

### AIR QUALITY FORECASTING SYSTEM IN A DOLOMITIC VALLEY: PERFORMANCE COMPARISON BETWEEN

#### **EXPECTED AND MEASURED DATA**

Rodolfo Bassan<sup>1</sup>, <u>Cristiano Bellio<sup>1</sup></u>, Roberto Piol<sup>1</sup>, Alessio D'Allura<sup>2</sup>, Maria Grazia Morselli<sup>2</sup> and Camillo Silibello<sup>2</sup>

<sup>1</sup> ARPAV – Environmental Protection Agency of the Veneto Region - Belluno Department, Italy

<sup>2</sup> ARIANET, Milano, Italy



HARMO 13 Conference, Paris (France), 3rd June 2010





## Topics

► the scene

► atmospheric emission inventory

modelling system characteristics

results (AQFS performaces)

► the air quality forecasting bulletin



## The Scene – Belluno Valley









# Belluno Valley and its basin





Belluno: 36,000 inhabitants



Feltre: 19,000 inhabitants

► few emission sources but.....





#### Main aerological characteristics

- ► a very high frequency of air stagnation during the winter
- very low wind speed with fog episodes (89% hs under 0.5 m/s at Feltre in winter)
- strong temperature inversion profile

many times the vertical dispersion is limited!!

## The Emission Inventory/1



Essential tool to understand pressures acting in the domain
 It is a local inventory based on bottom–up approach



| Industrial Processes                                                                              | Traffic                                                                                               | Domestic Heating                                                                                                                     |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ► 150 factories and 990 chimneys                                                                  | ► more than 60 roads included in the db                                                               | wood combustion plays a<br>dominant role                                                                                             |  |  |
| ▶ first 20 activities performed ~ 90%<br>TSP of the industrial sectors<br>(M1,M3,M4,M5,M6 amount) | emission calculated with TREFIC<br>(using COPERT 3 methodology)<br>starting from hourly traffic flows | ► investigated through the use of<br>>5000 questionnaires to population<br>(covering 8% of the population in<br>the Belluno Valley ) |  |  |
| ► data derived from chimney chemical analisys (PM,NO <sub>x</sub> ,SO <sub>x</sub> ,CO,VOCs)      | vehicle flows divided in 3<br>categories (C1= passangers cars +<br>motorcycles; C2 = LDV; C3 = HDV)   | collected data about use of fuels<br>and combustors                                                                                  |  |  |

## The Emission Inventory/2





6%

domesting hea-

ting

Traffic

Wood burning for Fossil fuels for Industry

Railway

domestic and

service heating

Off-road

Wood burning for domesting hea- ting
 Traffic
 Traffic
 Fossil fuels for domestic and service heating
 Off-road

## **Biomass burning**





#### ► PM10 Emission Factors (\*) - g GJ<sup>-1</sup>

| Stoves      |             |         |                                   | Fireplace              |        |        |
|-------------|-------------|---------|-----------------------------------|------------------------|--------|--------|
| Traditional | High eff.cy | Pellets | Masonry<br>(heat<br>accumulating) | Closed<br>(forced air) | Opened | Others |
| 250         | 150         | 70      | 150                               | 250                    | 500    | 250    |

(\*) according to: DIIAR, Politecnico di Milano (Italy), 2006

# AQFS SKYNET – The architecture



Built by 4 modules

► Operational since Jun. 09, stable configuration in Nov. 09

► AQFS aim: information on air pollution to support AQM and to be distribuited to the general public as required by AQ framework directive 2008/50 CE



#### AQFS – Modelling system characteristics





Computational domain (66x67 cells at 1 km of horizontal resolution) and 10 vertical levels.

#### MODEL OUTPUTS

- Equipped with automatic procedures works as a calculation chain
- SKYNET runs on a daily basis to produce forecasts for current day (+24 hs) and the following one (+48hs)
- Hourly concentration fields submitted to post-processing tools

## Things to remember



► It has been selected the time period Nov.09 – Feb.10 (4 months) for data analisys



Belluno (BEL) and Feltre (FEL) Air Quality stations: (2 Urban Background stations)





▶ 2 pollutants considered for evaluation of forecast system: PM10 and NO<sub>2</sub>

## Results presented as:



- Statistical indicators
- ► Box plots
- ► Scatter plots
- Direct comparison of predicted vs measured concentrations
- ► Output maps

| MB   | $MB = \frac{1}{N} \sum_{i=1}^{N} (O_i - P_i)$                                                   |
|------|-------------------------------------------------------------------------------------------------|
| FB   | $FB = \frac{(\overline{O} - \overline{P})}{(\overline{O} + \overline{P})/2}$                    |
| d    | $d = 1 - \sum_{i=1}^{N} O_i - P_i$ $\sum_{i=1}^{N}  P_i - \overline{O}  +  O_i - \overline{O} $ |
| RMSE | $RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_i - P_i)^2}$                                        |
| NSD  | $NSD = \frac{\sigma_{P}}{\sigma_{O}}$                                                           |
| F2   | $2.0 \ge F2 = \frac{1}{N} \sum_{i=1}^{N} \frac{P_i}{O_i} \ge 0.5$                               |



#### ► AQFS performaces; +24 and +48 are considered distinctly

|         |         | MB    | FB   | d    | RMSE  | NSD  | F2   |
|---------|---------|-------|------|------|-------|------|------|
| Belluno | PM10+24 | 10.35 | 0.33 | 0.47 | 18.55 | 0.52 | 0.84 |
|         | PM10+48 | 9.66  | 0.32 | 0.46 | 17.88 | 0.60 | 0.85 |
| Feltre  | PM10+24 | 18.35 | 0.53 | 0.44 | 25.13 | 0.47 | 0.68 |
|         | PM10+48 | 18.47 | 0.57 | 0.50 | 25.29 | 0.45 | 0.70 |

|         |                     | MB    | FB    | d    | RMSE  | NSD  | F2   |
|---------|---------------------|-------|-------|------|-------|------|------|
| Belluno | NO <sub>2</sub> +24 | 1.60  | 0.04  | 0.75 | 17.61 | 1.30 | 0.98 |
|         | NO <sub>2</sub> +48 | 1.41  | 0.04  | 0.75 | 17.78 | 1.31 | 0.99 |
| Feltre  | NO <sub>2</sub> +24 | -2.52 | -0.08 | 0.55 | 20.86 | 1.42 | 1.28 |
|         | NO <sub>2</sub> +48 | -2.14 | -0.07 | 0.56 | 20.70 | 1.40 | 1.27 |

#### Considerations

- ▶ very similarity between +24 and +48 runs = good agreement of predictions
- ▶ PM10= BEL has high values of d and F2 and low for *RMSE*.
- ▶ model simulates NO<sub>2</sub> in a better way = good d and FB (close to 0), low MB values



Comparisons between PM10 and NO<sub>2</sub> obs. data and pre. data in BEL and FEL stations
 AQFS tends to understimate PM10 in FEL; good agreement for NO<sub>2</sub>



## Results/Scatter Plots





# **Results/**Direct comparison of predicted vs measured concentrations





arpav

# **Results/**Direct comparison of predicted vs measured concentrations



#### NOV 09 – FEB 10: PM10





## Results/Output maps

#### ▶ example of the output maps (daily averages): 14 december 2009

**PM10** 



arpav

# The air quality forecasting bulletin: PM10

An experimental air quality forecasting bulletin has been produced for 2 winter months
Used data from sodar and radiometer sited in Feltre and others systems acting on national scale
Good results; 80% cases with a correct forecast for following day in BEL; 71% in FEL.
The most critical episodes to forecast are snowy phenomena: NO uniform behavior
Planned a bulletin in the summer period for O<sub>3</sub>

arpav





► SKYNET has proved to be an useful tool to increase the knowledge of the dynamics acting in the Belluno Valley

▶ in the valley meteorological and orographical factors play a determinant rule in the air quality.

► absence of wind associated with a considerable orographic complexity create some criticalities to the model expecially when wind speeds go under 0.3 m/s

► however all the main AQ indicators demonstrate a good performance of modelling predictions in particular fo NO<sub>2</sub>

▶ in particular there is a good agreement between meas. and pred. data in the Belluno station while model reveals the tendency to under-predict PM10 values in Feltre zone

► model and others tools data allowed us to create an experimental air quality forecasting bulletin which gave reliable predictions in the area.





► Needs more studies for a correct reproduction of major air pollution episodes in the winter

► the implementation of SKYNET is linked to the improvement of accuracy of the meteorological modelling and dispersion parameterisation

▶ improving our knowledge about snowy episodes, phenomena not so rare in an alpine valley as it is ours.

# Thank you for your attention!!

