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Abstract: One of the key problems in coping with deliberateaccidental atmospheric releases is to estithetenaximum individual
exposure in short times. Recently Bartasal, (2007) have inaugurated an approach relating mmaixi dosage to parameters such as the
fluctuation intensity and the concentration intédinme scale. The fluctuation intensity can be dedi by the CFD RANS modelling by
solving the relevant transport equations for themeoncentration and its variance. The concentradtine scale is estimated as a function
of the turbulence modeling parameterization and dbecentration travel time (Efthimiou, G.C. and .JEBartzis, 2010). The present
methodology has been validated until now only feutnal flows. The purpose of this study is to vaielthe methodology for various
atmospheric stability classes. For this reasoreftensive dataset of MUST experiment (Yee, E. anBilibft, 2004) has been used. This
dataset includes 81 trials which cover practicallystability classes and various atmospheric dom and contains in total 4004 non zero
concentration sensor data with time resolution 6-@102 s. The results verify the validity of thiethodology. Another important output is
the estimation of the methodology uncertainty ifredl This work contributes to the better estimatddrmaximum individual exposure
studies in short time intervals.
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BACKGROUND

One of the key problems in coping with deliberat@ccidental atmospheric releases of hazardousriadaten urban (built-
up areas) is to estimate the individual exposuer avcertain time interval. In many cases the seleare short and/or the
concentrations are high and there is a need tmatgtithe individual exposure in relatively shomeds. Due to the stochastic
nature of turbulence, the instantaneous wind filthe time of the release is practically unknofor. that reason the short
time actual exposure at a certain receptor poiatss unknown. To assess however the consequendesantermeasures,
one needs to predict the maximum expected expaatirer the actual one. It is reminded that the maxrn exposure over a
time intervalAt can be expressed in terms of the maximum dosagéAR):

Dy (AT) = ﬁca)dt} = Co(AT) AT @

where C(t) is the instantaneous concentration ateptor point and fe{At) is maximum time average concentration over
Ar.

It is evident that a desirable prediction modelwdtidoe able among others to predigi,{At). Thus the real problenn the
present work is posed as follows. A hazardous aliufant is released from a point source. The sseaould be
instantaneous or finite and it is characterizedt®yeak release rate. If the rate of release nistemt then the peak release
rate coincides with the constant release rate. ¥zl rio predict at a certain receptor point dowastréhe concentration
Cmax{At). The basic assumption here is that the turbuléettbwithin the time range from the start timetbé release to the
ending time of the plume passage from the receaptstationary. Is it possible for a CFD RANS modeb#&able to predict
such a quantity? The selection of RANS models sifjad from the fact they are the simplest and tmpractical CFD
models to cope with a complex environment sucthasitban environment.

THE APPROACH

Since the key target is the prediction gf,€At), the whole modeling approach can be reduceddimalified problemas
follows. The source is replaced by a continuous@@wf constant release rate equal to the real pelakse rate. The
abovementioned stationarity assumption on turb@és@xtended for an infinite time. It is expectkdt the extreme value
of Chax(At) Of the simplified problem is expected to be aisteequal to that of the real problem as definev@bThis can be
explained from the fact that in the simplified plerh the G, (A1) value is expected to be greater or equal of tieeip the
real problem. It should be noted in addition thwt introduction of the simplified problem is a pdéle approach for all
prediction models including DNS and LES due to fiéoet that the atmospheric turbulence is stochastit it is practically
impossible to know exactly the turbulence fieldha time of the start of the release.

Before discussing the modeling of,XAt) it should be clear from the beginning that ithueas finite and is expected not to
be higher than the concentration of the releasenmaht Then G,4At) is expected to dilute downstream. For example in
Figure 1 Ga{At) measured during MUST Experiment Trial No 11 (YEeand C. Biltoft, 2004) is plotted against plume
downwind distance. The dilution of,g(At) as the pollutant moved downstream is clear.

858 Concentration fluctuations and odour — Session 7



HARMO13 - 1-4 June 2010, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

25

)
T
I

=)
T
.
.
I

Peak Concentration [ppmv]

. . % o o

’” 4 o ° K
o , , \ \ \ L *ee | \
0 20 40 60 80 100 120 140 160 180 200
Plume downstream distance [m]

Figure 1. Plume downstream distance of the peakrampntal concentration for Trial No 11 of the MU8Xperiment

The fact that G (A1) is a finite quantity makes the deterministic misdaore attractive than the probabilistic ones. Rge
Bartzis,et al, (2007) have inaugurated an approach relatingpéinemete cmax(m)/f; to the fluctuating intensity | and the

At/T, ratio:
Coa (A7) _ (| BT @
c L
where T is the turbulence integral time scale derived ftbmautocorrelation function §(
T, = [R@)dt 3)
0
The fluctuation intensity | is defined as:
2
| = S_g (4)
C

where oé is the concentration variance.

Bartzis, et al, (2007) based on past efforts to estimate maxirtiome averaged concentrations from Gaussian plume a
different averaging times came to the followingposal:

-n
Coa B0 _q 4 g A (5)
C T,
Wherep and n are constants derived from experimentaleme. The indicative values given, have as follows:
B=1.5 n=0.3 (6)

The experience up to now has shown that this meshs to give reasonable results within a factdwof(Efthimiou, G.C.
and J.G. Bartzis, 2010; Efthimioet al, 2008; Bartziset al, 2007). This approach requires besides the piediof the mean
concentrationC, the predictions ooé and T.. Concerning CFD-RANS modeling a considerable éepee has been built

in predicting Gé (e.g. Milliez, M. and B. Carissimo, 2008; Andromayos, et al 2002). With respect to,Ta plausible

estimation has been proposed recently (EfthimiolC @nd J.G. Bartzis, 2010) as a function of théulence local
characteristics of the flow and the pollutant tidirae.

MODEL REFINEMENT AND UNCERTAINTIES

It should be noted that model (5) has been cabray a limited number of field data from neuttalifs. There is a need to
expand the application to more data including neutral flows as well. In addition, the utilizatiof a large number of data
will give the opportunity for a more reliable eséition of model uncertainties.

For this purpose all available data of the fielpexmental series MUST has been exploited. Thevagledataset includes 81
trials which cover practically all stability classeand various atmospheric conditions and contaigh mesolution
concentration time seried{ = 0.01 — 0.02s) from 5832 sensor measurementstah number of 1.360° concentration
measurements have been processed.

A detailed description of the MUST experiment igegi in Biltoft, C., (2001) and Yee, E. and C. Biftd2004). A total of
120 standard size shipping containers of width 12.2%ngth 2.42 m and height 2.54 m were set upnearly regular array
consisting of 12 rows of 10 obstacles. The MUST egixpent, is a well established experiment with highality
concentration and meteorological measurements.dait@set includes 81 trials which cover practicallystability classes
and various atmospheric conditions. The tracer @aspylene) was measured from 48 fast-responseojgmzation
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detectors (DPIDs) with time resolution of 0.02s &#dUltraviolet lon Collectors (UVICs) with time rdation of 0.01s.
These sensors were located at various heightsiatahdes from the corresponding sources.

The purpose of the data assessment was to sedetitrté series that are appropriate for the presealysis. For each trial
specific time periods (e.g. 200s, 900s, 450s) veslected for the calculation of statistical measuf@ean, variance,
maximum and integral time scale). These periodgweginally chosen by Yee, E. and C. Biltoft, (2084y were primarily
based on the stationarity (i.e., speed and dinectibthe wind over the period. The total numbes@fisor concentration data
for all trials is (48 DPID + 24 UVIC sensors) x 8fdals = 5832 data. From this population only theé4ithon zero
concentration sensor data have been found.

Before deciding on the validation strategy one stidiglep in mind the coefficienfsand n show some variation when trying
to fit the experimental data (Bartzet, al, 2007). This could be attributed not only to thed®l imperfectness but also to the
fact that perfect stationarity does not exist eggdfor long times and the measured signals &endcontaminated’ by non
local large scale disturbances. For the same rea@nestimated time scalg $hows also sensitivity to the time series
length as well as to time resolution.

In order to make the whole validation procedurepsamand workable it has been decided to keep ther®nt n constant
(=0.3) and leave the proportionality facfto be varied from signal to signal. In this case imperfectness of the model as
well the possible errors on measurements are goibg reflected t@ value and its variability/uncertainty.

Applying this strategy to every signal, it has beéso clear that for practical reasons it was eatistic to perform a quality
assurance of the signals with respect to erroendréktationarity. Therefore known statistical mehoo identify outliers
have been applied. More specifically, two well kmomethods have been applied:

a) The Box Plot method (MATLAB, 2008) which gave I84liers and 3810 remaining data with a maximunue&d.92.

b) The Grubbs Test (Grubbs, F., 1969) which gaveutbers and 3959 remaining data with a maximuine®.88.

For conservative reasons the second method hasadeeted. Thus, the 45 above mentioned outliers veanoved from the
population off. The 39593 - values have been used in the following analysis.

In Figure 2 the experimental probability densitpdtion of the parametdr data is presented. It is interesting to see that t
data seem to follow well a Gamma distribution fimrct
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Figure 2. The probability density function of therpmete data and the fitted Gamma distribution.

It is reminded, that the Gamma probability dengityction (pdf) is given by the relation:

_ 1 etpes 7)

b® (T (a)

wherea is the shape parameter and b is the scale panaribeEmaximum likelihood estimates (MLES) of trergmeters,

b as well as the 95% confidence intervals of thaiues as derived using MATLAB are presented in &dbl The mean
value of the gamma distribution with parameiernd b iso-b while the variance is-b%. These values are presented also in
Table 1.

p(x|a,b)=

Table 2. Parameters b of the Gamma distribution with their 95% coefide intervals and the corresponding mean andneaia

Parameterd MLEs 95% confidence intervals

Lower bound Upper bound
o 3.02 2.89 3.14
b 0.55 0.52 0.57
Mean 1.65 1.51 1.8
Variance 0.91 0.79 1.03
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These results strengthen further the validity af #guation (5). It should be noted that the medneva.65 is well
comparable with the indicative value 1.5 given bytBas, et al, (2007).

Since the parametéris expected to have a finite value it is not erotm express its variance only by a pdf in which it
extreme value goes theoretically to infinity. Thes@ need to try to estimate its upper bound. @athod of extracting this
value is to use Extreme Value Theory (Gumbel, EL958) one method of which is to take the exceesmraver a
predetermined parameter threshpti (Reiss, R.D. and M. Thomas, 2007). Following bykBaia, A.A. and L. de Haan,
(1974) and Pickands, (1975), the pdf of these alamees can be approximated by the Generalized dPBistribution
(GPD) (Reiss, R.D. and M. Thomas, 2007). The GPD agmbr can conclude to a finite extreme value. Thikies is
estimated from the relationship:

—u-— (8)
Brax :
whereé is the GPD shape parameter anitis scale parameter. The threshold value u casbbgined by applying the mean
excess plot method (Munro, Rel.al, 2001). The mean excess is the sum of the exxesse the thresholddivided by the
number of data points which exceed the thresh¢@ancay, R., 2001). The relevant plot is shown guFé 3.
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Figure 3. Mean excess plot of the parampter

The mean excess parameter as a function of thetexbilareshold should be approximately linear agtirory of GPD imposes
(Reiss, and Thomas, 2007). According to Figureidtiterion is fulfilled for an approximate valwé threshold above 3.1. In
the tail of the distribution (threshold > 3.1) wepect the extreme values Bif. to be constant. This value is obtained from
equation (8). Thé ando parameters are derived by the Maximum Likelihostirgation (MATLAB, 2008) applied to the data
above threshold and their corresponding value§ are0.35 ands = 1.2 The application of equation (8) givBsax = 6.5. This
value appears to be approximately four (4) timgbdii than the meghvalue of 1.65 obtained above. If we adopt the gamm
pdf as defined above to descrjbeariability/uncertainty, this value correspondstoonfidence limit 99.94%.

Trying to summarize we can conclude that the m@@etan be further refined by keeping n = 0.3 aivihg to constanf a
more probabilistic value with its pdf describeddbgamma function with a = 3.02 and b = 0.55 cowedjng to mean value
B = 1.65. The pdf can be valid upfigax = 4 x (mearp) corresponding to Gamma cdf confidence limit of9@96.

In Figure 4 all G.(At) data are compared with the model equation () fvit 1.65 and n = 0.3. The experimental data are
well predicted within a factor of two. In fact tii@ctor two FAC2 = 82.25% whereas FAC5 = 99.42%. THitel result is
expected if one takes into consideration fhak = 4 x (mearg).
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Figure 4. Peak concentration comparisaxis< 0.01 — 0.02 s).
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CONCLUSIONS

The present work is addressed on the validatiddeotzis, et al., (2007) empirical model (equation (5)) to predatably the
individual maximum exposure in case of deliberat@aecidental atmospheric releases of hazardougaswdes for various
atmospheric stability classes.

For the first time a vast amount of data has be#inad for this purpose. The extensive datasehefMUST experiment was
analyzed which included 81 trials of various stépitlasses and contained in total 5832 concentragensor data with time
resolution of 0.01 — 0.02 s.

The present analysis of the data strongly supgbgsvalidity of equation (5) to predict maximum ividual exposure in
short time intervals. For this purpose a stead €&D — RANS model could provide the necessary ipprameters (i.€C
, o'é and T). It is recommended that the nominal valueffoo be changed to 1.65.

For the first time thé} variation and uncertainty has been systematicdligied. It shows very clearly a gamma function
variation (equation (7)) with the parameters a 623and b = 0.55. (Uncertainties for a and b are gisen). An extreme
value Bax = 4 x 1.65 is also estimated based on Extremeé/@heory which corresponds to probability 99.94%hef
Gamma pdf.
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