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Abstract: This contribution considers the influence of stratification on incompressible flow for low values of Reynolds numbers. As a test 
problem, 3D cavity flow is modeled and the results compared with those published previously. The influence of stratification is also 
examined in the case of flow past an obstacle located inside a channel. The flow and intensity of stratification are characterized by the 
Reynolds number Re and the Froude number Fr, respectively. The Froude number, which determines the stability of the stratified flow (the 
ratio of buoyancy to the inertia force), is the inverse of the Richardson number Ri. For Ri of 0.1–10.0, both forces contribute to the flow 
structure, and the flow can be considered as mixed convection. The employed model consists of the Navier–Stokes equations with the 
Boussinesq approximation, the continuity equation in the form for incompressible fluid flow, and the prognostic equation for fluctuations in 
potential temperature. Conservative high-order methods are used to solve the system of equations. The advection terms are reconstructed 
using the fifth-order WENO scheme and temporal evolution is solved by application of the explicit TVD (total variation diminishing) 
Runge–Kutta scheme. Near the borders of the obstacle wall functions are employed. We also comment on the application of TVD and non-
TVD Runge–Kutta temporal integration. 
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INTRODUCTION 

Any atmospheric flow within the atmospheric boundary layer is turbulent and almost non-neutrally stratified. In this 
contribution, we focus on the problem of laminar flow of stably stratified fluid. As a consequence of stratification, we are 
able to observe meteorological phenomena such as gravity waves and wake effects in regions located behind obstacles. 

To prevent the occurrence of undesired spurious oscillations in our numerical modeling, we employed the finite volume 
approach with higher-order (fifth-order) WENO reconstruction. For temporal discretization, we employed the explicit TVD 
(Total Variation Diminishing) Runge–Kutta (R–K) scheme. We examined several types of TVD and non-TVD R–K schemes 
with different degrees of accuracy. 

To test the applicability of this approach, we chose a problem involving flow in a cavity, around a square cylinder in a 
channel. The lid-driven cavity flow case was computed for several values of the Courant–Friedrichs–Lewy (CFL) condition. 
Stratification was considered in the computation using the prescribed gradient in potential temperature. In the case of cavity 
flow, the gradient was set via the prescribed temperatures at the top and bottom boundaries of the model domain. The lid-
driven cavity flow problem was then computed in 2D and 3D. In the flow past an obstacle, we used a similar temperature 
gradient to that in the cavity. As the problem is solved in terms of non-dimensional variables, the temperature of the upper lid 
was maintained at a value of 1, and the temperature of the bottom lid was equal to zero.  

The strength of stratification is characterized by a non-dimensional parameter - the Froude number Fr, which is the 
inverse of the Richardson number Ri. For positive values of Ri and 1>>Ri , (negative) buoyancy force is dominant. The 
inertia force is equal to the buoyancy force for 1≈Ri , whereas for 1<<Ri  (but still positive) the inertia force dominates. 
For Ri in the range 0.1–10.0, both forces contribute to the flow structure, and the fluid motion can be considered as mixed 
convection (see Mohamad,A., A. and Viskanta, R. 1995). 
 
GOVERNING SYSTEM 
The governing equations that describe fluid motion are the Navier–Stokes equations (1) and the continuity relation (2). 
Stratification is employed using the Boussinesq approximation, which adds an equation for perturbations in potential 
temperature (3) to the system. All these equations (1–3) are in Jirk,A. 2008 and are written in a non-dimensional form: 
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where i, k = 1,3 for the 2D approach and i, k = 1,2,3 for the 3D approach, vi are velocity components, θ´ is perturbation in 
potential temperature, θ  is the average value of potential temperature, p’ is pressure perturbation, xi are coordinates, and t is 
time. 
 
The following paragraph gives a short description of the set up for figures, equations and tables. 
 
NUMERICAL METHODS 
The finite volume method is used for spatial discretization of the governing equations (1–3) (e.g., Ferziger, J. H. and Perić, 
M. 1997 and McDonough, J.M. 2003). The advection terms in (1) and on the left-hand side of (3) are reconstructed using the 
WENO scheme (Liu et al. 1994), which is used to reconstruct the values of velocity components at the control volume (CV) 
boundaries, which are required to assess the magnitude of numerical fluxes. When reconstructing the velocity at the CV 
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boundaries, the WENO scheme uses all possible stencils (depending on the order of reconstruction) with corresponding 
weights. Weights are computed from the total variation for a given stencil. The highest weight is obtained for the stencil with 
the lowest total variation. Here, we employ the WENO scheme with fifth-order accuracy. Viscous terms in (1) were 
computed using the Crank–Nicholson method (Kim et al. 2001). For discretization of the temporal partial derivation in (1) 
and (3), we used the explicit TVD R–K scheme with fourth- and third-order accuracy (Strang, G. 1964). The fractional-step 
method (Brown et al. 2001) was employed to solve the Navier–Stokes equations (1) and continuity relation (2). This 
approach un-groups the solution of equations into several steps; here, we employ a two-step method. For simulation of the 
obstacle, we employed a direct forcing immersed boundary method (Kim et al. 2001) with second-order accuracy. 
 
NUMERICAL EXPERIMENTS 
As stated above, several types of TVD and non-TVD R–K schemes were tested on Euler equations. We compared the third- 
and fourth-order TVD schemes with the fourth-order non-TVD R–K scheme. 

 

 
       

a 
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Figure 1. Stability testing of the Runge–Kutta scheme: a) Euler equation for a grid size of 1292, b) Navier–Stokes equation 
 
All these schemes are described in Shu,Ch.W. and Osher, S. 1988. The R–K schemes were tested for three grid sizes: 1292, 
1932, and 2572. The dependence of L2 norm on the ratio ∆τ/∆x for various types of R–K schemes (figure 1a) reveals that the 
fourth-order TVD R–K scheme is the most stable among the three schemes and that the TVD schemes have smoother courses 
than do the non-TVD schemes. The results are similar for all three grid sizes.  
Figure 1b shows the results of a stability test for the lid-driven cavity case; i.e., a test of the stability of the Navier–Stokes 
equations. The temporal convergence of the primary vortex center to its stable position is shown for two different values of 
the coefficient ∆τ/∆x. The convergence is more accurate and faster for the coefficient with a lower value. 
 
FORMULATION OF THE PROBLEM 
We simulated and compared three cases of stratified flow. The first and second cases deal with 2D and 3D lid-driven cavity 
flow influenced by stratification. The 2D flow pattern with neutral stratification is compared with the results of Ghia et al. 
1982, and the results obtained with stratified flow are compared with those of Iwatsu et al. 1992 and Iwatsu,R. and 
Hyun,J.M. 1995. The boundary conditions are Dirichlet conditions for the components of velocity and average potential 
temperature: v = 0 (w = 0 for the 3D case) at all boundaries, u = 0 at the side and bottom boundaries, u = 1 at the top 

boundary, 0=θ  at the bottom boundary, and 1=θ  at the top boundary. For perturbations in potential temperature, we use a 
linear extrapolation to the boundaries. The third case deals with 2D stratified flow past a square cylinder located in a channel, 
using the following conditions: for channel inflow, a Dirichlet condition v = 0 is used together with a parabolic profile of the 
u component (with u = 1 in the parabola centre); the magnitude is reduced to zero toward the boundaries. At the outflow, 
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u  are used. For perturbations in potential temperature, linear extrapolation is applied to 

the boundaries. The Reynolds number is 200 and the Froude numbers are 
 
RESULTS, DISCUSSION 
Here, we present some of the results of 2D and 3D computations of stratified lid
cavity flow for Re = 100 and Fr = 0.1. Figure 2b shows the case for 3D (showing a cross
and for Re = 400. And in figure 3 is depicted distribution of perturbation of potential temperature of cavity for Re = 400. 
strength of stable stratification means that the primary vortex is largely confined to the upper part of the cavity. The influence 
of the upper boundary velocity (primary vortex) extends over a smaller area within the cavity because the stable stratificati
acts to suppress vertical motion. Vertical exchange is strongly suppressed, especially in the lower part where it becomes 
chaotic. 

 

                a  
Figure 2. Streamlines of the flow field for 

                     
 
 

Figure 3. Field of potential temperature, arrows of flow field 

 
The results shown in Figure 2a, 2b and 3
Hyun,J.M. 1995, and Tae et al. 2007. 
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Figure 4. Field of potential temperature perturbations for: a) Fr = 0.1, b) Fr = 0.01
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                      b 

treamlines of the flow field for Fr = 0.1: a) 2D, velocity magnitude, Re = 100   
                    b) cross-section through the 3D simulation, Re = 400 

Field of potential temperature, arrows of flow field cross-section through the 3D simulation (planes x=0.75, y=0.5, z=0.75)

 Re = 400, Fr = 0.1 

and 3 are qualitatively consistent with the results of Iwatsu et al.
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Figure 4. Field of potential temperature perturbations for: a) Fr = 0.1, b) Fr = 0.01 
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Figure 4a and 4b shows the results of stratified 2D flow past a square cylinder; the fields of potential temperature 
perturbations are shown for Fr = 0.1 (less stable) and 0.01 (more stable). The results support the assumption that with 
decreasing Fr, the wake effects behind the obstacle are less pronounced, as the gravitational waves induced by the obstacle 
are more intensive and are emanated with a higher frequency. The results are also consistent with the known situation in the 
atmosphere and the value of the well-known Brunt–Väisälä frequency. A higher value of Brunt–Väisälä frequency is 
obtained with more stably stratified fluid. This relationship is confirmed when the dependence of velocity on time is 
computed. With decreasing Fr, velocity oscillations are generated by the obstacle (see (4)) at higher frequencies: 

 
 f(Fr = 0.01) = 1.63,    f(Fr = 0.10) = 0.79,     f(Fr = 1.00) = 0.30 (4) 

 
For flow around a square cylinder without the influence of stratification, the Strouhal number is 14.013.0 −≈St  
(Jirk, A. 2008). As Fr approaches ∞, the frequency of velocity approaches the Strouhal number. 
 
CONCLUSIONS 
We employed a fifth-order WENO reconstruction of the convective terms of Navier–Stokes equations and a Boussinesq 
approximation to describe the influence of stratification on laminar and incompressible flow. The results were compared with 
those of previous studies. As test examples, we considered stratified flow in a cavity and around an obstacle. The effect of 
stratification (assessed in terms of Fr) was in accordance with the known situation in stably stratified atmospheric flows. 
When Fr is large, the influence of stratification is weak (close to a neutrally stratified atmosphere). With decreasing Fr, the 
wake effects behind the obstacle become less pronounced and gravitational waves are induced more intensively and with 
higher frequencies due to the increasing stabilizing influence of stratification. In the case of cavity flow, circulation is largely 
confined to the upper region of the cavity and vertical motion is suppressed. The present results deal with 2D and 3D 
modeling.  
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