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Abstract: An important application of air pollution modétsto support decisions concerning air quality ngemaent and emission control.
For example, to quantify possible ecological orltielaenefits of emission abatement, there is a teedtimate the incremental contribution
of the respective group of emission sources to antlfioncentrations with reasonable accuracy. Howele to significant complexity of
such forecasting systems, there exist many sowfcesprecision or uncertainty in the modeling ofveanmental effects of atmospheric
pollution (e.g. model conceptual simplificationspael parameters, input data). This paper addrésegsroblem of uncertainty of emission
inventory and impact of this uncertainty on the &mb air pollution concentrations and adverse heeffects. The computational
experiment implemented for Warsaw Metropolitan Afealand, encompasses a one-year forecast witfettre2005 meteorological dataset.
The full emission inventory is composed of fouretatries of sources, characteristic for urban agéarge point sources, b) intermediate
point sources, c¢) area sources (residential sectplinear sources (transportation system). Th&RIAFF air dispersion model was used as
the main forecasting tool, combined with Monte @astatistical techniques to propagate uncertaifitthe emission data. Based on the
forecasted concentrations of air pollution, sewijtiof the adverse health effect estimates to simisuncertainties is evaluated.

Key words: Air pollution modeling, particulate matter, uncerity analysis, adverse health effects.

INTRODUCTION

Air quality forecasting models and the more completegrated assessment systems (IAM) are recasdy for supporting
decisions concerning air quality management andsson control policy (Warren R.F. and H.M. ApSimd®99). The
operational models are applied for analysis opaltution mitigation policies, for example, to imdite where the required air
quality limits will be exceeded, and what emissioitigation strategy should be applied to reachptescribed standards.
However, due to the very complex, multidisciplinatyucture of such systems, there exist many sewtéenprecision and
uncertainty in the modeling of environmental effeaf atmospheric pollution and also in the resgltiegulatory decisions.
To assess accuracy of modeling results and a ctathdecision support process, performance and taiagr of the model
should be evaluated. The most common way of exaitiie relative agreement between volume-averagadations and
point measurements is not sufficient because dérdifit spatial scales of these two values. To beftaracterize the
problem, the main sources of variability (temposplatial, or inter-individual differences of inpiata) and uncertainty (lack
of information about unknown quantity or imprecistormation) should be identified and assessedk(BaK. et al, 2006;
Sax T. and V. Isakov, 2003; Zimmermann H.-J., 198®Rrddition, implementations of operational madef air pollution
transport usually involve some specific simplifioat or parameterizations and cannot completelyacierize complex
physical processes, which is the source of conetpiucertainty also reflected in the final resuRsevious studies have
revealed (Russel A. and D. Dennis, 2000) that majoertainties (measurement or estimation erroajriguality models are
due to meteorological data and emission inventory.

The problem related to urban air pollution is highthe priorities of environmental concern. Numeratudies of model
outputs and measurement data have shown that rh@st pollution models poorly describe both temparad spatial

dependencies of pollutant concentrations (ApSimoM.Het al, 2002; Sportisse B., 2007). Estimation of the urbeale

pollution is a computationally sophisticated mondgliproblem due to complexity of emission field, kalso, due to
complicated building orography and wind-field effecEmission inventory of urban areas usually enmasses different
categories of emission sources, and namely: (Intpeise sources of power or heating plants, (I§eotindustrial sources,
(Illy area-type sources of residential sectors, 8] emission of urban transportation system. E&aid of source is
characterized by specific composition of emittesdnpounds which can cause numerous adverse envirdaimeffects.

Varieties of primary pollutants generate seconadampounds, by means of chemical transformationgases, which may
be even more dangerous for the environment. Oottier hand, due to high population density, urbapallution exposure
is a crucial factor associated with numerous advérsalth effects. In particular, many research ligesadicate that a
considerable harm in public health is caused byiquaate matter air pollution, especially PM2.5.

It is known that official emission data are not @ate, due to inventory uncertainties connecteth witme categories of
urban emissions. Emissions of major power planterergy sector can be treated as relatively aceluratause of well
specified parameters of combustion process asasgetlf the fuel used. On the other hand, emissita tii@t characterize
residential area or transportation systems arellydumsed on some aggregated and averaged infammeglated to the fuel
consumption and parameters. These categories sbiemidata do not reflect either the real tempeahbility or chemical

constitution of polluting compounds and are remhaikaincertain. In complex uncertainty analysis,retation between
some pollutants emitted by a source (Paget @l, 2003) should also be taken into account.

This paper presents results of uncertainty anditdgtysanalysis applied to air quality modeling lemented for Warsaw
Metropolitan Area, Poland. The experiment is focus® investigation of urban emission uncertaintfere the main
forecasting tool, which links the emission field tioe resulting annual average concentrations, is FIAtF model.
Uncertainty analysis is performed using Monte Caltmrithm (Hanna Set al, 1998; Moore G.E and R.J. Londergan, 2001)
The resulting values of fine particulate matter @8) concentrations, combined with the populatiensity data, were used
to estimated premature mortality due to fine patéite matter air pollution following the methodegented in (Tainio M.,
20009).
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COMPUTATIONAL EXPERIMENT

The computational test implemented for Warsaw Muaidlitan Area, Poland, encompasses one-year foregtsthe year
2005 meteorological and emission dataset. Emiddohinventory is composed of four categories afices: a) high point
sources of energy sector (16 heating and/or poveertg); b) other point sources (1017 industrialrees); c) area sources
(877 sources of the residential sector); d) linsaworces (1156 sources of the urban transportatysters). Emission
inventory of the last two groups consists of 10@ #00 m area emission units. Each category of ssusccharacterized by
specific technological parameters, a set of emitt@dpounds and correlation between the basic poltst The main results
of simulation relate to the annual average conaéntr forecasts of the following primary compoun8&,, NOy, PPM10,
PPM2.5, PPM10_R, PPM2.5_R, BAP, Ni, Cd, Pb, PAH (h&®IF0_R, PPM2.5_R denote particulate matter raiseithdy
road traffic) and secondary: $ONG;, HNO3, PM10, PM2.5 (here the total particulate tevatoncentrations are denoted
PMx = PPMx + PPMx_R + SO+ NOs). Resultingconcentrations have been computed and assignegBteeBeptor points
shown in Fig. 1.
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Figurel. Computational domain; location of receptor p@ertd monitoring stations.

Monte Carlo statistical technique has been utilizepgropagate uncertainty of the emission data. Bitians of the pollution
dispersion have been performed for 2000 randomheigged sets of input emission data and then edillzy CALPUFF
atmospheric transport model. The input uncertaoftyemission intensity for each category of sourees individually
generated for each pollutant (normal distributisrmssumed). Example ranges of emission uncertfmingelected polluting
compounds, depending on source category are showfable 1. To avoid creating technologically unisted sets of
emission data (Page &t al, 2003), the dedicated random number generatoss titke account correlation between key
compounds for each category of sources.

Table 1. Ranges of input emission uncertaintyierrhain pollutants in four categories of sources.

Pollutant | High point sources Other point sourdes Area sources Linear sources
SO, +15% +20% + 30% + 30%
NOy +20% + 30% +40% + 40%

PPM10 + 25% + 30% + 40% +40%

PPM2.5 + 25% + 30% + 40% +40%

Results of Monte Carlo analysis are recorded in &cdestl database. The data have a form of annuekge® concentration
values of all pollutants at receptor points inchglthe output distribution resulting from the inplatta uncertainty. Keeping
the data in the database allows for easy furthatyais of accuracy and uncertainty of modeling @enance as well as
gquantitative evaluation of the impact of specifimigsion sources to air quality and to harmful emvinental effects
(including human health). This makes a ground &arshing counteraction policies.
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SELECTED RESULTS
The data gathered enabled us to perform compleistgtal analysis, for example concerning forecastertainty of

pollutants (including full statistical charactetioam of uncertainty distribution), relative envirmental impact of the selected
emission sources or categories of sources (impoitarsupporting decisions related to emission adptrPreliminary
evaluation of the model performance accuracy caselea by comparing obtained averaged concentratith®bservations
by air monitoring system. As an example, Figurer@spnts comparison of averaged concentration dfcpkate matter
(PM10) with measurement values registered at mongcstations (locations shown in Fig. 1). The d@akhnes show ranges
of the factor of 2, usually adopted in comparisbmodeling and observed atmospheric pollution data.

[ —— EE——
/
/
50 y
/
’
45 "
’ Y 3
40 ‘
7
/!
35
s/ . o« <

calculated averaged values
BN W
& S & 3
~
~
\
\
\
-
\
\
\
1
\
e

.
1)
\

\

@
~
\

o

5 10 15 20 25 30 35 40 45 50 55

measured concentrations

Figure 2. Computed versus observed annual aveRligdd concentrations [ug-thin 2005.

The general database has been integrated with AréMeView instrumentation, which enables wide pbiiies of
graphical presentation of results. An example efdkailable visualizations presented in Fig. 3 c&emap of the selected
sub-domain of Warsaw area and relates to the inegulhcertainty distributions of PM10 concentratioithe map directly
presents - in a form of the column plots - appratendistributions of the total PM10 concentrati@iseceptor points.
Moreover, it is possible to develop full graphi¢sincertainty distribution. Fig. 3 illustrates thuase for the receptor No 275,
where the extended graphics displays in the vértageut: cumulative distribution function, disttition density and the

standard box plot for the selected receptor anldifyj compound.
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Figure 3. Annual average concentration (and uniegytdistribution) of PM10 at the receptor points.

Analysis of the results provides general conclusioglated to the share of the assumed categoriemizsion sources in
environmental impact and the future decisions.drtipular, point sources mainly contribute to,Sd NG pollution, but
the resulting concentration uncertainty is ratheal§ mainly due to high precision of input emissifor this category of
sources. Relatively low contribution of the majoatieg plants is due to the stack height of thisugrof sources (about 200
m), which causes exporting of the substantial pérpollution outside of the domain. Therefore, tharticulate matter
pollution is mainly due to area sources (PM10 am®B) and linear sources (PM10). Moreover, the ltegpuncertainties
of these two pollutants are relatively high andgeafrom +6% up to +30%, depending on the receioation. This is due to

high input uncertainty of area and linear sourcesnpare Table 1).
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SENSITIVITY OF HEALTH EFFECTS TO EMISSION UNCERTAINTY

We used the forecasted PM2.5 concentrations tonatgi the adverse health effects caused by PM2.pddlintion in
Warsaw. We also compared sensitivity of the mdytadstimates to different emissions sources unictiga to examine,
which uncertainties are most important when estimgaadverse health effects caused by PM2.5 in Waldatropolitan
Area.

Estimation of adverse health effects caused by BMi.pollution followed the methods presentedTiaifio 2009). First we
estimated the exposure to PM2.5 in Warsaw MetrégrolArea by calculating the population average ewp®to PM2.5.
Second, we estimated background mortality in thdysarea. Third, we estimated exposure-responsgifuns that describe
the statistical relationship between exposure aherae health effects. Finally we combined all da¢a to estimate the
adverse health effects caused by PM2.5 in Warsayear 2005. After that, we performed a sensitiahalysis for the
mortality estimates. These different phases areritesl more detailed below.

Population average exposurePopulation average exposure describes the avexagsue encountered by the population
in the given area. The population average exposasgecalculated with the following equation:

E= Zi C; (Pop / Pop)
1

In this equation, E is the exposure for PM2.5 [lif;nC is PM2.5 the concentration [pug®m Pop is the number of
population. The population data (Pofor Warsaw Metropolitan Area was obtained fronrdpean Environment Agency
(EEA) (http://www.eea.europa.eu/data-and-maps/dapallation-density-disaggregated-with-corine-langar-2000-2). The

EEA population data included population densityl0 m x 100 m grid over the Europe. The data wassferred with

ArcMap to population estimates for the same regeptints, for which the PM concentrations have bestimated (see
Figure 1). Population of the study area was eséthad be 1 790 872.

The resulting population average concentrations diffierent pollutants and sources are presentedahle 2. Total
population average exposure to PM2.5 due to lomafces was estimated to be approximately 7.0 figRrimary PM2.5
from linear sources contributed approximately lodlfotal population average exposure in the studg.a

Table 2. Population average exposure (mean andc@Bfiglence intervals) to PM2.5 concentrations [|i-due to local emissions sources
in Warsaw Metropolitan Area. The utaiaty includes only the emission source uncetyain

Pollutant | High point source§ Other point sourdes Area sources Linear sources Together
SO, +NOy 0.04 (0.04-0.04) 0.03 (0.03-0.03 0.04 (0.04-0.04) 0.31 (0.31-0.31) | 0.41(0.41-0.41)

PPM2.5 0.02 (0.02-0.02) 0.24 (0.24-0.24)) 2.00 (298} 1.44 (1.41-1.46) | 3.69 (3.65-3.73)
PPM2.5 R - - - 2.89 (2.85-2.92)| 2.89 (2.85-2.92)
Together 0.06 (0.06-0.06) 0.27 (0.26-0.27) 2.0812.07) 4.63 (4.58-4.67)| 6.99 (6.94-7.05)

Background mortality. Background mortality was estimated based on Centasis8c Office mortality data for Warsaw for
2007. Non-accidental mortality was estimated td®&83 deaths per year.

Exposure-response functionExposure-response function was obtained from Tumnésal. (2008). That study used an
expert elicitation method to estimate the exposasponse function for PM2.5 air pollution. The esyp@-response function
is presented with percentage change in mortaliased by 1 pg-fhchange in PM2.5 exposure. Based on Tuomngstal.
(2008), we assumed that 1 pg-change in PM2.5 exposure would change non-accibemetality 0.62%. Exposure-
response function uncertainties were not takenantmunt because this study focuses on emissicertaities.

Table 3. Premature mortality estimates for Warsastrbpolitan Area for 2005. Unit is premature deatésyear.

Pollutant | High point source§ Other point sourdes Area sources Linear sources Together
SO, +NOy 4 (4-4) 3 (3-3) 4 (4-4) 31 (31-32) 42 (42-43)

PPM2.5 2(2-2) 24 (24-25) 206 (203-209) 148 (14B)15 380 (376-384)
PPM2.5_R - - - 297 (293-300) | 297 (293-300)
Together 6 (6-6) 27 (27-28) 210 (206-213) 476 (430) 719 (713-724)

Premature mortality. The premature mortality was calculated with théofving equation:

M =My, (E [(ER/100)

@

In the equation, M is premature death due to PMR.pollution, M, is background non-accidental mortality in Warsg&ws
population average exposure to PM2.5 [jif];nand ER is exposure-response function. The resuliremature death
estimates are presented in Table 3. PM2.5 air fimfiudue to local sources was estimated to caupeogimately 700
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premature deaths per year in the Warsaw Metropoktea. Relative contribution of different sourcestlie same as in
population average exposure because we did nanasany toxicity differences between different PM@rbission sources.

Sensitivity analysis.Sensitivity analysis was used to estimate how dairgy in different input values impact the mortgali

results. Sensitivity analysis was done by calcatatiank-order correlation between the input vagatdnd the mortality
estimates uncertainties. The results of the seitgifinalysis are presented in Fig. 4. Emissioneutainties related to linear
sources were having highest impact to prematuretatityr estimates uncertainties. This is due to bbihh emission

uncertainties (see Table 1) and importance of lisearces when estimating adverse health effecthéstudy area (Table
3). Other uncertainties beside the emission uniogytavere not taken into account in these calcoreti
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Figure 4. Sensitivity analysis. High importance methe large impact of particular input variablétte uncertainty of the model.
Only emission uncertainties were taken intmoaat in these calculations. From the differentssion source categories --
primary PM2.5 emission uncertainties relatethlinear and area sources were having highestdhip the uncertainty.
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