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THE IMPORTANCE OF CONCENTRATION FLUCTUATIONS IN HAZARD ASSES SMENT
AND SOURCE TERM ESTIMATION

Steven Herring and Peter Robins
Dstl Porton Down, Salisbury, England

Abstract: A recent study has investigated how results ftbenDstl MCBDF code are affected by different agstioms regarding the form
of the concentration probability density functigrdf) defined by the mean and variance outputs fiteendispersion model. A total of five
test cases were selected for which the results éxcesuting MCBDF with different pdf assumptions kcblobe compared to high quality trials
data. The results showed that using the curremanee calculation, the concentration mean and reeiavalues output from the dispersion
model should be taken to refer to a standard GawsBstribution, rather than a clipped-Gaussiatritision. The work also showed that
whilst a partial solution may be achieved in theeirse modelling process with a relatively simpleaatration variance model, a full
solution requires a more complex model that canigeovariances appropriate to different types afimmment.
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INTRODUCTION

One of the principal problems to be overcome iretlgping an effective response to a release of Hamarmaterial is to identify
where the release occurred, and how much matasgaped. Unfortunately, especially during the ihjilaase of a release (e.g.
~10 minutes, but potentially much longer), the tsoerce characteristics will be unknown, and vétle Idata is likely to be
available on which to base hazard and warning arBEais leads to a requirement for some method wérse modelling.
However, inverse modelling (or source-term estiomtis difficult; firstly, because the process rdyooperationally useful if it
produces answers within a few minutes; and secobeigause the uncertainties in the data are ggnkngje. To overcome
these problems research at Dstl has focused arhaidgeie based on dynamic Bayesian graphical modellihis technique is
implemented in a prototype software module caliedMlonte-Carlo Bayesian Data Fusion (MCBDF) code.

The Bayesian approach is advantageous in that lenaisparate data to be combined in a matherfigsiticactable way
and confers a high level of error tolerance. Whilet core of MCBDF is a Bayesian inference procest ghaerates
hypotheses, evaluates them and constructs pdfgh#orsource-term, it also requires a dispersion ndaleproduce
concentration predictions at the sensor locati@gminst which the hypotheses can be evaluated. mb&ns that the
accuracy of the source-term estimation output fid@BDF depends to a large degree upon how well theatmation
fluctuations recorded by the sensors can be ctéertlwith those represented by the concentratiomgtitity density
function (pdf) defined by the dispersion model.

CONFIGURATION OF MCBDF

The dispersion model used in MCBDF is the Dstl UrbBéspersion Model (UDM), which is a Gaussian puffdab UDM
was developed, as its name suggests, for predittimglispersion of hazardous material in urbanrenments. At present,
MCBDF has only been tested against cases where taésdeom sensors in flat open terrain. In thisatiion, UDM predicts
the dispersion based on surface roughness valubhama very fast run time that enables MCBDF toaipen near real-
time on a standard desk-top PC.

The usual inputs to MCBDF consist of:
1. Adefined spatial area within which to carry ou thference process.
2. The concentration signals output from a sensogarra
3. Meteorological data in the form of a wind profile.

Given the above inputs, MCBDF is generally run tosedhe source-term estimation problem for nine petars. These
are: the source location (x and y), the release {th the release mass (m), the wind vectors (lnanroughness length (r),
and Monin-Obukhov length (L). Whilst it is posshio let MCBDF infer the wind speed and directionhwiit providing
any initial information, it is more efficient to gvide a wind profile, and variances that enabl® itiypothesise limited
variations. It is important to note that whilst tireeteorology might vary over the release areantb&eorological input to
UDM consists of a single wind vector at a specifieference height. This reference wind is thenrtakeapply to the entire
domain, and to be invariant with time.

CALCULATION OF CONCENTRATION VARIANCE

The efficiency and accuracy of the source-ternnetion process in MCBDF depends upon correlatingctimeentration

mean and variance value predictions output by UDIM the sensor data. This is achieved through aemmation pdf of an

assumed form. The method of determining the vaeamiues has a particular impact on the accura¢eopdf because of
the large range of fluctuations and intermitterf@ttmay be present in real data.

At present, UDM implements a relatively simple cdédtion for concentration variance. This definee tbverall
concentration variance valug,,, due to a number of over-lapping puffs at a poinfRetcliffe et al. 2009) :

! Values for more parameters can be inferred, suchedsorological conditions at a number of pointsafa from multiple
meteorological sensors are input, but the compmurtatitime rises rapidly.
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In equation (1)r is the average fluctuation intensity of the pufts;is the average concentration of the pulffs; athe
average Gaussian factor of the puffs. The fluaunantensity,r, of a puff is determined from:

r= \/%XUMQZ—(1+ ) -1 @
OixOiy0iz

In equation (2K is the internal fluctuation constant, which haixad value:K= 0.3. The subscripts ‘e’ and ‘i’ refer to

ensemble and instantaneous puffs, apd o, ando, are the puff spreads in the x, y and z directicespectively. The

relationships used to derive the instantaneousadpralues (detailed in Ratclifet al. 2009) ensure that they are always a

fraction of the ensemble values. This means thaemgdlyr >1; and the fluctuations are generally greater ttrenmean

concentration and a wide range of variance valuepr@oduced.

It is recognised that the simple approach defingéduations (1) and (2) does not capture the toyisjits of the processes
that determine the concentration variances. They edflect a bias towards representing concentrdticctuations in the
urban situation, rather than the open terrain. Thisnportant, as the magnitudes of concentratioctdations in a plume
passing through obstacles are substantially lesms those in a plume dispersing across open tefeajn Davidsoret al
(1995)).

TESTING OF MCBDF WITH TRIALS DATA

The first set of trial data against which the effeeness of MCBDF was assessed was taken from ®ipdte 26 (DP26).
This revealed that the concentration series agathgsth MCBDF was making its inference had litledammon with the
measured concentration time series. This is ildstt in Figures 1 and 2.
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Figure 1.Dipole Pride 26 Case 12b: high frequency concentratata from TGA-4000 devices.
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Figure 2. Dipole Pride 26 Case 12b: simulated datas', ensemble, clipped-Gaussian.

The concentration time series values generatednMiiCBDF that are shown in Figure 2 were derivedasguming that the
concentration mean and variance values output @ referred to a clipped-Gaussian distributionisTassumption was
consistent with the results of trials data acqubgdstl and other organisations (including thabewvidsonet al. 1995), and

with the approach implemented in the Second-ordesuCe Integrated puff model (SCIPUFF, Sykésl. 2008). However,

it did not result in a data series from which MCBBguld make a sensible inference. Further investigashowed that if the
mean and variance values were assumed to applystandard Gaussian distribution, then MCBDF was/ipged with a

concentration time series that was qualitativelximmore realistic (illustrated in Figure 3), and te reasonable results.
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Figure 3.Dipole Pride 26 Case 12b: simulated data 4'messemble, Gaussian.

In 2008 MCBDF was applied, along with a number ofotinverse methods, in a 'blind' test against esef 35 test cases
derived from the FUSION Field Trial 2007 (FFTO7)taket by the Institute for Defense Analyses. Basedm@vious
experience with the DP26 data, the mean and vaigatues output from UDM were assumed to referntaiaclipped-
Gaussian distribution. In addition, for the purpase¢he FFTO7 exercise, MCBDF was configured to oufpoumost likely
hypothesis for the release. This hypothesis wast by considering the likelihoods of hypothdsesll nine parameters;
and not simply the most likely location, most likeélease mass, etc.

Overall, the ‘blind test’ exercise showed that tesults from MCBDF were generally good in terms ¢éase location and
time. However, it was also evident that it systéaadly under-estimated the release-mass. Thidustihted by the actual
and estimated release masses for the four cases shorable 1. The errors in the release massesdtetl the need for a
greater understanding of the appropriateness ofvéinence calculation in UDM, and how the conceidramean and
variance values output from UDM should be used IBDF.

Table 1. Actual release masses, and those estilptRlCBDF for FFTO7 test cases.

Case Actual releasg MCBDF
mass release mass

No. (kg) (kg)

16 0.698 0.185

22 1.159 0.294

61 1.159 0.292

70 0.698 0.231

MEAN AND VARIANCE INVESTIGATION

To address the need identified above, it was ddddecarry out a comparative investigation. Farheease MCBDF was
first run assuming that the mean and variance satugput from UDM referred to an unclipped-Gaussiatribution; the
exercise was then repeated assuming that the nmehmagsiance values output from UDM referred to ipped-Gaussian
distribution.

A set of five test cases were selected for thesassent. These consisted of: DP26 case 12b, and7/FéaEes 16, 22, 61, and
70. The FFTO7 test cases selected were those ifoich the best results had been obtained in theOFFEbmparative
exercise. Once the results were obtained, a casgmaof the results for the FFTO7 cases, when ti@dipped-Gaussian
assumption was made, showed that:

e The true source location was always within the tiocapdf.

* The most likely hypothesised release mass wasalpibetween 20% and 40% of the true value, andtrine
value was generally outside the mass pdf.

*  The release time pdf consistently indicated a leglsrase time than was actually the case.

The results from DP26 Case 12b showed similar ctenistics; except that the predicted release tiras @arly.

When the results of the four FFTO7 cases processtd the clipped Gaussian assumption were examitteel, main
observation was that the true source location vahg within the location pdf for case 70. In alktbther cases the location
pdf was centred so far upwind of the true locatiwet it did not contain it. This is illustrated Figure 4, which shows the
locations pdfs for Case 22. The true release locasiandicated by the green cross, and the sigmifie of individual results
by the colour scale. The error in the release iopatpdf that resulted from the clipped Gaussisuiption, led to earlier
release time, and larger release mass predicfldvesresult for DP26 case 12b was very poor ineapects; with none of the
true release parameters being within the solutafs. p
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Figure 4. Comparison of locations pdfs for FFT0Zeca2 for (a) unclipped-Gaussian and (b) clipgzalussian
assumptions

DISCUSSION
There were a number of significant differences iR2b and FFTO7 cases that could have affected ttferpmnce of
MCBDF. These were:
« The distances over which the dispersion conceotrativere recorded were quite different. While the2b
releases took place over more than 10 km, the FiFdl@@ses took place over about 700 m.
e The DP26 trials involved releases of;SWhilst those in FFTO7 used polypropylene.
e The high frequency concentration data was recoote@G-4000 instruments in DP26, while digiPIDs wased
in FFTO7.

All the test cases presented challenges to MCBDF.OP26 case was challenging because of the distmtdime over

which the dispersion took place (around 10 km azifldn hour), and the variation in meteorology tiested over the test
area (as described by Biltcroft (1998)). Howevee, $ix TG-4000 sensors were favourably placed ineadt more than 70
degrees to the nominal downwind direction. Convgrsel FFTO7 the distances and times over whichrteasurements
were taken were limited to a few hundred metres amdinute of two; but the test cases only had @ata two or three

sensors with little crosswind separation. The gatal differences are illustrated in Figure 5.

In addition to the inherent differences in theltridata, differences could have existed in howdat was processed in
MCBDF. The sensor models used in MCBDF for procesiegpP26 and FFTO7 data were both simple Gauspiaad
concentration models. Although there was some tmicgy regarding the values in the sensor modeis riot believed these
had any substantial effect on the performance of MEB&s any errors were dominated by the concentratasiance
assumptions.

The better results obtained from the unclipped-Ganscases were not attributed to the fact thaitided a better model of
the variances; but rather because it provided reensor data and more vague hypotheses. This niedrgignificantly less
weight was attached to each piece of data, whi¢hedeMCBDF construct sensible pdfs. The availabitifya significant
amount of vague data at each time-step helps MCBBEause it does not currently take account of the¢ pistory of
outputs from each sensor due to processing powméations. This means that each likelihood is taleebe independent of
the previous likelihood.

Two possible reasons for the consistent under-atitm of release-mass were firstly that the un@gpBaussian assumption
would be expected to result in an effective lossmafss; and secondly, that the predicted varian@s woo large. The
second of these was investigated simply factorimg tariances. No consistent benefit was observedever, which
suggested that solution to the variance calculatEsded to be revised to improve the overall quefithe solution.
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Figure 5. Sensor positions (blue) and releasditotsi(green) for DP26 Case 12b (a), and FFTO7 22%b).

For MCBDF to function well, its dispersion model mpsbvide concentration fluctuations that are brgagimparable to
those that are recorded by real sensors, reflethiagarge uncertainties, and spatial and tempaaghtions, that can be
expected in the input data. The results of theyshale shown that the current UDM variance caléuatcoupled with the
unclipped-Gaussian assumption enables MCBDF to peawidartial solution in non-urban environments,illtlead to an

under-estimate of the release mass. The studyHwsnsthat to significantly improve the results pwodd by MCBDF a
more complex fluctuations model is required thandhe currently used. Moreover, the variance msidelld reproduce the
fluctuation distribution appropriate to the arepen terrain, or the urban environment, for example.

CONCLUSIONS
The study has led to the following conclusions:

e When MCBDF is used with the current version of UDMpatial solution can be obtained if the concerdrat
mean and variance values output from UDM are tceatereferring to an unclipped-Gaussian distrilutibhe
output pdfs will capture the true source locatiamnd release time (within a reasonable interval nloa the release
mass.

e More accurate outputs from MCBDF will require a vade model in UDM that provides more realistic spladnd
temporal variances.

« Inverse modelling requires variance calculationprapriate to the environment, open terrain and mriar
example.
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