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Abstract: This contribution considers the influence of sfi@ation on incompressible flow for low values Beynolds numbers. As a test
problem, 3D cavity flow is modeled and the resutsnpared with those published previously. The grfte of stratification is also
examined in the case of flow past an obstacle doca@iside a channel. The flow and intensity oft8tcation are characterized by the
Reynolds numbeRe and the Froude number, respectively. The Froude number, which determthesstability of the stratified flow (the
ratio of buoyancy to the inertia force), is theerse of the Richardson numider For Ri of 0.1-10.0, both forces contribute to the flow
structure, and the flow can be considered as me@dection. The employed model consists of the &a8tokes equations with the
Boussinesq approximation, the continuity equatiothe form for incompressible fluid flow, and thegnostic equation for fluctuations in
potential temperature. Conservative high-order odshare used to solve the system of equations.adifiection terms are reconstructed
using the fifth-order WENO scheme and temporal @imh is solved by application of the explicit TV@otal variation diminishing)
Runge—Kutta scheme. Near the borders of the olesteall functions are employed. We also commenthenapplication of TVD and non-
TVD Runge—Kutta temporal integration.
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INTRODUCTION

Any atmospheric flow within the atmospheric bounydkayer is turbulent and almost non-neutrally #fied. In this
contribution, we focus on the problem of laminawfl of stably stratified fluid. As a consequenceswtification, we are
able to observe meteorological phenomena sucheagtygwaves and wake effects in regions locatedrisebbstacles.

To prevent the occurrence of undesired spuriouslatgmns in our numerical modeling, we employea fimite volume
approach with higher-order (fifth-order) WENO restmction. For temporal discretization, we employleel explicit TVD
(Total Variation Diminishing) Runge—Kutta (R—K) sche. We examined several types of TVD and non-TVIK Rehemes
with different degrees of accuracy.

To test the applicability of this approach, we @hasproblem involving flow in a cavity, around auage cylinder in a
channel. The lid-driven cavity flow case was comapufior several values of the Courant—Friedrichs—L&BL) condition.
Stratification was considered in the computatioimgishe prescribed gradient in potential temperatin the case of cavity
flow, the gradient was set via the prescribed teatpees at the top and bottom boundaries of theetndomain. The lid-
driven cavity flow problem was then computed in &id 3D. In the flow past an obstacle, we used @dainemperature
gradient to that in the cavity. As the problemabsed in terms of non-dimensional variables, thegerature of the upper lid
was maintained at a value of 1, and the temperafittee bottom lid was equal to zero.

The strength of stratification is characterized doyon-dimensional parameter - the Froude nunftsemwhich is the

inverse of the Richardson numkRi For positive values dRi andRi >>1, (negative) buoyancy force is dominant. The
inertia force is equal to the buoyancy force fer = 1, whereas forRi << 1 (but still positive) the inertia force dominates.
For Ri in the range 0.1-10.0, both forces contributeht ftow structure, and the fluid motion can be idaxed as mixed
convection (see Mohamad,A., A. and Viskanta, R. 1995

GOVERNING SYSTEM

The governing equations that describe fluid motiwa the Navier—Stokes equations (1) and the cattimalation (2)
Stratification is employed using the Boussinesq agipration, which adds an equation for perturbati@gmspotential
temperature (3) to the system. All these equat{®n8) are in Jirk,A. 2008 and are written in a rmensional form:
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wherei, k = 1,3 for the 2D approach amndck = 1,2,3 for the 3D approach, are velocity componentg] is perturbation in
potential temperatured is the average value of potential temperatprés pressure perturbation,are coordinates, artds
time.

The following paragraph gives a short descriptibthe set up for figures, equations and tables.

NUMERICAL METHODS

The finite volume method is used for spatial dizegion of the governing equations (1-3) (e.grzker, J. H. and Pei
M. 1997 and McDonough, J.M. 2003). The advectiomsein (1) and on the left-hand side of (3) ar@nstructed using the
WENO scheme (Liu et al. 1994), which is used t@nstruct the values of velocity components at tharol volume (CV)
boundaries, which are required to assess the magniaf numerical fluxes. When reconstructing thicity at the CV
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boundaries, the WENO scheme uses all possibleilstdidepending on the order of reconstruction) withrresponding
weights. Weights are computed from the total vemmafor a given stencil. The highest weight is afea for the stencil with
the lowest total variation. Here, we employ the WENcheme with fifth-order accuracy. Viscous terms(1) were
computed using the Crank—Nicholson method (Kim eR@01). For discretization of the temporal partiativation in (1)
and (3), we used the explicit TVD R—-K scheme wihrth- and third-order accuracy (Strang, G. 1984g fractional-step
method (Brown et al. 2001) was employed to solve Nawier—Stokes equations (1) and continuity retat{@). This
approach un-groups the solution of equations ieteal steps; here, we employ a two-step methodsifwlation of the
obstacle, we employed a direct forcing immersechbdaty method (Kim et al. 2001) with second-ordeuaacy.

NUMERICAL EXPERIMENTS
As stated above, several types of TVD and non-T\AK Rchemes were tested on Euler equations. We aechplae third-
and fourth-order TVD schemes with the fourth-onden-TVD R-K scheme.
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Figure 1 Stability testing of the Runge—Kutta scheme: dpEequation for a grid size of 12®) Navier—Stokes equation

All these schemes are described in Shu,Ch.W. ah@rQOS. 1988. The R—K schemes were tested for tidesizes: 129
192, and 257. The dependence of, lnorm on the ratid\t/Ax for various types of R—K schemes (figure 1a) aév¢hat the
fourth-order TVD R—K scheme is the most stable agribie three schemes and that the TVD schemes hayatiser courses
than do the non-TVD schemes. The results are sifioitaall three grid sizes.

Figure 1b shows the results of a stability testtfa lid-driven cavity case; i.e., a test of thabdity of the Navier—Stokes
equations. The temporal convergence of the priraariex center to its stable position is shown feo different values of
the coefficientAt/Ax. The convergence is more accurate and fastehéocoefficient with a lower value.

FORMULATION OF THE PROBLEM

We simulated and compared three cases of straflfied The first and second cases deal with 2D aBdid-driven cavity
flow influenced by stratification. The 2D flow path with neutral stratification is compared witle ttesults of Ghiat al.
1982, and the results obtained with stratified flane compared with those of lwatset al. 1992 and Iwatsu,R. and
Hyun,J.M. 1995. The boundary conditions are Digthionditions for the components of velocity an@rage potential
temperaturev = 0 w = O for the 3D case) at all boundariess O at the side and bottom boundaries; 1 at the top
boundary,d =0 at the bottom boundary, ar@=1 at the top boundary. For perturbations in potetéaiperature, we use a
linear extrapolation to the boundaries. The thadecdeals with 2D stratified flow past a squaredgr located in a channel,
using the following conditions: for channel infloav,Dirichlet conditiorv = 0 is used together with a parabolic profile of the
u component (withu = 1 in the parabola centre); the magnitude is reduo zero toward the boundaries. At the outflow,
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Neumann condition& = a_V = o are used. For perturbations in potential tempegatimear extrapolation is applied
ox  0x

the boundaries. The Reglds number is 200 and the Froude number:1.00, 0.10, and 0.01, respectiv:

RESULTS, DISCUSSION

Here, we present some of the results of 2D and @Dpatations of stratified |-driven cavity flow. Figure 2a shows =
cavity flow forRe= 100 and~r = 0.1. Figure 2b shows the case for 3D (showing as-section located m-cavity,y = 0.5)
and forRe= 400.And in figure 3 is depicted distribution of pertatlon of potential temperature of cavity for Re 94The
strength of stable stratification s that the primary vortex is largely confinedhe upper part of the cavity. The influer
of the upper boundary velocity (primary vortex)ends over a smaller area within the cavity bectheisetable stratificcon
acts to suppress vertical motioviertical exchange is strongly suppressed, espgdialthe lower part where it becom
chaotic.

e

a b
Figure 2. &reamlines of the flow field fcFr =0.1: a) 2D, velocity magnitud&e= 100
b) cross-section through the 3D simulatiBe= 400

-0.13

Figure 3 Field of potential temperature, arrows of flow ficross-section through the 3D simulatiptanes x=0.75, y=0.5, z=0.7,
Re=400, Fr=0.1

The results shown in Figure 2a, ahd : are qualitatively consistent with the results whisuet al 1992, Ilwatsu,R. and
Hyun,J.M. 1995, and Taat al. 2007.
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Figure 4. Field of potential temperature pertudsagifor: a) Fr = 0.1, b) Fr = 0.
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Figure 4a and 4b shows the results of stratified fRIV past a square cylinder; the fields of potehtiemperature
perturbations are shown fér = 0.1 (less stable) and 0.01 (more stable). Talt®e support the assumption that with
decreasing-r, the wake effects behind the obstacle are lessoprced, as the gravitational waves induced byotistacle
are more intensive and are emanated with a highguéncy. The results are also consistent wittkilesvn situation in the
atmosphere and the value of the well-known Brunts&ai frequency. A higher value of Brunt-Vaisala frency is
obtained with more stably stratified fluid. Thislatonship is confirmed when the dependence of aigloon time is
computed. With decreasirky, velocity oscillations are generated by the obstésse (4)) at higher frequencies:

f(Fr = 0.01) = 1.63, f(Fr=0.10)=0.79, F¢=1.00) = 0.30 4)

For flow around a square cylinder without the iefice of stratification, the Strouhal number $= 013- 014
(Jirk, A. 2008). Adr approaches, the frequency of velocity approaches the Stronbatber.

CONCLUSIONS

We employed a fifth-order WENO reconstruction oé ttonvective terms of Navier—Stokes equations ambussinesq
approximation to describe the influence of stradifion on laminar and incompressible flow. The lsswere compared with
those of previous studies. As test examples, wesidered stratified flow in a cavity and around dostacle. The effect of
stratification (assessed in termskr) was in accordance with the known situation irblstastratified atmospheric flows.
WhenFr is large, the influence of stratification is wealko€e to a neutrally stratified atmosphere). Wigtréasing-r, the

wake effects behind the obstacle become less prmeoluand gravitational waves are induced more $ntely and with

higher frequencies due to the increasing stabdinifluence of stratification. In the case of cg\lbw, circulation is largely
confined to the upper region of the cavity and ieattmotion is suppressed. The present results wéhl 2D and 3D

modeling.

ACKNOWLEDGMENTS
This research was supported by the Czech Ministigchfcation, Youth and Sports under the frameworRedearch Plan
MSM0021620860.

REFERENCES

Brown, D. L., Cortez, R. and Minion, L. M., 2001: Acate Projection Methods for the Incompressible Ha@tokes
Equations. Journal of Computational Physics 168;4%1

Ferziger, J. H. and Peric, M., 1997: Computationatidds for Fluid Dynamics. Springer Verlag, Berlin.

Ghia, U., Ghia, K. N. and Shin, C. T., 1982: High-8lasons for Incompressible Flow Using the Navig¢ol&s Equations
and a Multigrid Metod. Journal of Computational Hby18, 387-411.

Iwatsu, R. and Hyun, J., M., 1995: Three-dimensiairalen-cavity flows with a vertical temperatureadrent. Int. Journal
Heat Mass Transfer. Vol 38, No.18.

Iwatsu, R., Hyun, J., M. and Kuwahara, K., 1992: ddixconvection in a driven cavity with a stable icatttemperature
gradient. Int. Journal Heat Mass Transfer. Voll$86.6.

Jirk, A., 2008: Thermally stratified atmospheriovil modelling.Diploma thesis. Dept of Meteorology and Env. Pecbte
MFF UK Prague (in Czech).

Kim, J., Kim, D. and Choi, H., 2001: An Immersed-Bdary Finite-Volume Method for Simulations of Flaw Complex
Geometry. Journal of Computational Physics 171, 152-

Liu, X. D., Osher, S. and Chan T., 1994: Weightedeally Non-Oscillatory Schemes. Journal of Corapahal Physics
115, 200-212.

McDonough, J. M., 2003: Lectures in ComputationaidDynamics of Incompressible Flow: Mathematicfyagkithms and
Implementations. Departments of Mechanical Engingeaind Mathematics University of Kentucky.

Mohamad, A., A. and Viskanta, R., 1995: Flow andthemnsfer in a lid-driven cavity filled with a $tly stratified fluid.
Applied Mathematical Modelling, vol. 19.

Shu,Ch.W. and Osher,S., 1988: Efficient Implemeatatof Essentially Non-Oscillatory Shock-Capturingh&wmes,ll.
Journal of Computational Physics 83,32-78

Strang, G., 1964: Accurate Partial Difference Mefhdl. Non-Linear Problems. Numerische MatematiB5-46.

Tae, H. J,, Seo, Y., K, Jie, M., H., 2007: Transimixed convection in an enclosure driven by dis{j lid. Heat Mass
Transfer 43, 629-638.

Session 6 — Urban scale and street canyon modelling 783





