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SOURCE TERM ESTIMATION FOR RAPID HAZARD ASSESSMENT

Gareth Brown and Peter Robins
The Defence Science and Technology Laboratory Yt8#llisbury, England

Abstract: A methodology is developed for making inferenbewt parameters associated with a possible chemidablogical atmospheric
release from sensor readings. The key difficuitpérforming this inference is that the results ingsobtained in a very short timescale in
order to make use of the inference for protectidine methodology developed uses some of the compmire a sequential Monte Carlo
algorithm. This technique employs Bayesian prdiighieasoning over a dynamic sample-set of typyc#thousands of hypothesized
releases. For each release, a Gaussian puff nsodel and its output is used for posterior prolighdensity calculation from event data
through sensor and observer likelihood models.
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INTRODUCTION

In the event of a Chemical or Biological (CB) releasective incident response requires a robust kadgé management
system that makes optimal and timely use of alilabke sensory data. Prompt and accurate assessindre hazard can
initiate appropriate response procedures minimitiaman exposure. This is achieved through hazadigiions obtained
from operational dispersion models. However, itheoito run a dispersion model we must infer theattaristics describing
the source-term, and its local meteorological eminent, from available sensor data. It is alscessary to determine
whether such a release has actually occurred. miiagua release has occurred, the true charactsrisfithe source are
generally uncertain. Furthermore, for hazard asseat within the first five minutes of release réhis likely to be little data
available and limited computational resources tocess it. Thus we are interested in rapidly ediirgaa source-term’s
location, in order to successfully define an appeip hazard area.

BAYESIAN INFERENCE

The problem described is highly complex due to phebabilistic nature of atmospheric dispersion aedsor outputs.
Inference is further complicated because it is m&slithat while the parameters to be inferred rerfiagd, the sensor
outputs are obtained sequentially in time. Theutsmh, described herein as the Monte Carlo Bayesiata Fusion
Algorithm (MCBDF), incorporates a real-time Bayesiarsterior probability density sampling algorithm.hig algorithm
uses Bayesian probability reasoning over a samplefsaany hypothesised source-terms (we use time seurce-term to
include meteorological variables) and allows theteebe updated when new information is receivéithe system also
enables disparate data of varying quality to belioed in a computationally expedient way. The obj interest is the
posterior distribution; this describes the prokigbiistribution of the source-term. Assuming a&tdbution with a single
peak, the location of the peak in the parametecespdentifies the best source-term estimate andwiliéh of then
dimensional peak describes the uncertainty in ltleat estimate. The posterior distribution is dal®d using Bayes’ rule
and it is given as:

p(6p) T p(6) p(Dl6). @
m prior jikelihood

where @ is the source-term anB is the data. The prior distributiop(a), is defined as the assumed probability of the
source-term parameters before any data have beeived. The likelihood distributionp(D\H), is a measure of how likely

a particular data set is given a particular sotece. The posterior distributior‘p(H\D), indicates how likely the source

term parameters are, given the data. The synmboépresents am =9 dimensional vector encompassing the parameters:
location (x,y), time of releaset, massm, agent typa , surface wind-vecto(u,v), Monin Obukhov lengthL and

surface roughnessg,, thatis,d= (x, y,t,mauvy L g). It is worth noting that these parameters ardighly correlated.

For example, a more massive release further ba¢iknie and further away from the sensors may produicélar sensor
readings to a small release closer to the sensartater time.

THE MONTE CARLO BAYESIAN DATA FUSION ALGORITHM

Standard Bayesian analysis normally relies on Markbain Monte Carlo (MCMC) algorithms to perfornottsands of
likelihood calculations. In situations where lilkelod calculations are computationally expensive #rere are time or
processor constraints, standard approaches mag prfeasible. There are several new Monte Cadbrtigues which allow
Bayesian computation when there are computatiomastecaints including Sequential Monte Carlo (SMDp(cetetet al,
2000 and Doucetetdt al, 2001), approximate Bayesian computation (ABC)a{Brontet al, 2002) and SMC Samplers (Del
Moral et al, 2006). The MCBDF methodology incorporates thelsimation of MCMC with aspects of an SMC algorithm.
It combines them with some innovative, problem #jetechniques, to make inference about a higlagnplex multimodal
posterior distribution where likelihood calculat®are computationally expensive and sequentiatrmdition about an event
in the past is received in real-time (Robins, 2009his approach is designed to minimize the cowmtaral burden of
evaluating a time-dependent posterior and minirtiizdikelihood of becoming ‘stuck’ in a local mode.

Rather than performing the computationally expems$ask of calculating the complete posterior disttion for the source-
term parameters, MCBDF employs a sampling appre@etpproximate the posterior (Risét al, 2004). This sampling is
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performed as follows: at every time instakt define a large collection oN weighted random sample{sef),ws)} for

i=1,..N, such thatw’ >0 for all i and allk and Z'w =1. A hypothesis at timkis denotedd and w{’ is the
associated weight, which reflects the importancehat hypothesis relative to the complete set giotlyeses. MCMC and
Particle Filter algorithms are designed such tisatha number of hypotheses increases, the empdlis@ibution converges
asymptotically to the target posterior distributiofhthe parameter®d. Hence, the approximation of the true posterior
distribution is achieved through the combinatiorttaf clustering of distinct hypotheses around acédsgh density in the
posterior and also the associated weight of thpbthesis. The reason for adopting a weighted saagmbroach in particular
is that the source-term estimation problem requinesdata to be processed on-line, as it arriv@his constraint is due to
the cost of storing dispersion data and the rapitignging state of knowledge about the source-tefins approach also
ensures that whenever the user requests an upldatradd prediction, the current source-term postgniobability density

distribution is the most accurate one possible.
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Figure 1 Flow chart of the MCBDF algorithm. Inligation data starts the program, which then ergersntinuous loop. MCBDF queries
its data store for new data. If new data existsnhights of current hypotheses are updated bas#teaelated sensor data likelihood
calculation. If no new sensor data is availab&ntmore source-term hypotheses are generatedhentlata store is again checked.

Algorithm structure

The MCBDF system consists of several independerts$ gantrolled by an overarching class which camcess live input
data in any order. This is necessary to ensutéhkee is no assumption of consecutive time ininlkeming messages, as in

a deployed system it is unlikely that messageshilteceived in time order. The only constrairthat there is a fixed-sized
time-window, T, (typically 30 minutes), in which information willebconsidered to ensure the computational complexity

remains within acceptable bounds. Given the cutiere, T, this time-window leads to sensor data and hymathelder
than T —T, being discarded by the algorithm. A flow charbwing the basic structure of the algorithm is dageld in

Figure . The MCBDF algorithm is first initialisdaly static data that defines the problem; this idekifor example the
domain under consideration, the corresponding §izethe time-window and the prior distribution. d%a@ on this
information MCBDF creates a single initial hypotises

Once the first hypothesis is created, MCBDF endel@op where it checks for the presence of new iz data store. |If
no new sensor data is available then more souroetigpotheses are generated until the data stargam checked, this
occurs at a user defined rate (typically every débads). If new data is present then sensor aatdngpotheses older than

T -T, are discarded and the remaining hypotheses’ V\saigmﬁit), for all N hypotheses in the system, are updated. The
weights are updated by calculating the likelihofthe new piece of datal , for each hypothesis as

wfl, =l p(de?), )

The prior distribution

In order to apply a Bayesian approach, prior distion functions are required for each of the seuezm parameters. The
prior distributions can incorporate expert judgemand previous experience into the current estim@enerally, in the
absence of any intelligence data to the contraapldce’s principle of indifference (O’'Haganhal, 2004) may be used to set
the prior distribution as uniform over the wholepbyhesis space. Thus, while it is possible toipomte knowledge about
possible release locations into the prior, thisvidedge may not always be available. In the genesisk a 30km square
domain is assumed and the prior is set uniform tivierspace, including exponentially decaying tailéside of the square
domain. This allows the mode of the posterioreémhtside the specified parameter space if thesilafgests.

The primary motivation for carrying out source tegstimation is to be able to carry out hazard pteghs. It is therefore
necessary to determine whether any kind of hazsistseat all. Thus, it is not correct to procegdrbaking inferences
conditional upon the fact that a release has definoccurred. If the incoming data does not supfios hypothesis, then
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erroneous inferences will be made. As a conseguemd to simplify the sampling, a surrogate masameterm is used.
The prior distribution on the surrogate mass isabte exponential distribution of the form
o _ 1

p(i) =3 &". 3)

In an operational system, a great deal of variaisoaxpected in mean release mass between diffagentts. In order to
assist the sampling between agents, the surrogass parameter does not represent the true mass, rhass multiplier.
Whenever mass is required for modelling and infeeeit is multiplied by the appropriate mean mags, for the particular

agent being considered, as
0 1 <0
m ={ m 4)

my, m>0
The priors for the meteorological parametersy, L, 7, are given as follows: the wind speed componerim,pp(u, v), is
a normal distribution, with no preferred directieentred a0 ms* with variance100nt [0s?. The Monin-Obukhov length
prior, p(L), and the surface roughness priqn(zo), are mostly uninformative. The Monin-Obukhov léngrior lightly
penalizes very unstable and very stable atmospbenditions.

Likelihood calculations for new data

MCBDF's flexibility is encapsulated by its ability assimilate data of several forms. These datastycan be loosely
divided into three categories: measurements talen €B detectors, observations from human obseamismeasurements
from meteorological sensors. The wind measuretilegithood calculation requires access to the metegy object used

by the dispersion model associated to a partidwaothesisé?f) . The inputs to the likelihood calculation aree thind-
vector measurement at the sensor location and theighthe corresponding hypothesized wind-vector derifrem the
dispersion model's meteorology,, , and the measurement uncertainty covariance mairix The likelihood, p(u\pu,Z) ,
is calculated as a bivariate normal probabilitysiign

p(ulw, Z) =¢(u[n,.2). @)
Likelihoods for detector measurements are calcdldig first running a dispersion model for each hipsis Héi).

Dispersion is a stochastic process in nature, fitner¢he physics models developed to represenedigm must be ensemble
models which account for atmospheric turbulence istatistical manner. In this application, a Geuspuff dispersion
model is used due to the relatively fast run-timeomparison to other models. This model assutrastihe concentration

c, for given meany and variances?, is described by a clipped normal distributip(|c|/1,az) . The likelihood of a given
downwind sensor measuremethtcan be written as:

p(ale) = p(dluo®)= ool § f dus?). ®)
where p(d [ c) denotes the probability of the detector measuttiegdatad conditional on the concentratian. The actual

value of the concentratior;, is never directly observed and is therefore @ande parameter. A marginal likelihood is
obtained by integratingout of the likelihood model:

p(dluo®) = [ p(dic=¢ d C duo®) dc 9)
AT S S
® measUrementoncentration

density density
The key part of Equation 8 ip(d | c), this defines the sensor model and permits, incgple, a likelihood model for any
type of detector. A specific example is the comaion sensor. This is modelled as making a tineeasurement of the
local concentration (with any bias or scaling reemvwith a normally distributed measurement err@y,, The model

includes upper and lower measurement threshblaisd L respectively, and the probability of a measurengmén the
unobserved concentratian is:

tD(I: c,aez) d=1L
p(d\c): ¢( d‘ qaj) < d< L (10)
1—(D(E c,aez) d=1L

where go(LuLlu) is the normal distribution probability density &ition, GJ(LDLLU) is the normal cumulative distribution function.

Generating new source-term hypotheses

When the inference engine is not processing incgrdista, new samples are generated according toutinent posterior
distribution. To do this MCBDF uses a scheme knasrDifferential Evolution Markov Chain (DE-MC) tgenerate new
hypotheses (Braakt al, 2006). This is a variation of traditional Mark@hain Monte Carlo (MCMC) algorithms. Such
algorithms aim to generate new hypotheses frontiegi®nes such that the collection of hypothesewgded over time,
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starting from a single hypothesis, forms a Marktxin. As the chain extends to infinity, the ovesst of hypotheses
converges to a true representation of the postéigiribution. The DE-MC scheme generates sevaphrmte Markov
chains of hypotheses, and “breeds” separate “obvadfi-hypotheses together to create new hypothe3éss technique
allows the set of hypotheses to move to differegians of the hypothesis space, thus ensuringathpbssible regions can
be covered, while also focusing on those regionasrevthe posterior density is highest.

In the hypothesis generation schenhd, of the N existing hypotheses are chosen as the ends dflénkov chains, and
used to generate proposals for new hypothesesseThgotheses, known as the DE-MC population, &elléd &, , where

r=1K M . A new hypothesisﬁ*, is proposed by selecting a member of the pomra# , known as the “candidate”
hypothesis, and adding to it the weighted diffeeeattwo other hypotheses from the population:

*
g =q+v(6 -4 )re. (12)
where ¢ is normally distributed around the origin of thgpbthesis space with a narrow covariance, anis a scalar (see
Braak, 2006). The candidate hypothegids chosen by iterating through the indicess1,K ,M . The two other hypotheses

6, and g are chosen randomly such that j #k . Proposals are accepted as the next vélte= 63* if

U (0.1)< L= , (12)

where U (0,1) is a random number uniform over (0,1). The symhmlP) , denotes the total prior, given as the product of
individual prior probabilities ando(d | &) denotes the likelihood of the datd,. The product in Equation 12 is calculated
over all available datdNy . If the proposal is not accepted, then the ctivelue of § is retained,8™" =4 .

HAZARD CALCULATION
In an operational system, the prior on a releaseaig occurring, P(m >0), is likely to be small. Incorporation of this

prior into Equation 12 would lead to a proliferatiof no release hypotheses which, in turn, coule terge computational
and storage overhead despite their individuallylsstarage requirements. The prior on releaseéhésefore ignored for
sampling as it is independent of all the other petars and only applied when inferences are reduifihe probability of
release given the data is calculated as follows:

P (1 >0) W11 >0)

P(m >O)Z wi(m>0)+ (1— A > 0))2 Wi(im<0)’

Where V\éi) is the weight of th«ith hypothesis,P(m >0) is the prior probability of release a I(nf >0) is an indicator
function that returns one if the hypothesized nigssrictly positive and zero otherwise.

P(m >0D)=

(13)

Currently, the user is given output at regular riviés while P(m* >0|D)>0.5. The frequency of this output is a

configurable input. The output is currently a I8mber subset of the current hypothesized releasengters contained
within the system. The total set would probablyoverwhelming for hazard calculations and so asapling scheme is

employed. The scheme starts with the most recgetherated hypothesis and moves chronologicallyndinve hypothesis

list, adding members to the subset with a prolgbdroportional to each hypothesis’ weight; theesedd hypothesized

release parameters are then used to re-run thersiigp model. For each re-run, the probabiliteréeeding some user-
defined threshold level of effect, at some useiraef time, is calculated over the area of inteaest a weighted average of
all 100 members taken.
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Figure 2 Temporal evolution of the MCBDF hazardorégr with incorrect meteorological data (reponedd direction 15° from the true
direction). The challenge, synthetically generadtg@pplying a concentration realisation model @BJFF generated dispersion data, was
emitted at 12:00, 8km upwind and 0.7km crosswindfa network of 19 detectors, spaced 500m apantrerbon the origin. As soon as
the challenge hits the network an initial estin@ftéhe challenge is provided. As more detectorsueaments are processed, the erroneous
wind direction is disfavoured for wind-directiorfsat are more compatible with the measurements. ideetifies false negative regions,
black true positive and green gives false positdggons. Estimates were calculated in real timea desktop machine.

Example output from the hazard calculator is shawhigure 2. In the case shown, MCBDF is using ti¥MJdispersion
model to predict the hazard area created by the \SEFR(Sykeset al, 2007) dispersion model. This represents a more
realistic test of the algorithm since the dispersizodel used to make the inference is not the sanbe model creating the
hazard. Realistic concentration time-series weregged by feeding the SCIPUFF estimates for meas-t@ncentration,
variance and correlation time-scale into a conegiotn realisation model. The first image shows MCRBDRitial hazard

estimate at 12:22, the time at whi P(m* > O|D) > 0.5 first occurs. The estimate is poor because thmenly a few non-

null sensor measurements in the data store andititbvector measurement supplied to the algoritermierror by 15°.
Subsequent images show the improvement in MCBD§sessment as more sensory data is passed to trihalg The
algorithm ran in real-time on a modern desktop rireeh
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