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Parameters for the Street Canyon:

Building length 1 x direction: w (Im, 2m)

Building length 1n y direction: a (1m)

Building height: h (1m) i E o

Street width in x direction: b (1m) . .;—. 550, 8
Building-width-to-street-width ratio (WR): w/b o i)
Domain height: 8xh ; ) Non- '%Im Wall . ;
Number of buildings 1n x direction: 8 o
Number of buildings in y direction: 5 \ . i
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Fig 1 Computational domain 1. Unlike WR =1, the average PCH on the upward interface 1s positive, demonstrating th
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arameters for the Follutant lransport importance of mean flow in pollutant removal from a wider street canyon.
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2. Smmilar to WR = 1, the pollutant removal on the upward interface by PCH’ (positiv

Average pollutant concentration inside the canyon: {c) contours) peak near the sides of the street canyon which is likely the result of th

Pollutant exchange rate through an interface of area A: PCH recirculating flow inside the street canyon.

The total PCH 1s divided into two components:
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u, 1s the velocity normal to the interface, D, 1s the turbulent pollutant diffusivity.

The mean part PCH represents the pollutant transport by mean flow: The fluctuating ozp
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part PCH' represents the pollutant transported by turbulence. e

Results and Discussions

Fi1g7 Contours on the sideward imnterface of Canyon A&B of WR=2 Fi1g8 Vector profile sampled in h=0.5 for WR=2

Compare Fig 3, 5, 7, the pollutant removal in WR =1 1s distributed evenly at the groun

level while In WR = 2 1s shifted toward the leeward ground level. These dissimilar pollutar

transport behaviours are caused by the recirculation of different nature (Fig 8).

2 Contours on the upward interface of Canyon A of WR=1

The contours of PCH and PCH exhibit similar patterns, implying the dominance of

Fig 9 Pollutant concentration contours

PCH 1n the pollutant entranment (most contours are negative). In fact the pollutant could be transported opposite to the free-stream flow that goes int

On the other hand, PCH' 1s positive (upward transport) and large, dominating the upstream along the street below the roof level. This re-entrainment mainly takes plac
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pollutant removal from the street canyon through the sideward mterfaces that 1s less significant in street canyons of larger WRs.

PCH' 1s the correlation between the vertical velocity fluctuation and pollutant :
Conclusions

concentration. The peaks of PCH" and TKE locate differently, signifying the strong 1. Generally, pollutant entrainment 1s dominated by mean flow while pollutant removal 1

influence of pollutant concentration on PCH'. dominated by turbulence.
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2. When WR is increased from 1 to 2, the wider canyon enhances the performance of PCI
while PCH' remains the same pattern. Hence, PCH 1s improved.
3. In the roof level of Canyon A, the contribution of PCH' 1s mamly attributed to th

peaks near the sideward interfaces. When the street 1s widened, these peaks affect les

within a smaller region, the overall PCH' performance 1s weakened.

4. Pollutant could be carried into the upstream canyons which 1s a process governed by th

3 Contours on the sideward interface of Canyon A of WR=1 sideward pollutant removal and entrainment
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leeward building leading to the elevated PCH'.




