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Abstract: The Forum for Air Quality Modelling in Europe (FRMODE) has recently established a number of sulqogs under the
working group for model quality assurance (WG2)e3d sub-groups are intended to discuss, promotelewelop recommendations on
harmonised quality assurance approaches when omidgls for applications related to the EuropeanDi@ctive. One of these sub-groups
has been established to deal with the combineds®nitoring and monitoring data and the spaggresentativeness of monitoring data
used for assessment and validation purposes. drptiper an overview of the various methods cusrerged to combine monitoring and
modelling data is provided along with the releviastitutes and projects that apply these methadthis regard their use in AQ Directive
related applications such as the determinatioxeéedances, forecasting and providing near rea&l pioblic information is addressed.
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INTRODUCTION

The Forum for Air Quality Modelling in Europe (FAIRBDE) has recently established a number of sub-groungler the
working group for model quality assurance (WG2).e3é sub-groups are intended to discuss, promotedemeiop

recommendations on harmonised quality assurance®agipes when using models for applications rel&tetthe European
AQ Directive. One of these sub-groups has beeblksttad to deal with the combined use of monitodng monitoring data
and the spatial representativeness of monitoritg dsed for assessment and validation purposes.

Traditionally monitoring data has been used to sssér quality. However, the limited spatial regrgstiveness of these
data does not allow for the complete spatial cayeraquired by the EU AQ Directive or to properbgess human and eco-
system exposure. More complete spatial coverageasable through the use of air quality models thieise are generally
considered to have a higher uncertainty than mongoBy combining these two sources of data itasgible to provide
more optimal estimates of the spatial distributibrir quality.

There are a variety of methods available to achiéig combination, ranging from geometric combioasi of the data
sources, through statistically based methods efpaiation and ‘data fusion’ to the use of ‘dataimdlation’ methods. It is
the aim of this FAIRMODE sub-group to bring togetktiez various groups applying these methods in dalpromote good
practise and to develop and apply quality assurpragtices when combining models and monitoring.

In this paper an overview of the various methodserily used to combine monitoring and modellingada provided. In
addition a table of institutes and projects cuilgeimplementing data assimilation or fusion methads provided. This paper
is a first step in developing an overview of a¢ids in data assimilation and fusion in Europehwite intention of
improving methodologies and developing harmonisgality assurance practises.

OVERVIEW OF METHODS FOR COMBINING MODELS AND MONITORING

There is a range of methods available for combimioglels and monitoring data. An overview of soméhese methods can
be found in Denb¥t al. (2005) and Denbgt al. (2009). We use the general term ‘combination ofletling and monitoring’
to describe any method that makes use of both m@hel monitoring to provide improved informationanquality. Other
terms are also often used to describe these methrotis more specifically describe any particularttme. For example
‘data integration’ or ‘data fusion’ are terms uselten combining different data types but without amication of how they
are actually combined. ‘Data assimilation’ is masimmonly used to describe the use of monitoringa dat provide
improved modelling results, often based in a Bayefiamework. These terms are often loosely appliegendent on the
application and motivation. However, it is worth kimeg a distinction between the different methodsdashmostly on their
accessibility.

Data integration:Refers to the ‘bringing together’ of various datarses (e.g. monitoring, modelling, satellite, noetdéogy,

emission) in a common form or in a common systerartable their use in that system. It does not rsaciyg refer to any
combined use of the same type of data for imprawedelling. Though integration is important for girality modelling it is
not the subject of this paper or working group.

Data fusion:Is a general term that refers to any method tbathines, in either a statistical or geometric wayrjous data
sources to create a new data set. E.g. the weiglat@thination of satellite and modelling data tovyile new maps of air
quality (Sarigiannist al, 2004) or the use of regression or other leasaregmethods for adjusting modelling data using
monitoring data (Denby and Pochmann, 2007). Dag@fumay also make use of supplementary (proxyg,datch as land
use or meteorological data, which can provide maievspatial information for air quality assessmémhat mostly
distinguishes these methods from ‘data assimilatfothat they do not take into account any phyldimas or limitations but
are generally ‘statistical’ in nature. These methodn also be seen as post processing method®é®lling results, i.e. the
result does not interact with the model, and hése lbeen termed ‘passive data assimilation’.
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Data assimilation:Refers to any method where monitoring data is tiseguide’ models towards monitoring results during
the model integration. These methods ensure tleapliysical and chemical character of the problesnjescribed by the
model, is followed. Such methods are widely empibiyemeteorology (e.g. 4D-var) providing continulyuspdated initial
conditions for forecasting. These methods are gdlyebased in a Bayesian framework. They are alsnetimnes termed
‘active data assimilation’.

It is useful to separate the methods into dataofuaind data assimilation as described above fatipahreasons. Data fusion
does not require complete access and understaofitheg model but requires only the model resultdis Thakes data fusion
a much more accessible and less complicated méthimeblement than data assimilation that requirgeeet knowledge of
both the model and the data assimilation method forbe implemented. Data fusion also allowsuke of simpler models,
e.g. statistically based multi-source Gaussian msodeat could not be implemented in a data asatioit framework. One
of the important drawbacks with data fusion methbowever is that they do not adhere to the physidhe problem and
they can result in quite impossible realisationaiofjuality, e.g. N@concentrations that are far from equilibrium wittone
concentrations. Though the above differentiatiomade, many of the techniques used in data fusidnaasimilation are
actually based on the same principles, i.e. mirdtioa of some specified error. In the following tseas a brief review of
data fusion and data assimilation methods, asetktere, is provided.

Data fusion

As previously described data fusion methods takmraty of data sources such as ground based mimgtcair quality
models, satellite retrieved data or any other apgtdistributed data relevant to air quality (sugh altitude, land use or
emissions) and combines these data in some (hgpefitimised) way to produce an air quality assessmOne of the most
straightforward methods is single or multiple linegegression, where model concentrations, and perhather
supplementary data, are fitted to the availablenlgions using least squares optimization (e.galdket al, 2007; Denby
and Pochmann, 2007). Regression methods may alasdoketo estimate the background concentration (E®imggroup,
2000) or multiple linear regression may also beliagmn the individual model source contributionsorder to adjust the
modelled field (Laupsat al, 2009).

Linear regression methods will provide an unbiaseztel field, in regard to the observations, butré¢hmay still be
significant deviation from the observations. To@aut for these deviations residual interpolatiorthnds may be applied.
With such methods the residual, the difference betwthe modelled and observed concentrations, mayérpolated using
either geometric methods, e.g. Inverse Distanceglitieig (Hogrefeet al, 2009) or Radial Basis Functions (Tarrasbral,
1998), or using geostatistical methods such asngigVhen kriging methods are employed then therpdlation is made in
order to minimise the spatial variance, i.e. tovite the statistically most likely concentrationaaty point in space. In this
way the model field provides the basis for the emi@tion map and the residual deviations are atedufor by using
interpolation methods (e.g. Horalekal, 2007; Kassteelet al, 2006; 2007; Hogrefet al, 2009). These methods may also
be called, or are similar to, ‘universal krigingletrended kriging’ or ‘kriging with external driftnethods.

In addition to the regression and residual inteaappoh methods outlined above there are also a nuwibmore complex
statistically based methods for achieving dataofusBuch methods include those described by FuentkRaftery (2005),
Gelfand and Sahu (2009) and McMillat al. (2009). These methods combine Bayesian approastiesa range of
statistical methods. Optimal interpolation, whi@nalso be used as a data assimilation methodasitil-D var, may also
be used as a data fusion method (Flemreirgj., 2002).

Data assimilation

As outlined above we define data assimilation meshas those actively implemented in a model toigeogptimal solutions
during run time. A number of the methods used fatadfusion, e.g. optimal interpolation and residkigdiing are also
applied for data assimilation (e.g. Flemmataal, 2002; Blondet al, 2003).

The most common type of data assimilation methpgéied are the variational methods. These methoelseamed either 2-,
3- or 4D var dependent on the dimensions usechfoassimilation. Variational methods in chemicahgport models were
first implemented by Elberpt al. (1999), though these methods have been extensigelgf in meteorological forecasting
previously. The variational methods are based enntinimization of a cost function for the differenbetween model
concentrations and observations (Lorenc, 1986)sd& bechniques require the development and implatientof a so-called
adjoint version of the model. There are currengly imodels in operational use that have implemeARdar methods and
these are region or global scale CTMs including EUREIbern, 1999), Polyphemus (Malet al, 2007) and MOCAGE
(Geeret al, 2006).

Another method that is applied to regional scale GT&the Ensemble Kalman filter (Evensen, 1994; @ et al, 2000).

This methodology requires an ensemble of model, rpegurbing each ensemble member in some wayhatate model
error covariance matrix may be estimated with #tisemble. This method avoids the complicationsmgfiéementing an
adjunct model but requires a significant numbereasemble members for its implementation. This nubthrend its

variations, are currently implemented in LOTOS-EUR@®8haapet al, 2005), Polyphemus (Malet al, 2007) and are
currently being implemented in CHIMERE.

Data assimilation is now used operationally in @irlity forecasting (e.g. Sahet al, 2009 and MACC, www.gmes-
atmosphere.eu/) and it is also applied for air ipuabsessment purposes (Dembyal, 2008), see Figure 1. In addition it is
being applied for source apportionment studies sipgithe data assimilation methods as inverse ringekchniques to
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derive emission estimates (Elbezhal, 2007). Data assimilation is most often appliedtioa regional scale and is rarely
applied on the urban scale.

Residual kriging: PM10 MEAN 2003 EnKF assimilation: PM10 MEAN 2003
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Figure 1. Maps showing the annual mean concentrafi® M, in 2003 using residual kriging and regressiort)lafid Ensemble Kalman
Filter (right). Taken from Denbgt al. (2008).

Activities within Europe

There are a number of projects that are dealinly data assimilation or fusion applications. In jgatar the GMES projects
of MACC (www.gmes-atmosphere.eu/) and PASADOBLE (nBLUavailable) will provide air quality assessmentan
forecasting using a number of different data adation techniques. Apart from these two operatilynatiented projects
there are also a number of institutes in Europ@ged in data assimilation activities. Table 1 piegian overview of these
institutes. The table is not currently completé fmovides an indication of a number of currenhaiies.

Table 1. List of contacts and institutes activeigaged in data assimilation/ fusion applications@tudies concerning representativeness
in Europe.

Person Institute/ project | Contact Model Method Application
(resolution)
Hendrik Elbern| RIU/MACC/PA | he@eurad.Uni-Koeln.DE| EURAD-IM 3-4D var European
SADOBLE forecasts
(45 -1 km)
Martijn Schaap| TNO/MACC martijn.schaap@tno.nl LOTOS_EURO | Ensemble European
S Kalman filter assessments and
forecasting
(25km)
L. Menut INERIS/MACC | menut@Imd.polytechniqy CHIMERE Optimal European and
e.fr interpolation , Urban scale

residual kriging | forecasts and
and EnKF (in assessments (25
development) km)

Hilde Fagerli Met.no/MACC hilde.fagerli@met.no EMEP 3—4Dvar (in | European scale
development) forecasts and
assessment
(25km)
Valentin SMHI/MACC Valentin.Foltescu@smhi.s MATCH 2-4D (in European to
Foltescu e development) Urban scale (25 -
? km)
Sébastien CERFACS/MA | massart@cerfacs.fr MOCAGE/PAL | 3 -4D var Global to
Massart CcC M European
Bruno INRIA,CEREA | Bruno.Sportisse@inria.fr| Polyphemus 3 -4D var, Ol, | European
Sportisse EnKF
John Stedman | AEAT John.stedman@aeat.co.ykADMS Statistical UK wide
interpolation, assessment of air
residual kriging | quality
Bruce Denby NILU /ETC- bde@nilu.no EMEP, Statistical European wide
ACC LOTOS- interpolation, assessments at 1(
EUROS residual kriging | km
Jan Horalek CHMI /ETC horalek@chmi.cz EMEP Statistical European wide
interpolation, assessments at 1
residual kriging | km
Dennis JRC Ispra Dimosthenis.SARIGIAN | CTDM+ (model | Data fusion Urban scale
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Sarigiannis NIS@ec.europa.eu not important, | (unknown
platform more | methodology)
relevant)
ICAROS NET
Marta Garcia CIEMAT m.garcia@ciemat.es MELPUFF Anisotropic Assessment Spai
Vivanco inverse distance
Palomino inma.palomino@ciemat.€ weighting
Marquez S CHIMERE
Inmaculada Regression and
Fernando fernando.martin@ciemat, residual kriging.
Martin es
Clemens VITO stijn.janssen@vito.be RIO and Detrended Belgium (3km)
Mensink BelEUROS kriging. Land
Stijn Janssen Clemens.mensink@vito.1 use regression
e model used for
downscaling
CT™M
J.A. van RIVM hans.van.jaarsveld@rivm. OPS Kriging with Nederland (5km)
Jaarsveld nl external drift
Florian Pfafflin | IVU Umwelt fpf@ivu-umwelt.de FLADIS/ Optimal Ruhr, Germany
(Goetz GmbH IMMISnet/ interpolation (5km)
Wiegand EURAD
Volker
Diegmann )
Arno Graff Umwelt arno.graff@uba.de REM- Optimal Germany
Bundes Amt, CALGRID interpolation
UBA I
Wolfgang Umweltbundesa| Wolfgang.spangl@umwe Representativen
Spangl| mt tbundesamt.at ess of
monitoring data
Sverre Solberg | NILU /EMEP sso@nilu.no EMEP Representativen EMEP monitoring
ess of network
monitoring data

APPLICATIONS RELEVANT FOR THE AIR QUALITY DIRECTIVES
Within the reporting requirements of the AQ Dirgetihree applications are most relevant. These are:

. Assessment of air quality for the reporting ofrent air quality and the determination of excewdsareas
. Near-real time assessment, including forecastargoublic information and alerts
. Source apportionment

The most relevant application of data fusion mesthain air quality assessment and exceedance agiim Though
monitoring is considered the most reliable methmdaksessing air quality, its spatial coveragedeedingly limited and the
application of models is extremely useful for extieny the spatial coverage.

Near real-time assessment may also make use of rhotfitoring and modelling data. Currently near reale spatial

mapping, e.g. EEA ozone web (www.eea.europa.eulioemse/), is based on monitoring data. Howeverralbrar of models
involved in the MACC project (www.gmes-atmospherg.also make use of data assimilation methods imigirmy regional

scale forecasts. There are currently no examplesemhe combined use of monitoring and modellirapiglied for near real
time assessments and forecasts of air quality @totdal (street) or urban scale.

Source apportionment is one of the major applicatiof data assimilation methods. This can be aeligkrough simpler
linear regression methods (Laupaal, 2009; Denby, 2009) which optimally fit modelledusce contributions to observed
concentrations or through complete inverse modghipplications of 4D-variational methods (Elber®0?2).

CONCLUSION

The activities of FAIRMODE, in particular SG1-WG2 data assimilation, will continue. Currently the maictivity is to
develop an overview of methods used for combinirnglefiing and monitoring data and to identify ingtéts and projects in
Europe that are currently engaged in these aevitHaving identified these, and a number of thalehges facing data
assimilation, a discussion concerning the needjdiatity assurance and the ‘fitness for purposeééuiired. The aim here is
to help disseminate expertise and provide a foodisfaamework for further development and discussitris paper is the
first step in this process.
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