HARMO13

13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Paris, France, 1- 4 June 2010

H13-031 **Pollutant Transfer Coefficient in** Street Canyons of Different Aspect Ratios Tracy N.H. Chung & Chun-Ho Liu* **Parallel Session 1** June 1, 2010 (Tuesday)

This project is partly supported by the General Research Fund (GRF) of the Hong Kong Research Grant Council HKU 715209E

Department of Mechanical Engineering The University of Hong Kong **Corresponding Author:* Chun-Ho Liu; Department of Mechanical Engineering, 7/F Haking Wong Building, The University of Hong Kong, Pokfulam Road, Hong Kong; **Tel:** (852) 2859 7901; **Fax:** (852) 2858 5415; liuchunho@graduate.hku.hk

Rundown

- Introduction
- Objectives
- Local transfer coefficient (LTC) equation
- Model description
- Model validation
- CFD results
- Conclusion

Introduction

• Flow regimes (Oke, 1988)

a) Isolated roughness regime (h/b < 0.3)

Introduction

- Aliaga et al. (1994) & Hishida (1996)
 - The local heat transfer coefficient (LHTC),
 is closely related to the reattachment &
 separation of the flow
 - Isolated Roughness Regime
 - The maximum LHTC coincides with the reattachment point
 - The minimum LHTC overlaps with the separation point
 - Wake Interference Regime
 - Monotonic increment of LHTC
 - No peak or trough
 - Maximum locates on the windward side

(b)

Objectives

- Examine the pollutant dispersion behavior along the street inside the street canyon
- Elucidate the mechanism of pollutant removal through the roof level of the street canyon

as a function of the building-height-to-streetwidth (aspect) ratio (AR) *h/b*

Analogue to Pollutant Transfer

Convection-Diffusion Equation

$$\frac{\partial \theta}{\partial t} + u_j \frac{\partial \theta}{\partial x_j} = \alpha \frac{\partial^2 \theta}{\partial x_j^2}$$

- θ is the temperature
- α is the thermal diffusivity
- Mass Transport Equation

- ϕ is the mass/pollutant concentration
- κ is the mass diffusivity

Computational Fluid Dynamics (CFD)

- Large-eddy simulation (LES)
 - Two-length-scale modeling
 - Large eddies & small eddies
 - One-equation subgrid-scale (SGS) model
 - Open-source CFD code OpenFOAM 1.6
- *k*-ε turbulence model
 - One-length-scale modeling
 - The Reynolds-averaged Navier-Stokes (RANS) equations with the renormalization group (RNG)
 - Commercial CFD code FLUENT 6.3.26

LTC Equation

- Local Pollutant Transfer Coefficient (LES only) $LPTC = \langle \overline{w} \ \overline{\phi} \rangle + \langle w'' \phi'' \rangle - \langle \alpha \frac{\partial \overline{\phi}}{\partial \tau} \rangle - \langle \alpha_{sgs} \frac{\partial \overline{\phi}}{\partial \tau} \rangle$
 - Mean $< \overline{w} \, \overline{\phi} >$
 - Fluctuation $< w'' \phi'' >$
 - Molecular $< \alpha \frac{\partial \phi}{\partial z} >$

 $Diffusivity = \frac{kinematic \quad viscosity}{Schmidlt \quad No.}$

- Kinematic viscosity V (= 10⁻⁵)
- Schmidlt No. (= 0.<u>7</u>2)
- Sub-grid scale $< \alpha_{sgs} \frac{\partial \phi}{\partial z} >$ $v_{sgs} = C_k k_{sgs}^{1/2} \Delta$
- *k*-ε turbulence model
 - NO subgrid-scale term

Department of Mechanical Engineering The University of Hong Kong

LES Model Description

Domain of h = 1, b = 15 (AR = 0.0667), 11 (0.0909), 4 (0.25)

9

k-*ɛ* Turbulence Model Description

Domain with h = 1, b = 15 (AR = 0.0667), 11 (0.0909), & 4 (0.25)

Model Validation

- Comparisons with Aliaga et al. (1994) results
- Nusselt Number $Nu = \frac{LTC \times H}{k}$ as the parameter
- Data reduction due to different Reynolds number

Convert LTC to Nusselt Number (Nu)

• Aliaga et al. (1994)

$$Nu_{G} = \frac{LHTC_{G} \times D_{G}}{k_{G}} = \frac{LHTC_{G} \times 0.025}{0.026} = 0.9615LHTC_{G}$$

• LES

Reynolds Number (Re)

Aliaga et al. (1994)

$$\operatorname{Re}_{G} = \frac{U_{G}D_{H}}{v}$$
$$v = 10^{-5} kgm^{-1}s^{-1}$$

- AR = 0.25 = 1/4 $U_G = 32m/s$ $D_H = 0.025m$
- AR = 0.0909 = 1/11

 $U_G = 38m/s$ $D_H = 0.025m$

$$\operatorname{Re}_{T} = \frac{U_{T}H_{T}}{v}$$
$$v = 10^{-5} kgm^{-1}s^{-1}$$

• AR = 0.25 = 1/4

$$U_T = 1.01715 \, m/s$$

 $H_T = 1m$

• AR = 0.0909 = 1/11

 $U_T = 1.27123 \, m/s$ $H_T = 1m$

Normalized Nusselt Number (Nu/Re^m)

 $Nu = C \operatorname{Re}^{m} \operatorname{Pr}^{n}$ $C, \operatorname{Pr}, n = Const$ m = 4/5 $Nu \propto \operatorname{Re}^{4/5}$

$$\frac{Nu}{\text{Re}^{4/5}} = CONSTANT$$

Model Validation (AR = 0.0909 = 1/11)

Department of Mechanical Engineering The University of Hong Kong

16

Department of Mechanical Engineering The University of Hong Kong

CFD Results (AR = 0.0667 = 1/15)

CFD Results (AR = 0.0909 = 1/11)

CFD Results (AR = 0.25 = 1/4)

Roof-level Pollutant Removal (AR = 0.0667 = 1/15)

N

Roof-level Pollutant Removal (AR = 0.0909 = 1/11)

Ν

Roof-level Pollutant Removal (AR = 0.25 = 1/4)

Conclusion

- Relationship between flow regimes & pollutant transfer coefficient
 - Isolated roughness regime
 - Maximum local pollutant transfer coefficient: Reattachment point
 - Minimum local pollutant transfer coefficient: Separation point
 - Wake interference regime
 - Increasing local pollutant transfer coefficient from leeward side to windward side
- Roof level Pollutant Removal Mechanisms
 - Isolated roughness regime
 - Fresh air entrainment from the shear layer down to the street canyon
 - Wake interference regime
 - Turbulent diffusion through the roof level

References

- Oke, T.R., 1988: Street design and urban canopy layer climate: *Energy and Buildings*, **11(1-3)**, 103-113.
- Aliaga, D.A., Lamb, J.P. and Klein, D.E., 1994: Convection heat transfer distributions over plates with square ribs from infrared thermography measurements: *Int. J. Heat Mass Transfer*, **37(3)**, 363-374.
- Hishida, M., 1996: Local heat transfer coefficient distribution on a ribbed surface: *Journal of Enhanced Heat Transfer*, **3(3)**, 187-200.
- FLUENT, 2009: <u>http://www.fluent.com/</u>.
- OpenFOAM, 2009: <u>http://www.openfoam.com/</u>.

