed quantities of interest such as 
mean concentration and mean wind speed and direction. This paper attempts to develop techniques to evaluate fluctuations – in particular, 
two-dimensional wind vector fluctuations.  
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BACKGROUND 
As computational power becomes more available and relatively cheap there is desire to use computer modelling tools to 
supplement field testing of system components. The use of such tools holds the promise of increasing the efficiency of the 
field tests that are conducted, aiding the evaluation of results obtained from such tests, and reducing costs. To support virtual 
testing, computer modelling systems must be capable of reproducing key environmental variables. Therefore, the modelling 
system requires rigorous analysis to support confident validation efforts.  
 
The National Center for Atmospheric Research (NCAR) Virtual THreat Response Emulation and Analysis Testbed 
(VTHREAT) modelling system (Bieberbach, G., et al. 2010) is composed of a suite of models designed to provide a virtual 
Chemical, Biological, Radiological and Nuclear (CBRN) release environment. This tool has the potential to support a wide 
range of analyses including: (1) development, test, and evaluation of chemical-biological defence and meteorological sensors, 
algorithms, and architectures, (2) acquisition studies (e.g., analyses of alternatives, trade-off studies), (3) planning of field 
trials, to include aiding in the evaluation of field trial results, and (4) formulation and investigation of concepts of operation.  
VTHREAT components include virtual chemical, biological, and meteorological sensors as well as background models (e.g., 
particulates). Ultimately, all of these components require analyses in support of validation.   
 
A key feature of VTHREAT is the potential to produce realistic, representative, meteorological fields and threat clouds that 
include fluctuating and meandering components. Validation of this key feature should enhance acceptance for many potential 
uses and should include detailed comparisons of physical models with specific sets of observations as well as statistical 
comparisons of predicted distributions to observations.  Two key variables that VTHREAT is designed to realistically 
simulate at multiple locations are: 1) scalar agent concentration, and 2) wind velocity vectors. Typical validation studies 
compare mean predicted and observed quantities of interest (i.e., mean concentration and mean wind speed and direction) and 
in some cases might involve analysis of variances. In contrast, we decided to concentrate our effort on developing techniques 
to evaluate fluctuations ─ in particular, two-dimensional wind vector fluctuations. 
 
METHODOLOGY  
For scalar variables, such as concentration, a validation methodology to compare predicted scalar fluctuations at multiple 
locations with a limited set of experimental data was presented by Hill, et al., 2002 using p-values or “tail probabilities”.  
This method requires that a set of model realizations of an experimental observation can be created.  This allows a probability 
distribution function of the scalar of interest at a large number of receptors (both space and time) to be computed. Next, an 
observed scalar and predicted distribution of fluctuations are used to calculate the percentile in the predicted distribution that 
exceeds the observed value (p-value or “tail probability”). If the p-values are uniformly distributed, then the predicted 
distribution is consistent with the observations.  
 
An extension of the p-values methodology described above to two-dimensions was proposed in Fries, 2001 and Comfort, et 
al., 2002. It involves either parametric or non-parametric constructions of equal probability contours in two dimensions. The 
scalar p-value is then calculated by integrating the probability outside of the equal probability contour where the particular 
observation resides. By testing whether or not the distribution of resulting p-values (from nominally independent 
observations) are uniformly distributed, one can determine if the predicted distribution is consistent with observations. We 
note that some caution should be exercised when using this approach. To demonstrate, assume that the two-dimensional 
modelled distribution is a bivariate Normal distribution centred at the origin with σx = σy = 1. We write this as (X,Y) = 
(N(0,1),N(0,1)) where N(0,1) stands for normal distribution with µ = 0 and σ = 1 with X and Y independent. For any 

observation (x,y) the scalar p-value is given by 2/)( 22 yxe +− . If observations come from the same two-dimensional distribution 
(X,Y) then the calculated p-values are uniformly distributed as demonstrated in Figure 1. Now, consider that the observations 

are coming from the scalar distribution defined by 22 YXZ += . We note that Z is a Rayleigh distribution with parameter 
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σ = 1. Please recall that standard deviation of this distribution is 
2

2
πσ − .Then calculated p-values are still uniformly 

distributed as shown in Figure 2.  
 

Figure 1. Demonstration of distribution of scalar p-values when modelled and observed distributions are bivariate normal: a) depicts 
modelled distribution, b) depicts observations, and c) shows distribution of scalar p-values which is close to theoretical uniform distribution.  

 
Figure 2. Demonstration of distribution of scalar p-values when modelled distribution is bivariate normal and observed distribution is 

Rayleigh: a) depicts predictions (in red) and observations (in blue), and b) shows distribution of scalar p-values which is close to theoretical 
uniform distribution.  

 
To better understand the example described above, we note that individual scalar p-values based on contouring the two-
dimensional probability density function do not vary along equal probability contour lines. This allowed us to construct a 
one-dimensional illustration by specifically selecting observations along a ray emanating from the origin with a probability 
density function defined by angular projection of circular contours of normal bivariate distribution onto the radial ray. These 
examples need not be one-dimensional – one could easily construct two-dimensional observations by allowing some 
variation in angle along circular contours that would still yield a uniform distribution of p-values.   
 
Intuitively, one needs to extend the definition of scalar p-values to two-dimensional p-values to be able to capture the full 
dynamics of potential two-dimensional distribution functions. We’re still working out some general details describing classes 
of two-dimensional distribution functions that are amendable to this and will present a simplified case here. Assume that we 
have two continuous independent random variables X and Y. Then the joint distribution function is defined by 

)()(),(, yfxfyxf YXYX =  for all (x,y).  For any observation (x,y) we could calculate two separate p-values called px 

and py which are based on individual independent random variables X and Y. It can be shown, that if two-dimensional p-
values (px,py) are uniformly distributed in the unit square [0,1]×[0,1] then the underlying observations are consistent with the 
joint probability defined by independent random variable X and Y. Furthermore, if there is a linear and invertible 
transformation that takes random variables X' and Y' into X and Y, and if calculated two dimensional p-values (px,py) are 
uniformly distributed in the unit square, then the underlying observations are consistent with the joint probability function 
defined by random variables X' and Y'. 
 
Figures 3 and 4 demonstrate the application of two-dimensional p-values to the examples discussed earlier and shown in 
Figures 1 and 2, respectively. As expected, the two-dimensional p-values shown in Figure 3 are uniformly distributed in 
[0,1]×[0,1], while the two-dimensional p-values shown in Figure 4 reduce to non-uniformly, one-dimensionally distributed px 
values and constant py values. 

a) b) c)

a) b)



HARMO13 - 1-4 June 2010, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 

Session 1 — Model evaluation and quality assurance  

Figure 3. Demonstration of two-dimensional p-values for the case when predictions and observations are drawn from a bivariate normal 
distribution: a) shows calculated two-dimensional p-values that look uniformly distributed in the unit square, b) and c) show individual 

distribution of px and py values, respectively, which appear uniform in one-dimension. Please note that no formal test was applied to check 
for uniformity of the two-dimensional p-values and uniformity of individual px and py values does not necessary imply uniformity of the two-

dimensional p-values.  

 
Figure 4. Demonstration of two-dimensional p-values for the case when predictions are drawn from a bivariate normal distribution and 

observations are drawn from Rayleigh distribution: a) shows calculated two-dimensional p-values that are constant in y-direction, b) shows 
individual distribution of px values which is clearly different from a uniform distribution.  

  

Given a large finite set of VTHREAT predicted wind vector fluctuations { }Nivuw iii ..1|),( == that could be used to 

define a continuous probability density function for two random variables (U,V) and another set of observed wind vector 
fluctuations (e.g., samples) { }Mjvu s

j
s

jj ..1|),( )()( ==s , we propose the following procedure to ascertain whether or not 

samples sj are consistent with being drawn from random variables (U,V): 
 

1. Find a rotation matrix R that decorrelates predictions wi. Apply this rotation matrix R to both predictions wi and 
samples sj. For simplicity, assume that the new decorrelated sets use the same name. 

2. Test transformed wi=(ui,vi) to see if ui and vi are independent. If ui and vi are not independent then the procedure to 
calculate two-dimensional p-values described earlier might not be applicable. 

3. Calculate two-dimensional p-values ),( i
y

i
x pp using transformed samples sj. 

4. Test to see if two-dimensional p-values ),( i
y

i
x pp are uniformly distributed in [0,1]×[0,1] 

We’re still working out details about particular statistical tests to be applied in steps 2 and 4. We note that failure in step 2 
involving testing for independence of the transformed predictions might result in unpredictable conclusions based on this 
procedure. 
 
APPLICATION TO VTHREAT WIND VECTOR FLUCTUATION PREDICTIONS 
VTHREAT was used to simulate trial 54 from the Fusing Sensor Information from Observing Networks (FUSION) Field 
Trial 2007 (FFT 07) (Storwold, 2007). This highly instrumented test was conducted at the U.S. Army’s Dugway Proving 
Ground (DPG) and was designed to collect data to support the further development of prototype source term estimation 
algorithms. As part of the meteorological instrumentation of the test site, 40 Portable Weather Information Display Systems 
(PWIDS) were arranged on a regular rectangular grid to collect wind speed and direction, temperature, relative humidity and 
pressure at 2 meters above ground at 10 second time intervals. Trial 54 involved the continuous release of propylene gas for 
10 minutes from a single source. Propylene concentrations were continuously sampled at 50Hz at 100 digiPID (digital 
photoionization detector) and 20 UVIC (ultraviolet ion collector) sensors densely arranged at the test site. Out of the 40 
deployed PWIDS, only 39 collected useable data.  

a) b) c)

a) b)
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VTHREAT predictions, including wind speed and direction at PWIDS locations, were started ten minutes prior to tracer 
release and continued for 1800 seconds. VTHREAT output resolution was set to 1 sec. Twenty VTHREAT realizations of 
trial 54 were performed. To match the frequency of observations, VTHREAT output wind measurements were bin averaged 
to 10 seconds. VTHREAT was allowed to settle for 600 seconds to spin up its turbulence before wind comparisons with 
observations were performed.  Thus, there were a total of ([1800-600]/10+1)×39 = 4719 observed wind speed and direction 
measurements available for the comparison (i.e., number of p-values that could be calculated). Before any analysis and 
averaging, both VTHREAT predictions and PWIDS observation of wind speed and direction were transformed into (u,v) 
space. To calculate wind fluctuations in (u,v), a 60-second running window average was constructed for each individual 
PWIDS data stream (VTHREAT or observations) and fluctuations were calculated with respect to this average. The resulting 
predicted and observed fluctuations were plotted at each available time at 10 second increments and visually compared. 
Figure 5 shows a few example plots for VTHREAT predicted (20 realizations in red) and observed (in black) wind 
fluctuations.  

 
Figure 5. Examples of VTHREAT predicted (20 realizations in red) and observed (in black) wind fluctuations for a) 600 sec, b) 1200 sec, 

and c) 1800 sec after the start of the simulation.  
 
To simplify the calculation of scalar and two-dimensional p-values, for this demonstration of the methodology and based on 
visual inspection of Figure 5, we assume that the VTHREAT-based fluctuations are drawn from an elliptical-normal 
distribution. Additionally, we note that potentially there is a significant spatial and temporal correlation between individual 
observations (i.e., nearby PWIDS observations and VTHREAT predictions are correlated in space and time) that we will 
ignore for now. We note that the elliptical-normal distribution assumption and rotation of the ellipse based on computed 
correlation between individual components of this distribution to align the axis of the ellipse with coordinate axis results in 
de-correlated normal distributions along the axis which are independent.  Figure 6 depicts p-values calculated as follows: a) 
depicts scalar p-values based on the distance, b) depicts two-dimensional (px,py) values, c) depict distribution of individual px 
values, and d) depicts distribution of individual py values.  
 
While Figure 6b seems to indicate uniformly distributed two dimensional px and py values, Figure 6c and 6d along with 
Figure 6a indicate a slight peak in the distribution near the origin.  We note that while uniformly distributed individual px and 
py does not necessarily imply uniform distribution of two-dimensional (px,py) values, non-uniformity of either individual px 
or py values does imply non-uniformity in the two-dimensional (px,py) values.  We further investigate two-dimensional (px,py) 
values by constructing a frequency table in 0.05 increments in Table 1. The values that are highlighted in light/dark red cells 
are the top 20 frequencies and frequencies whose counts exceeded 30. Looking at this table, we infer that indeed the two-
dimensional p-values have a primary peak near the origin and secondary peaks along the axes where the value of either px or 
py is near 0. 
 
DISCUSSIONS AND FUTURE WORK 

In this paper we demonstrated a potential extension of a scalar p-value methodology to statistically compare predicted 
distributions with a limited set of observations to two-dimensional (px,py) p-values. An initial application of these techniques 
to help validate wind fluctuations predicted by VTHREAT was shown as well. The distribution of VTHREAT predicted wind 
fluctuations visually appears close to the observed fluctuations (i.e., it appears that the observations could have been 
randomly drawn from the predicted distributions. Nevertheless, two-dimensional (px,py) p-values indicate a slight diversion 
from a uniform distribution in the unit square [0,1]×[0,1] around the edges and the origin. There are a number of potential 
reasons for this. First, to simplify the calculation of p-values, an elliptical-normal distribution of VTHREAT predictions was 
assumed. Additionally, there is potential for a significant spatial and temporal correlation between neighbouring PWIDS that 
could affect the resulting p-value estimates. Future work with VTHREAT-simulated results will replace the elliptical-normal 
distribution assumption with a non-parametric estimation of the cumulative probability function that will be used to estimate 
p-values. Additionally, we’ll consider several data reduction techniques to attempt to remove spatio-temporal correlations 
that might be inherent in neighbouring PWIDS observations and simulations.  In addition, relevant statistical tests both for 
independence of the rotated two-dimensional VTHREAT wind fluctuations and uniformity of the two-dimensional p-values 
will be developed and applied.  

a) b) c)
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Table 1. Two-dimensional (px,py) p-values tables. Each entry correspond to number if (px,py) values that fall into appropriate bin that are 
selected in 0.05 increments. Boundary cells shaded in gray are bin values, cells shaded in light/dark read are top 20 values and cells shaded in 
dark read are frequencies whose count exceeds 30. 
 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.05 52 36 26 39 33 25 16 22 22 25 16 18 24 14 14 24 23 26 21 20

0.10 22 19 8 13 11 16 10 14 11 12 12 9 18 20 13 16 11 11 14 13

0.15 20 12 16 14 17 13 8 15 12 12 11 10 16 8 19 10 13 17 13 14

0.20 15 14 14 12 12 14 13 11 16 16 12 6 11 13 7 9 13 12 6 16

0.25 15 17 9 13 12 13 15 11 12 12 13 17 11 14 9 10 10 6 5 12

0.30 16 17 7 14 16 14 16 12 5 8 7 16 7 11 9 3 20 16 15 10

0.35 18 16 7 13 10 11 10 15 14 10 8 16 9 8 13 13 13 7 16 9

0.40 20 9 11 11 14 10 14 18 10 8 14 9 7 11 13 14 13 14 15 10

0.45 11 7 9 6 12 11 12 7 13 5 9 10 7 17 18 10 9 8 11 14

0.50 19 14 14 15 13 11 11 10 3 11 9 11 11 11 8 7 16 7 6 7

0.55 20 10 9 15 12 11 12 5 8 4 11 9 8 8 17 11 10 12 13 7

0.60 22 6 14 22 9 8 15 10 11 11 11 8 8 9 10 14 10 9 15 12

0.65 15 13 11 8 10 15 10 8 12 15 7 22 9 11 7 9 6 9 9 12

0.70 17 10 3 5 12 9 8 9 15 13 10 12 18 7 4 8 11 9 12 14

0.75 6 6 13 7 8 8 11 11 5 11 9 14 9 6 12 5 11 6 6 10

0.80 14 13 14 8 11 8 10 8 16 10 13 13 10 16 9 9 10 8 14 9

0.85 15 14 13 12 14 10 8 15 18 18 7 5 11 8 7 10 7 10 7 13

0.90 15 7 5 9 9 10 9 8 12 10 8 4 13 7 15 8 12 9 8 7

0.95 14 6 8 10 7 14 4 5 6 11 12 18 12 11 7 14 13 8 8 6

1.00 16 7 8 8 3 8 10 10 9 8 4 7 18 14 10 9 9 11 14 11  
 

 
Figure 6. Calculated p-values: a) scalar p-values based on the distance, b) two-dimensional (px,py) values, c) distribution of individual px 

values and d) distribution of individual py values. 
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