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Abstract: The Forum for Air Quality Modelling in Europe (FAIRMODE) has recently established a number of sub-groups under the 
working group for model quality assurance (WG2). These sub-groups are intended to discuss, promote and develop recommendations on 
harmonised quality assurance approaches when using models for applications related to the European AQ Directive. One of these sub-groups 
has been established to deal with the combined use of monitoring and monitoring data and the spatial representativeness of monitoring data 
used for assessment and validation purposes. In this paper an overview of the various methods currently used to combine monitoring and 
modelling data is provided along with the relevant institutes and projects that apply these methods. In this regard their use in AQ Directive 
related applications such as the determination of exceedances, forecasting and providing near real time public information is addressed. 
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INTRODUCTION 
The Forum for Air Quality Modelling in Europe (FAIRMODE) has recently established a number of sub-groups under the 
working group for model quality assurance (WG2). These sub-groups are intended to discuss, promote and develop 
recommendations on harmonised quality assurance approaches when using models for applications related to the European 
AQ Directive. One of these sub-groups has been established to deal with the combined use of monitoring and monitoring data 
and the spatial representativeness of monitoring data used for assessment and validation purposes. 
 
Traditionally monitoring data has been used to assess air quality. However, the limited spatial representativeness of these 
data does not allow for the complete spatial coverage required by the EU AQ Directive or to properly assess human and eco-
system exposure. More complete spatial coverage is available through the use of air quality models but these are generally 
considered to have a higher uncertainty than monitoring. By combining these two sources of data it is possible to provide 
more optimal estimates of the spatial distribution of air quality. 
 
There are a variety of methods available to achieve this combination, ranging from geometric combinations of the data 
sources, through statistically based methods of interpolation and ‘data fusion’ to the use of ‘data assimilation’ methods. It is 
the aim of this FAIRMODE sub-group to bring together the various groups applying these methods in order to promote good 
practise and to develop and apply quality assurance practices when combining models and monitoring. 
 
In this paper an overview of the various methods currently used to combine monitoring and modelling data is provided. In 
addition a table of institutes and projects currently implementing data assimilation or fusion methods are provided. This paper 
is a first step in developing an overview of activities in data assimilation and fusion in Europe, with the intention of 
improving methodologies and developing harmonised quality assurance practises. 
 
OVERVIEW OF METHODS FOR COMBINING MODELS AND MONITORING 
There is a range of methods available for combining models and monitoring data. An overview of some of these methods can 
be found in Denby et al. (2005) and Denby et al. (2009). We use the general term ‘combination of modelling and monitoring’ 
to describe any method that makes use of both models and monitoring to provide improved information on air quality. Other 
terms are also often used to describe these methods or to more specifically describe any particular method.  For example 
‘data integration’ or ‘data fusion’ are terms used when combining different data types but without any indication of how they 
are actually combined. ‘Data assimilation’ is most commonly used to describe the use of monitoring data to provide 
improved modelling results, often based in a Bayesian framework. These terms are often loosely applied, dependent on the 
application and motivation. However, it is worth making a distinction between the different methods based mostly on their 
accessibility. 
 
Data integration: Refers to the ‘bringing together’ of various data sources (e.g. monitoring, modelling, satellite, meteorology, 
emission) in a common form or in a common system to enable their use in that system. It does not necessarily refer to any 
combined use of the same type of data for improved modelling. Though integration is important for air quality modelling it is 
not the subject of this paper or working group. 
 
Data fusion: Is a general term that refers to any method that combines, in either a statistical or geometric way, various data 
sources to create a new data set. E.g. the weighted combination of satellite and modelling data to provide new maps of air 
quality (Sarigiannis et al., 2004) or the use of regression or other least square methods for adjusting modelling data using 
monitoring data (Denby and Pochmann, 2007). Data fusion may also make use of supplementary (proxy) data, such as land 
use or meteorological data, which can provide relevant spatial information for air quality assessment. What mostly 
distinguishes these methods from ‘data assimilation’ is that they do not take into account any physical laws or limitations but 
are generally ‘statistical’ in nature. These methods can also be seen as post processing methods for modelling results, i.e. the 
result does not interact with the model, and have also been termed ‘passive data assimilation’.  
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Data assimilation: Refers to any method where monitoring data is used to ‘guide’ models towards monitoring results during 
the model integration. These methods ensure that the physical and chemical character of the problem, as described by the 
model, is followed. Such methods are widely employed in meteorology (e.g. 4D-var) providing continuously updated initial 
conditions for forecasting. These methods are generally based in a Bayesian framework. They are also sometimes termed 
‘active data assimilation’. 
 
It is useful to separate the methods into data fusion and data assimilation as described above for practical reasons. Data fusion 
does not require complete access and understanding of the model but requires only the model results. This makes data fusion 
a much more accessible and less complicated method to implement than data assimilation that requires expert knowledge of 
both the model and the data assimilation method for it to be implemented. Data fusion also allows the use of simpler models, 
e.g. statistically based multi-source Gaussian models, that could not be implemented in a data assimilation framework. One 
of the important drawbacks with data fusion methods however is that they do not adhere to the physics of the problem and 
they can result in quite impossible realisations of air quality, e.g. NO2 concentrations that are far from equilibrium with ozone 
concentrations. Though the above differentiation is made, many of the techniques used in data fusion and assimilation are 
actually based on the same principles, i.e. minimisation of some specified error. In the following sections a brief review of 
data fusion and data assimilation methods, as defined here, is provided. 
 
Data fusion 
As previously described data fusion methods take a variety of data sources such as ground based monitoring, air quality 
models, satellite retrieved data or any other spatially distributed data relevant to air quality (such as altitude, land use or 
emissions) and combines these data in some (hopefully optimised) way to produce an air quality assessment. One of the most 
straightforward methods is single or multiple linear regression, where model concentrations, and perhaps other 
supplementary data, are fitted to the available observations using least squares optimization (e.g. Horálek et al., 2007; Denby 
and Pochmann, 2007). Regression methods may also be used to estimate the background concentration (EC working group, 
2000) or multiple linear regression may also be applied on the individual model source contributions in order to adjust the 
modelled field (Laupsa et al., 2009). 
 
Linear regression methods will provide an unbiased model field, in regard to the observations, but there may still be 
significant deviation from the observations. To account for these deviations residual interpolation methods may be applied. 
With such methods the residual, the difference between the modelled and observed concentrations, may be interpolated using 
either geometric methods, e.g. Inverse Distance Weighting (Hogrefe et al., 2009) or Radial Basis Functions (Tarrason et al., 
1998), or using geostatistical methods such as kriging. When kriging methods are employed then the interpolation is made in 
order to minimise the spatial variance, i.e. to provide the statistically most likely concentration at any point in space. In this 
way the model field provides the basis for the concentration map and the residual deviations are accounted for by using 
interpolation methods (e.g. Horálek et al., 2007; Kassteele et al., 2006; 2007; Hogrefe et al., 2009). These methods may also 
be called, or are similar to, ‘universal kriging’, ‘detrended kriging’ or ‘kriging with external drift’ methods.  
 
In addition to the regression and residual interpolation methods outlined above there are also a number of more complex 
statistically based methods for achieving data fusion. Such methods include those described by Fuentes and Raftery (2005), 
Gelfand and Sahu (2009) and McMillan et al. (2009).  These methods combine Bayesian approaches with a range of 
statistical methods. Optimal interpolation, which can also be used as a data assimilation method similar to 2-D var, may also 
be used as a data fusion method (Flemming et al., 2002). 
 
Data assimilation 
As outlined above we define data assimilation methods as those actively implemented in a model to provide optimal solutions 
during run time. A number of the methods used for data fusion, e.g. optimal interpolation and residual kriging are also 
applied for data assimilation (e.g. Flemming et al., 2002; Blond et al., 2003). 
 
The most common type of data assimilation methods applied are the variational methods. These methods are termed either 2-, 
3- or 4D var dependent on the dimensions used for the assimilation. Variational methods in chemical transport models were 
first implemented by Elbern et al. (1999), though these methods have been extensively used in meteorological forecasting 
previously. The variational methods are based on the minimization of a cost function for the difference between model 
concentrations and observations (Lorenc, 1986). These techniques require the development and implementation of a so-called 
adjoint version of the model. There are currently few models in operational use that have implemented 4D var methods and 
these are region or global scale CTMs including EURAD (Elbern, 1999), Polyphemus (Malet et al., 2007) and MOCAGE 
(Geer et al., 2006). 
 
Another method that is applied to regional scale CTMs is the Ensemble Kalman filter (Evensen, 1994; van Loon et al., 2000). 
This methodology requires an ensemble of model runs, perturbing each ensemble member in some way, so that the model 
error covariance matrix may be estimated with this ensemble. This method avoids the complications of implementing an 
adjunct model but requires a significant number of ensemble members for its implementation. This method, and its 
variations, are currently implemented in LOTOS-EUROS (Schaap et al., 2005), Polyphemus (Malet et al., 2007) and are 
currently being implemented in CHIMERE. 
 
Data assimilation is now used operationally in air quality forecasting (e.g. Sahu et al., 2009 and MACC, www.gmes-
atmosphere.eu/) and it is also applied for air quality assessment purposes (Denby et al., 2008), see Figure 1. In addition it is 
being applied for source apportionment studies by using the data assimilation methods as inverse modelling techniques to 
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derive emission estimates (Elbern et al., 2007). Data assimilation is most often applied on the regional scale and is rarely 
applied on the urban scale. 
 

 
Figure 1. Maps showing the annual mean concentration of PM10 in 2003 using residual kriging and regression (left) and Ensemble Kalman 
Filter (right). Taken from Denby et al. (2008). 
 
Activities within Europe 
There are a number of projects that are dealing with data assimilation or fusion applications. In particular the GMES projects 
of MACC (www.gmes-atmosphere.eu/) and PASADOBLE (no URL available) will provide air quality assessment and 
forecasting using a number of different data assimilation techniques. Apart from these two operationally oriented projects 
there are also a number of institutes in Europe engaged in data assimilation activities. Table 1 provides an overview of these 
institutes.  The table is not currently complete but provides an indication of a number of current activities. 
 
Table 1. List of contacts and institutes actively engaged in data assimilation/ fusion applications or in studies concerning representativeness 
in Europe. 
Person Institute/project Contact Model Method Application 

(resolution) 
Hendrik Elbern  RIU /MACC/PA

SADOBLE 
he@eurad.Uni-Koeln.DE  EURAD-IM 3-4D var European 

forecasts 
(45 – 1 km) 

Martijn Schaap TNO/MACC martijn.schaap@tno.nl  LOTOS_EURO
S 

Ensemble 
Kalman filter 

European 
assessments and 
forecasting 
(25km) 

L. Menut INERIS /MACC menut@lmd.polytechniqu
e.fr  

CHIMERE Optimal 
interpolation ,  
residual kriging 
and EnKF (in 
development) 

European and 
Urban scale 
forecasts and 
assessments (25 
km) 

Hilde Fagerli Met.no/MACC hilde.fagerli@met.no  EMEP 3 – 4D var (in 
development) 

European scale 
forecasts and 
assessment 
(25km) 

Valentin 
Foltescu 

SMHI /MACC Valentin.Foltescu@smhi.s
e  

MATCH 2 – 4D (in 
development) 

European to 
Urban scale (25 - 
? km) 

Sébastien 
Massart 

CERFACS/MA
CC 

massart@cerfacs.fr  MOCAGE/PAL
M 

3 -4D var Global to 
European  

Bruno 
Sportisse 

INRIA,CEREA  Bruno.Sportisse@inria.fr  Polyphemus 3 -4D var, OI, 
EnKF 

European  

John Stedman  AEAT John.stedman@aeat.co.uk  ADMS Statistical 
interpolation, 
residual kriging 

UK wide 
assessment of air 
quality 

Bruce Denby NILU /ETC-
ACC 

bde@nilu.no  EMEP, 
LOTOS-
EUROS 

Statistical 
interpolation, 
residual kriging 

European wide 
assessments at 10 
km 

Jan Horálek CHMI /ETC horalek@chmi.cz  EMEP Statistical 
interpolation, 
residual kriging 

European wide 
assessments at 10 
km 

Dennis JRC Ispra Dimosthenis.SARIGIAN CTDM+ (model Data fusion Urban scale 
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Sarigiannis NIS@ec.europa.eu  not important, 
platform more 
relevant) 
ICAROS NET 

(unknown 
methodology) 

Marta Garcia 
Vivanco 
Palomino 
Marquez 
Inmaculada 
Fernando 
Martín 

CIEMAT m.garcia@ciemat.es 
 
inma.palomino@ciemat.e
s  
 
fernando.martin@ciemat.
es  

MELPUFF 
 
 
CHIMERE 

Anisotropic 
inverse distance 
weighting  
 
Regression and 
residual kriging. 

Assessment Spain 

Clemens 
Mensink 
Stijn Janssen 

VITO stijn.janssen@vito.be  
 
Clemens.mensink@vito.b
e 
 

RIO and 
BelEUROS 

Detrended 
kriging. Land 
use regression 
model used for 
downscaling 
CTM  

Belgium (3km) 

J.A. van 
Jaarsveld 

RIVM hans.van.jaarsveld@rivm.
nl  

OPS Kriging with 
external drift 

Nederland (5km) 

Florian Pfäfflin 
(Goetz 
Wiegand    
Volker 
Diegmann ) 
  

IVU Umwelt 
GmbH 
 

fpf@ivu-umwelt.de  FLADIS/ 
IMMISnet/ 
EURAD 
 

Optimal 
interpolation 

Ruhr, Germany 
(5km) 

Arno Graff Umwelt 
Bundes Amt, 
UBA II 

arno.graff@uba.de  REM-
CALGRID 

Optimal 
interpolation 

Germany 

Wolfgang 
Spangl 

Umweltbundesa
mt 

Wolfgang.spangl@umwel
tbundesamt.at  

 Representativen
ess of 
monitoring data 

 

Sverre Solberg NILU /EMEP sso@nilu.no  EMEP Representativen
ess of 
monitoring data 

EMEP monitoring 
network 

  
 
APPLICATIONS RELEVANT FOR THE AIR QUALITY DIRECTIVES 
Within the reporting requirements of the AQ Directive three applications are most relevant. These are: 
 
 • Assessment of air quality for the reporting of current air quality and the determination of exceedance areas 
 • Near-real time assessment, including forecasting, for public information and alerts 
 • Source apportionment 
 
The most relevant application of data fusion methods is in air quality assessment and exceedance estimation. Though 
monitoring is considered the most reliable method for assessing air quality, its spatial coverage is exceedingly limited and the 
application of models is extremely useful for extending the spatial coverage. 
 
Near real-time assessment may also make use of both monitoring and modelling data. Currently near real time spatial 
mapping, e.g. EEA ozone web (www.eea.europa.eu/maps/ozone/), is based on monitoring data. However a number of models 
involved in the MACC project (www.gmes-atmosphere.eu/) also make use of data assimilation methods in providing regional 
scale forecasts. There are currently no examples where the combined use of monitoring and modelling is applied for near real 
time assessments and forecasts of air quality on the local (street) or urban scale. 
 
Source apportionment is one of the major applications of data assimilation methods. This can be achieved through simpler 
linear regression methods (Laupsa et al., 2009; Denby, 2009) which optimally fit modelled source contributions to observed 
concentrations or through complete inverse modelling applications of 4D-variational methods (Elbern, 2007). 
 
CONCLUSION 
The activities of FAIRMODE, in particular SG1-WG2 on data assimilation, will continue. Currently the main activity is to 
develop an overview of methods used for combining modelling and monitoring data and to identify institutes and projects in 
Europe that are currently engaged in these activities. Having identified these, and a number of the challenges facing data 
assimilation, a discussion concerning the need for quality assurance and the ‘fitness for purpose’ is required. The aim here is 
to help disseminate expertise and provide a focus and framework for further development and discussion. This paper is the 
first step in this process. 
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