```
    Method for Comparison of Large Eddy Simulation-
    Generated Wind Fluctuations with Short-Range Observations
```

Nathan Platt ${ }^{1}$, Dennis DeRiggi ${ }^{1}$, Steve Warner ${ }^{1}$, Paul Bieringer ${ }^{2}$, George Bieberbach ${ }^{2}$,

``` Andrzej Wyszogrodzki² and Jeffry Weil \({ }^{2}\)
\({ }^{1}\) Institute for Defense Analyses, Alexandria, VA 22311, USA
\({ }^{2}\) National Center for Atmospheric Research, Boulder, Colorado, USA
```


Predictions and Observation are Drawn from Normal Bivariate

References
1.
Biebeetactach G, B

Predictions are Normal Bivariate and Observations are Rayleigh

2D P-Values When Predictions are Normal Bivariate and Observations are Rayleigh

Conclusions

In this poster we demonstrated a potential extension of a scalar p-value methodology to statistically compare predicted distributions with a limited set of observations to two-dimensional (p_{x}, p_{y}, p-values. An initial application of these
techniques to help validate wind fluctuations predicted by VTHREAT is shown as well. techniques to help validate wind fluctuations predicted by VTHREAT is shown as well.
The distribution of VTHREAT predicted wind fluctuations visually appears close to the The distribution of VTHREAT predicted wind fluctuations visually appears close to the
observed fluctuations (i.e., it appears that the observations could have been randomly drawn from the predicted distributions). Nevertheless, two-dimensional (p_{x}, p_{y}) p-values indicate a slight diversion from a uniform distribution in the unit square $[0,1] \times[0,1]$ around the edges and the origin.
Future work with VTHREAT-simulated results will replace the elliptical-normal distribution assumption with a non-parametric estimation of the cumulative probability function that will be used to estimate p-values.

Notes on Potential Problems with Intuitive P-value Methodology (in 2D) To better understand this example, we note that individual sealar p-values
based on contouring the two-dimensional probability density function do not vary based on contouring the two-dimensio
along equal probability contour lines.
This allowed us to construct a one-dimensional illustration by specifically celecting observations along a ray emanating from the origin with a probability density function defined by anguar projection of circular contours of normal bivariate distribution onto the radial ray
These examples need not be one-dimensional - one could easily construct two
dinensional observations by allowing some variation in angle along circular contours that would still yield a uniform distribution of p-values.

2D P-Value Methodology

values to be able to capp
distribuion functions.
Given a larege fifite set of VTHREAT predicted wind vector fluctuations $\mathbf{w}=(\mathrm{u}, \mathrm{y})$, the
could be used to define
.iables (Usin) detine a continuous probability density function for two random
the following procecturue to saseertain whethere or on not sampleses s, are consisisent with
the tollowing procedure to ascertain whether or not samples s , are consistent wilh
being draun from random varibles (U,V) is proposed:

sets sse the same name.

Modified 2 D Kolmogorov-Smirnov test might be used
Ifu and v are not indepencent the
values migigh not te be appicable.
Calcule tor
Test to se if two-dimensional paviluse are eninformy d distributed in $[0,1 \times \times[0,1]$
$\longrightarrow-2$

Notes on VTHREAT Application

VTHREAT was used to simulate continuous trial 54 from the Fusing Sensor THPET predictions, including wind speed and direction at PWID lications, covered 1200 seconds duration of trial 54 Twenty VTHREAT realizations of trial 54 were performed. There are a total of 4719 observed wind speed and direction measure
available for the conparison (i.e., number of p-values that could be calculated)
\qquad For simplicity, we assume that the VTH
form an ellipicical-normal distribution
While 2D P P . p_{x} and p_{y} valuess individual histograms of p_{x} and p_{y} values indicate a slight peak in the distribution near the origin which could be confirmed with a
frequency count table

Acknowledgments

This effort was supported by the Defense Threat Reduction Agency with Dr. John Hannan as the the Institute for Defense Analyses. The views expressed in this paper are solely those of the authors.

Contact Information
Institute for Defense An
4850
4
Alexandria, VA 22311

