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Abstract: There is a discrepancy in data quality between the highly detailed concentration measurements in the surroundings of industrial 
plants emitting heavy metals and the registered emission data at these sites.  When simulating the concentration fields in the direct vicinity of 
the emitting plants by using the bi-gaussian model IFDM and the reported emissions, the simulated concentrations were much lower than the 
measured concentrations.   
Originally, this was thought to be due to diffuse, wind-fugitive emissions not reported in the official inventories.  Therefore, inverse 
modeling was performed to get the emission data and wind dependency of these emissions.  It was expected that the emissions coming out of 
the inverse modeling would follow a power law of the wind speed except for very low and very high wind speeds.  In the latter case, a 
constant emission was expected, while in the former case, no emissions were expected to be found.  However, this lower threshold did not 
seem to exist in the modeled emissions.  Furthermore, these emissions seemed to have their source in spots not used for storage of heavy 
metals such as parking lots.  Detailed analysis of these results showed that another effect, known as building downwash, is responsible for 
this behavior.  Thereafter, it was shown that it is possible for a bi-gaussian model that lacks a building downwash module, to simulate correct 
concentration levels by putting in virtual sources just behind the buildings causing the building downwash phenomenon.   
By using half of the available concentration data for the inverse modeling and half for the validation, it was shown that this technique can be 
used to produce detailed and validated concentration maps of the surroundings of the industrial site.  Finally, it was shown that in this case 
studying building downwash has an important effect on local concentrations and that a better representation of building downwash is needed 
in bi-gaussian models to describe the complex dispersion patterns in the wake of industrial sites. 
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INTRODUCTION 
There is a discrepancy in data quality between the highly detailed concentration measurements in the surroundings of 
industrial plants emitting heavy metals and the registered emission data at these sites.  When simulating the concentration 
fields in the direct vicinity of the emitting plants by using the bi-gaussian model IFDM and the reported emissions, the 
simulated concentrations were much lower than the measured concentrations.  This discrepancy was thought to be originated 
from diffuse, wind-driven emissions not reported in the official inventories.  This study describes the methodology and the 
results of a study which tries to determine these sources. 
 
MODEL 
The model used in this study is IFDM.  IFDM is a bi-Gaussian air pollution model, designed to simulate non-reactive 
pollutant dispersion on a local scale.  The dispersion parameters are dependent on the stability of the atmosphere and the 
wind speed following the Bultynck and Malet formulation (Bultynck and Malet, 1972).  The meteorological input for this 
model is taken from measurements made in Antwerp (Luchtbal) or in Mol.  More information on the IFDM model can be 
found in the European Model Database (http://air-climate.eionet.europa.eu/databases/MDS/index_html). 
 
In order to determine the unknown sources, which were supposed here to come from diffuse emissions, the following 
procedure is developed.  The measurement dataset is split up in two, with half of it used for the determination of the sources 
and half for the validation of the results.  The measurements contained in the former half are noted by Mi,t with i the location 
of the measurement and t the time step.  In order to determine the unknown sources, it is necessary to eliminate the effect of 
the known sources.  Therefore, a corrected measurement series M’ i,t is created as follows: 
M’ i,t =M i,t – B – µi,t  ,   (1) 
with B the known background of the pollutant and µi,t the modelled value of the concentration at the measurement location i 
and at time step t, by taking into account the known sources.  However, it was shown that the M’ i,t was close to Mi,t, showing 
that the known sources are less important than the unknown.  Therefore, a list of possible sources sj is compiled.  This is done 
as follows: 

• At places where one would expect diffuse emissions, several sources sj are placed.  These sources differ for 
instance in their treatment of the emission dependence on the wind speed (see below). 

• To incorporate for unexpected sources, several grids of sources (for different wind dependences) are placed on the 
company terrain.     

This leads to a list of possible sources sj which can contain up to 200 possible sources.   
 
The wind dependence is treated by determining four parameters: the basic emission strength of the source sj: Qj, a minimum 
wind value umin, a maximum wind value umax and a factor describing the form of the wind dependence p.  The emission at a 
time t for this source is then determined by the following equations: 

• If u < umin : Qj,t=0 
• If  umin < u < umax : Qj,t = Qj(u-umin)

p 
• If  u > umax : Qj,t = Qj(umax-umin)

p. 
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For each of the possible sources sj, their effect, assuming a unit value U for the emission, is calculated on the measurement 
locations i at every time step t.  We call these values σi,j,t. Then, for every measurement location and time step (which can 
amount easily to values over 20.000) an equation is composed: 
M’ i,t=Σj Qj σi,j,t     (2) 
 
This set of equations is then solved for Qj using the Gram-Schmidt algorithm (Wampler, 1979).  In the results, all the sources 
with negative values of Qj are eliminated.  The remaining set of equations is then solved again.  This is reiterated until only 
positive emission values remain.   
 
The Gram-Schmidt algorithm determines not only the value of Qj, but also the standard deviation on this value. The 
following procedure is now reiterated: 

• The set of equations for the remaining sources is solved using the Gram-Schmidt algorithm. 
• The source for which the standard deviation divided by Qj is the largest is eliminated. 

This procedure continues until all emission strengths are at least three times their standard deviation. The final set of sources 
is composed by combining the known sources with the remaining unknowns, assigning them a source strength of UQj.  In 
general, less than 10 sources are needed to describe most of the variability of the measurement data.   
 
Finally, the results calculated using these final sources are checked for having the same pollution roses, cumulative frequency 
distributions, … as the measurements. 
 
RESULTS 
When applying the procedure described above on data for three industrial sites in Belgium, the results showed that the found 
sources could not be due to fugitive emissions.  On the one hand, with fugitive emissions, one would expect to get a threshold 
value umin different from 0, as for very low winds, no fugitive emissions are expected.  On the other hand, one would expect 
the emissions to be found at locations with storage of heavy metals.  However, here, we got emissions located for instance at 
parking spots.   
 
Detailed analysis of the data then led to the conclusion that it was not the fugitive emissions that played an important role, but 
building downwash.  The plume of the known sources plummets to the ground behind some of the buildings.  In our model, this 
leads to the placement of a source just behind the building.  This source is wind dependent with a lower threshold umin of 0. 
 
Using now the data that was kept out of the calculations for validation, we can show that the major measurement 
characteristics can easily be reproduced by the model.  For instance, in Figure 1, the validation plot for one pollutant (Nickel) 
near a copper-lead recycling plant in the Northern part of Belgium is shown.  It is seen that the model captures very well the 
yearly mean concentration values.  In Figure 2, for one station, a time series plot is shown.  In this plot, it can be seen that the 
model is correct not only for the yearly mean values, but also for the time dependency of the measurements.  This is not only 
true for the periods used in the inverse modelling but also for the periods which were deliberately left out for validation.  
Finally, in Figure 3, the geographical distribution of the yearly mean model values is shown.  By connecting these results to a 
satellite image, the exposure of the population can be assessed.    
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Figure 1: The validation plot for the Nickel concentration at the village of Beerse.  On the x-axis: the yearly mean measurements of Nickel 
are shown (in ng/m³).  On the Y-axis: the yearly mean model values of Nickel are shown (in ng/m³).  Every dot represents a yearly mean 

value at one measurement location (4 years for 3 stations, 3 year for 1 station, both determination and validation data) in the vicinity of the 
company. 

 

 
Figure 2: The running mean (over one month) measurement and model values at the location BE01, covering three years.  In red: the 

measured concentrations.  In blue: the modelled concentrations using the four remaining sources.  On the x-axis: the time denoted in format 
month/year.  On the y-axis: the concentration values in ng/m³.  The period on which the sources are determined extends from the 31st of May 

2006 up to the 19th of October 2007.  The rest of the period is used for validation. 
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Figure 3 : The final yearly mean Nickel concentration map for 2007 near a heavy-metal plant in ng/m³.  Background image: Google Earth. 
 
 
RESULTS 
In this study, it is shown that building downwash plays an important role in the measured occurrence of high pollutant 
concentrations near some heavy metals plants.  Furthermore, it is shown that using virtual sources can lead to an accurate 
model re-creation of the measurement data.  However, an improved building downwash algorithm for bi-gaussian plume 
models would be welcome in order to better study these cases.   
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