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Abstract: The often prohibitive costs of comprehensivedfiglals coupled with relatively cheap and abundammhputational power leads to
a strong desire to use modelling tools to supplénfiefd testing of system components. These mauglliools must be capable of
reproducing key environmental variables presentindufield testing and require rigorous validationhe Virtual THreat Response
Emulation and Analysis Testbed (VTHREAT) modellisigstem is composed of a suite of models designguoide a virtual Chemical,
Biological, Radiological and Nuclear (CBRN) release/ironment. Two key variables that VTHREAT isideed to realistically simulate
are agent concentration and wind velocity. Typigidation studies compare mean predicted and vedequantities of interest such as
mean concentration and mean wind speed and dinecttds paper attempts to develop techniques ttuatafluctuations — in particular,
two-dimensional wind vector fluctuations.
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BACKGROUND

As computational power becomes more available afatively cheap there is desire to use computeretting tools to
supplement field testing of system components. 0$e of such tools holds the promise of increadiegefficiency of the
field tests that are conducted, aiding the evabnatif results obtained from such tests, and reducirsts. To support virtual
testing, computer modelling systems must be capafleproducing key environmental variables. Therefthe modelling
system requires rigorous analysis to support cenfigtalidation efforts.

The National Center for Atmospheric Research (NCARjtw&él THreat Response Emulation and Analysis Testbed
(VTHREAT) modelling system (Bieberbach, G., et al1@Dis composed of a suite of models designed duige a virtual
Chemical, Biological, Radiological and Nuclear (CBRNEesle environment. This tool has the potential fipsut a wide
range of analyses including: (1) development, tsd, evaluation of chemical-biological defence aredeorological sensors,
algorithms, and architectures, (2) acquisition &side.g., analyses of alternatives, trade-offieg)d (3) planning of field
trials, to include aiding in the evaluation of fetial results, and (4) formulation and investigatof concepts of operation.
VTHREAT components include virtual chemical, biolog)i and meteorological sensors as well as backgrowdels (e.g.,
particulates). Ultimately, all of these componeaetguire analyses in support of validation.

A key feature of VTHREAT is the potential to produealistic, representative, meteorological fields ¢hreat clouds that
include fluctuating and meandering components.d&silon of this key feature should enhance acceptéaranany potential
uses and should include detailed comparisons ofipalymodels with specific sets of observationsvall as statistical
comparisons of predicted distributions to obseorsti Two key variables that VTHREAT is designedréalistically
simulate at multiple locations are: 1) scalar aganicentration, and 2) wind velocity vectors. Typigalidation studies
compare mean predicted and observed quantitiegerest (i.e., mean concentration and mean winddsped direction) and
in some cases might involve analysis of variantesontrast, we decided to concentrate our effartleveloping techniques
to evaluate fluctuations in particular, two-dimensional wind vector fluctioms.

METHODOLOGY

For scalar variables, such as concentration, @atidin methodology to compare predicted scalartdations at multiple
locations with a limited set of experimental dataswpresented by Hill, et al., 2002 using p-value&al probabilities”.
This method requires that a set of model realinatiof an experimental observation can be creafbds allows a probability
distribution function of the scalar of interestaatarge number of receptors (both space and timbgtcomputed. Next, an
observed scalar and predicted distribution of flatibns are used to calculate the percentile ipthdicted distribution that
exceeds the observed value (p-value or “tail priidh. If the p-values are uniformly distributedhen the predicted
distribution is consistent with the observations.

An extension of the p-values methodology descriuealve to two-dimensions was proposed in Fries, 200LComfort, et
al., 2002. It involves either parametric or nongmaetric constructions of equal probability contoréwo dimensions. The
scalar p-value is then calculated by integratirgy ghobability outside of the equal probability amnt where the particular
observation resides. By testing whether or not tierilution of resulting p-values (from nominallyndependent
observations) are uniformly distributed, one catexrine if the predicted distribution is consistaith observations. We
note that some caution should be exercised whergubis approach. To demonstrate, assume thatwbelimensional

modelled distribution is a bivariate Normal distriton centred at the origin witt, = g, = 1. We write this asX)Y) =

(N(0,1)N(0,1)) whereN(0,1) stands for normal distribution with u = 0 aod= 1 with X andY independent. For any

— 2 2 - - . g . .
observation (x,y) the scalar p-value is giveneb)V *12 |t observations come from the same two-dimengidisaribution

(XY) then the calculated p-values are uniformly distted as demonstrated in Figure 1. Now, considerttie observations
are coming from the scalar distribution definedzby +/ X2 +Y? . We note thaZ is a Rayleigh distribution with parameter
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o = 1. Please recall that standard deviation of disgribution is g /2—71 .Then calculated p-values are still uniformly
2

distributed as shown in Figure 2.
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Figure 1. Demonstration of distribution of scalarglues when modelled and observed distributioahasariate normal: a) depicts
modelled distribution, b) depicts observations, enshows distribution of scalar p-values whichlase to theoretical uniform distribution.
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Figure 2. Demonstration of distribution of scalarglues when modelled distribution is bivariatemaland observed distribution is
Rayleigh: a) depicts predictions (in red) and obsgons (in blue), and b) shows distribution oflac@-values which is close to theoretical
uniform distribution.

To better understand the example described abogejate that individual scalar p-values based ortotmimg the two-
dimensional probability density function do not walong equal probability contour lines. This alemvus to construct a
one-dimensional illustration by specifically selegtobservations along a ray emanating from thgimnvith a probability
density function defined by angular projection w€alar contours of normal bivariate distributionto the radial ray. These
examples need not be one-dimensional — one couddy ezonstruct two-dimensional observations by &gy some
variation in angle along circular contours that Vdostill yield a uniform distribution of p-values.

Intuitively, one needs to extend the definitionsshlar p-values to two-dimensional p-values to tile &0 capture the full

dynamics of potential two-dimensional distributimmctions. We're still working out some generalaikstdescribing classes
of two-dimensional distribution functions that amendable to this and will present a simplifiedechsre. Assume that we
have two continuous independent random varialesnd Y. Then the joint distribution function is definedy b

fyy(Xy) = f, (X) £, (y) for all (xy). For any observatiorx§) we could calculate two separate p-values called p

and g which are based on individual independent randanallesX andY. It can be shown, that if two-dimensional p-
values (p.py) are uniformly distributed in the unit square [8[D,1] then the underlying observations are cdesiswith the
joint probability defined by independent random iable X and Y. Furthermore, if there is a linear and invertible
transformation that takes random variab¥ésand Y' into X andY, and if calculated two dimensional p-valueg ) are
uniformly distributed in the unit square, then thaderlying observations are consistent with thatjpirobability function
defined by random variable§ andY".

Figures 3 and 4 demonstrate the application of dimeensional p-values to the examples discusseitearid shown in
Figures 1 and 2, respectively. As expected, thedingensional p-values shown in Figure 3 are unifgrdistributed in
[0,1]x[0,1], while the two-dimensional p-values shin Figure 4 reduce to non-uniformly, one-dimensilly distributed p
values and constanj palues.
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Figure 3. Demonstration of two-dimensional p-valiershe case when predictions and observationsiraien from a bivariate normal
distribution: a) shows calculated two-dimensionagfues thatook uniformly distributed in the unit square, b) ar)dskow individual
distribution of R and g values, respectively, which appear uniform in diteension. Please note that no formal test wadexp check
for uniformity of the two-dimensional p-values amiformity of individual g and g valuesdoes nonecessary imply uniformity of the two-
dimensional p-values.
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Figure 4. Demonstration of two-dimensional p-valieshe case when predictions are drawn from aridte normal distribution and
observations are drawn from Rayleigh distributianshows calculated two-dimensional p-values tretanstant in y-direction, b) shows
individual distribution of pvalues which is clearly different from a uniforistibution.

Given a large finite set of VTHREAT predicted windctor quctuations{Wi =(,v)]i= ]_.N}that could be used to

define a continuous probability density functiom fawo random variabled),V) and another set of observed wind vector
fluctuations (e.g., sample;{;j = (u55>,vl(5>)| j=1M } we propose the following procedure to ascertai@tiver or not

sampleg are consistent with being drawn from random vaesifl,V):

1. Find a rotation matriR that decorrelates predictiomg. Apply this rotation matriXR to both predictionsy, and
samplesg. For simplicity, assume that the new decorrelatgd use the same name.

2. Test transformeavi=(u;,v;) to see ifu; andv; are independent. if andy; are not independent then the procedure to
calculate two-dimensional p-values described aamight not be applicable.

3. Calculate two-dimensional p-valuc(sp;(, p'y) using transformed samplgs s

4. Test to see if two-dimensional p-valuépi(, p'y) are uniformly distributed in [0,1]%[0,1]

We're still working out details about particulaasstical tests to be applied in steps 2 and 4.néte that failure in step 2
involving testing for independence of the transfednpredictions might result in unpredictable coaidos based on this
procedure.

APPLICATION TO VTHREAT WIND VECTOR FLUCTUATION PREDICTIONS

VTHREAT was used to simulate trial 54 from the Fgs®ensor Information from Observing Networks (FUS)QField
Trial 2007 (FFT 07) (Storwold, 2007). This highlystrumented test was conducted at the U.S. Armyigway Proving
Ground (DPG) and was designed to collect data ppat the further development of prototype souemntestimation
algorithms. As part of the meteorological instrutagion of the test site, 40 Portable Weather Inftion Display Systems
(PWIDS) were arranged on a regular rectangular tgricbllect wind speed and direction, temperattekative humidity and
pressure at 2 meters above ground at 10 secondrtiergals. Trial 54 involved the continuous rekeas$ propylene gas for
10 minutes from a single source. Propylene conatolrs were continuously sampled at 50Hz at 100Ptly (digital
photoionization detector) and 20 UVIC (ultraviolet collector) sensors densely arranged at thesitest Out of the 40
deployed PWIDS, only 39 collected useable data.
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VTHREAT predictions, including wind speed and direatat PWIDS locations, were started ten minutésrgo tracer
release and continued for 1800 seconds. VTHREATuugsolution was set to 1 sec. Twenty VTHREAT wdlons of
trial 54 were performed. To match the frequencpldervations, VTHREAT output wind measurements \baneaveraged
to 10 seconds. VTHREAT was allowed to settle for 888onds to spin up its turbulence before wind @mpns with
observations were performed. Thus, there wereah a6 ([1800-600]/10+1)x39 = 4719 observed wineeqph and direction
measurements available for the comparison (i.enb@n of p-values that could be calculated). Befarg analysis and
averaging, both VTHREAT predictions and PWIDS obaton of wind speed and direction were transforrimed (u,v)
space. To calculate wind fluctuations imvj, a 60-second running window average was congtiufdr each individual
PWIDS data stream (VTHREAT or observations) andtflattons were calculated with respect to this ayerdhe resulting
predicted and observed fluctuations were plottedaath available time at 10 second increments aswhNy compared.
Figure 5 shows a few example plots for VTHREAT pcesti (20 realizations in red) and observed (in Klagind
fluctuations.

a) b) c)

Fluctuations at time = 600 seconds Fluctuations at time = 1200 seconds Fluctuations at time = 1800 seconds
T T T T T T T T T T T | T T

Figure 5. Examples of VTHREAT predicted (20 redlimas in red) and observed (in black) wind fluctoas for a) 600 sec, b) 1200 sec,
and c¢) 1800 sec after the start of the simulation.

To simplify the calculation of scalar and two-dirs@mal p-values, for this demonstration of the rodtilogy and based on
visual inspection of Figure 5, we assume that tHEHREAT-based fluctuations are drawn from an elligticormal
distribution. Additionally, we note that potentialhere is a significant spatial and temporal datren between individual
observations (i.e., nearby PWIDS observations aftiREAT predictions are correlated in space and tithej we will
ignore for now. We note that the elliptical-nornaistribution assumption and rotation of the ellifmesed on computed
correlation between individual components of thigrébution to align the axis of the ellipse witbardinate axis results in
de-correlated normal distributions along the axisclv are independent. Figure 6 depicts p-valutsulzaed as follows: a)
depicts scalar p-values based ondtstance b) depicts two-dimensional (p,) values, c) depict distribution of individual p
values, and d) depicts distribution of individuahalues.

While Figure 6b seems to indicate uniformly disitdd two dimensional,pand p values, Figure 6¢ and 6d along with
Figure 6a indicate a slight peak in the distributi®ar the origin. We note that while uniformlgtdibuted individual pand
py does not necessarily imply uniform distributionteb-dimensional (ppy) values, non-uniformity of either individual p
or p, values does imply non-uniformity in the two-dimemal (g.,py) values. We further investigate two-dimensiomgJa)
values by constructing a frequency table in 0.@%ements in Table 1. The values that are highldjimidight/dark red cells
are the top 20 frequencies and frequencies whosets@xceeded 30. Looking at this table, we intfiat tndeed the two-
dimensional p-values have a primary peak near tiggncand secondary peaks along the axes whereatie of either por

py is near 0.

DISCUSSIONSAND FUTURE WORK

In this paper we demonstrated a potential extensfon scalar p-value methodology to statisticalbmpare predicted
distributions with a limited set of observationstwam-dimensional (gp,) p-values. An initial application of these technig
to help validate wind fluctuations predicted by VHBAT was shown as well. The distribution of VTHREAg@icted wind
fluctuations visually appears close to the obserffedtuations (i.e., it appears that the observegti@ould have been
randomly drawn from the predicted distributions.valgheless, two-dimensionaly(p,) p-values indicate a slight diversion
from a uniform distribution in the unit square [[X[D,1] around the edges and the origin. Thereaarmimber of potential
reasons for this. First, to simplify the calculatiof p-values, an elliptical-normal distribution WTHREAT predictions was
assumed. Additionally, there is potential for anffigant spatial and temporal correlation betweeighbouring PWIDS that
could affect the resulting p-value estimates. Fatuork with VTHREAT-simulated results will repladeetelliptical-normal
distribution assumption with a non-parametric eation of the cumulative probability function thaiiivibe used to estimate
p-values. Additionally, we’ll consider several daeluction techniques to attempt to remove spatigpbral correlations
that might be inherent in neighbouring PWIDS obatons and simulations. In addition, relevantistiaal tests both for
independence of the rotated two-dimensional VTHREAA fluctuations and uniformity of the two-dimeasal p-values
will be developed and applied.
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Table 1. Two-dimensional {p,) p-values tables. Each entry correspond to nurilgx,p,) values that fall into appropriate bin that are
selected in 0.05 increments. Boundary cells shadgthy are bin values, cells shaded in light/dadd are top 20 values and cells shaded in
dark read are frequencies whose count exceeds 30.

0.05] 0.10] 0.15 [ 0.20 | 0.25] 0.30 | 0.35] 0.40 | 0.45] 0.50 0.55 | 0.60 | 0.65 | 0.70 | 0.75] 0.80 | 0.85 ] 0.90 | 0.95 | 1.00

0.05 25 16 | 22 | 22 | 25 | 16 18 | 24 14 | 14 | 24 | 23 [ 26 | 21 | 20
0.10| 22 19 8 13 11 | 16 10 | 14 11 12 | 12 9 18 | 20 | 13 | 16 11 11 14 | 13
0.15| 20 12 16 14 | 17 | 13 8 15 12 12 | 11 10 | 16 8 19 | 10 13 17 13 14
0.20| 15 14 | 14 12 12 | 14 13 11 16 | 16 | 12 6 11 13 7 9 13 12 6 16
025 15 | 17 9 13 12 | 13 15 11 12 12 | 13 7|11 14 9 10 10 6 5 12
030 16 | 17 7 14 | 16 | 14 16 | 12 5 8 7 16 7 11 9 3 20 | 16 | 15 | 10
035| 18 | 16 7 13 10| 11 10 | 15 14 | 10 8 16 9 8 13 | 13 13 7 16 9

0.40| 20 9 1) 11| 14| 10 14 | 18 10 8 14 9 7 11 13 ) 14 | 13 14 | 15 10
045 11 7 9 6 12 | 11 12 7 13 5 9 10 7 17 |1 18 | 10 9 8 11 14
0.50| 19 [ 14 | 14 15 13 | 11 11 10 3 11 9 11 11 11 8 7 16 7 6 7

0.55| 20 [ 10 9 15 | 12 | 11 12 5 8 4 11 9 8 8 17 | 11 10 | 12 13 7

0.60| 22 6 14 | 22 9 8 15 10 11 1 | 11 8 8 9 10 | 14 10 9 15 12
0.65| 15 13 11 8 10 | 15 10 8 12 15 7 22 9 11 7 9 6 9 9 12
0.70| 17 10 3 5 12 9 8 9 15 13 | 10 12 18 7 4 8 11 9 12 14
0.75| 6 6 13 7 8 8 11 11 5 11 9 14 9 6 12 5 11 6 6 10
0.80| 14 13 14 8 11 8 10 8 16 | 10 | 13 13 10 16 9 9 10 8 14 9

0.85| 15 14 | 13 12 14 | 10 8 15 18 | 18 7 5 11 8 7 10 7 10 7 13
0.90| 15 7 5 9 9 10 9 8 12 10 8 4 13 7 15 12 9 8 7

095| 14 6 8 10 7 14 4 5 6 1 ) 12 18 | 12 11 7 14 | 13 8 8 6

1.00] 16 7 8 8 3 8 10 | 10 9 8 4 7 18 14 | 10 9 9 11 14 | 11
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Figure 6. Calculated p-values: a) scalar p-valeeet on the distance, b) two-dimensiongp(pvalues, c) distribution of individuakp
values and d) distribution of individua) palues.
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