The Role of Vegetation in Traffic Emission Dispersion and Air Quality in Urban Street Canyons

> 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

> > 1 - 4 June 2010, Paris, France

Christof Gromke ^{1,2} and Bodo Ruck ¹

¹ Institute for Hydromechanics, University of Karlsruhe/KIT, Germany ² WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Christof Gromke

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
00	00000	000000	0	0	

Basics of Flow and Pollutant Dispersion in Street Canyons

Long street canyon (L/H > 7 and $0.7 \le W/H \le 2.2$)

urban street canyon

idealized street canyon

approaching wind perpendicular to street axis

- two dominating large scale vortex structures
 - Canyon Vortex
 - Corner Eddy
- superposition at street canyon ends

Christof Gromke

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
0	00000	000000	0	0	

Basics of Flow and Pollutant Dispersion in Street Canyons

long street canyon, incident flow $\alpha = 90^{\circ}$

numerical simulation with k- ε turbulence closure scheme

Christof Gromke

Introduction Approac	n Results	Max. Concentrati	on CODASC	Summary
00000	000000	0	0	

Urban Street Canyons with Avenue-like Tree Planting

Implications of Trees on Flow and Pollutant Dispersion?

Christof Gromke

Approach

Introduction	Approach	Results	Max. Concentration	CODASC	Summary	
	0000	000000	0	0		

Street Canyon Model and Boundary Layer Wind Tunnel

Street canyon model (scale 1:150)

- isolated long street canyon (L/W = 10, W/H = 1;2)
- line source at street level
- tracer gas (sulfur hexafluoride SF₆)
- 126 measurement taps at canyon walls
- traffic induced turbulence

Boundary layer wind tunnel

- closed-circuit BLWT
- vortex generators and roughness elements
- adjustable ceiling
- power law profile exponent α = 0.30
- $u_{\delta} = 7 \text{ ms}^{-1}, u_H = 4.65 \text{ ms}^{-1}$
- Reynolds-No. *Re* = 37.000

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
	000	000000	0	0	

Wind Tunnel Trees – Modeling Approach

Aerodynamic of trees

- is governed by crown porosity
- · permeable for wind
- form and skin drag (volume specific surface)
- wake characteristics

Characterization of crown porosity/permeability

• pressure loss coefficient λ

$$\lambda = \frac{\Delta p_{stat}}{p_{dyn}d} = \frac{p_{luv} \quad p_{lee}}{1/2\rho u^2 d} \qquad \text{[m-1]}$$

integral measure for flow resistance

Similarity requirement

$$\frac{\Delta p}{p_{dyn}}\Big|_{model} = \frac{\Delta p}{p_{dyn}}\Big|_{field} \Leftrightarrow \left[\lambda d\right]_{model} = \left[\lambda d\right]_{field} \Leftrightarrow \frac{\lambda_{field}}{\lambda_{model}} = \frac{d_{model}}{d_{field}} = M$$

Christof Gromke

Introduction A	Approach	Results	Max. Concentration	CODASC	Summary
	00	000000	0	0	

Wind Tunnel Trees – Modeling Approach

Realization of model trees

- crown porosity/permeability
 - $-P_{Vol} = 97.5 \dots 96\%$
 - $-\lambda_{model} = 80 \dots 250 \text{ m}^{-1}$
- planting density (#trees/unit length)
- · similarity criterion

Application of similarity criterion

- λ of tree crowns not available
- λ of vegetation shelterbelts (Grunert et al. 1984)
 - $-\lambda_{field} = 0.4 \dots 13.4 \text{ m}^{-1}$
- Similarity criterion: $~\lambda_{\rm field}/\lambda_{\rm model}=M$
 - λ_{model} = 60 ... 2000 m⁻¹

Christof Gromke

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
	О	000000	0	0	

Street Canyon with Model Trees

Christof Gromke

Overview: Wind Tunnel Experiments

Parameter study comprising 40 experiments

Variation of

- street width to building height ratio W/H
- angle of approaching flow $\boldsymbol{\alpha}$
- planting density ρ_b
- crown permeability λ (crown porosity P_{Vol})
- tree rows

(closed or open tree crown canopy)

traffic situation

www.codasc.de

(Concentration Data of Street Canyons)

000000 0 0	I	ntroduction	Approach	Results	Max. Concentration	CODASC	Summary
				000000	0	0	

Overview: Wind Tunnel Experiments

Parameter study comprising 40 experiments

Variation of

- street width to building height ratio W/H
- angle of approaching flow α
- planting density ρ_b (#trees/unit length)
- crown permeability λ (crown porosity P_{Vol})
- tree rows

(closed or open tree crown canopy)

traffic situation

www.codasc.de

(Concentration Data of Street Canyons)

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
		000000	0	0	

Overview: Wind Tunnel Experiments

Parameter study comprising 40 experiments

Variation of

- street width to building height ratio W/H
- angle of approaching flow α
- planting density ρ_b
- crown permeability λ (crown porosity P_{Vol})
- tree rows

(closed or open tree crown canopy)

• traffic situation

www.codasc.de

(Concentration Data of Street Canyons)

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
		000000	0	0	

Measurement Results

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
		00000	0	0	

Pollutant Concentrations in narrow Street Canyon (W/H = 1, $\alpha = 90^{\circ}$)

Tree-free street canyon with wind approaching perpendicular

normalized concentrations *c*⁺[-]

- max. concentrations in central part of wall A close to the ground
- concentrations at leeward wall A > windward wall B (in wall average by 3.6)
- · concentration decreases towards street ends
- concentration gradients give evidence for vortex structures

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
		0000	0	0	

Pollutant Concentrations with Avenue-like Tree Planting (W/H = 1, $\alpha = 90^{\circ}$)

Single-row tree planting

- high planting density $\rho_b = 1.0$, high crown porosity $\lambda = 80 \text{ m}^{-1}$ ($P_{Vol} = 97.5\%$)

in comparison to tree-free street canyon

- increase in concentrations at wall A (wall average: +41%)
- decrease in concentrations at wall B (wall average: -38%)
- in total: concentration increase

Institute for Hydromechanics, University of Karlsruhe/KIT

15

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
		000	0	0	

Pollutant Concentrations with Avenue-like Tree Planting (W/H = 1, $\alpha = 90^{\circ}$)

Influence of decreased crown porosity/permeability

- high planting density $\rho_b = 1.0$

Christof Gromke

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
		00	0	0	

Parameter Study on the Influence of Crown Permeability λ

Single-row tree planting (W/*H* = 1, α = 90°, high planting density ρ_b = 1)

- wall A: increase of c^+_{wall} increasing λ , max. change +60%
- wall B: decrease of c_{wall}^+ increasing λ , max. change -50%
- asymptotic limit

Christof Gromke

Introduction	Approach	Results	Max. Concentration	CODASC	Summary	
		0	0	0		

Pollutant Concentrations in Broad Street Canyon (W/H = 2)

Two-row tree planting (W/H = 2, $\alpha = 90$)

- high planting density $\rho_b = 1.0$, low crown porosity $\lambda = 200 \text{ m}^{-1}$ ($P_{Vol} = 96.0 \text{ \%}$)

in comparison to tree-free street canyon (WH = 2)

- increase in concentrations at wall A (wall average: +41 %)
 - max. increases in the canyon center

Christof Gromke

decrease in concentrations at wall B (wall average: -32 %)

 \rightarrow implications analog to narrow street canyon (*W*/*H* = 1)

Introduction	Approach	Results	Max. Concentration	CODASC °	Summary

Pollutant Concentrations for Inclined Approaching Flow (W/H = 2, $\alpha = 45^{\circ}$)

Two-row tree planting (W/H = 2, $\alpha = 45$)

- high planting density ρ_b = 1.0, low crown porosity λ = 200 m⁻¹ (P_{Vol} = 96.0 %)

- increases/decreases of concentrations at wall A (average: +88 %)
- · increases in concentration at wall B
- · accumulative traffic pollutant transport along street canyon axis
- · max. pollutant concentrations at canyon end
- max. rel. changes in concentration for inclined approaching flow

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
			0	0	

Maximum Pollutant Concentration

Introduction	Approach	Results	Max. Concentration	CODASC o	Summary

Maximum Pollutant Concentration at Canyon Wall

Estimate for maximum traffic pollutant concentration c^+_{max} was derived based on

- 40 wind tunnel experiments
- dimensional analysis

$$c_{\max}^+ = f\left(\frac{W}{H}, \rho_b, P_{Vol}, \alpha\right)$$

$$C_{max}^{+} = a_1 - a_2 e^{-a_3 \{ \rho_b (100 - P_{Val}) \}}$$

$$a_i = f(\frac{W}{H}, \alpha)$$

Christof Gromke

Introduction	Approach	Results	Max. Concentration	CODASC	Summary

CODASC

Introduction	Approach	Results	Max. Concentration	CODASC	Summary	
CODASC						

CODASC - Concentration Data of Street Canyons

- Internet data base
- collection of wind tunnel concentration data
- comprises more than 40 street canyon/tree planting configurations
- contains also information on
 - approaching flow characteristics
 - street canyon geometry
 - vegetation/tree modeling approach
- purpose: serve for the validation of numerical models and simulations

Introduction	Approach	Results	Max. Concer	tration	CODASC	Summary	
🕘 CODASC - Mozilla Firefox							<u>_8 ×</u>
Eile Edit View History Bookmarks Tools	Help						
	www.ifh.uni-karlsruhe.de/science/aerodyn/CODA5C.htm		_			Google	P
🔊 Headlines 💆 LEO 🥑 dict 🛛 Wiki E 🔌 V	Viki D 💥 IT SLF 🎇 SLF 🛄 mobilo 📋 Meet_Mak 🗌] GSN 👻 Res_SLF 🏅 Google 🏅 Map	s 💽 Kalender 🛩 NEBIS 【 GKB 🐔	🛾 SD 🖉 Springer 📋 ISI 📋 LGU	J 🔄 SNF 🛄 DFG 🛄 CODASC.d	e 📋 IfH 🙆 BLM W Wikti 😭 WSL php 🛯	ok GMX
		Concent Laboratory of Bu Karlsro	CODASC tration Data of S ilding- and Enviro uhe Institute of Te homepage	treet Canyons nmental Aerodyr chnology KIT	namics		-
 Home Photo Gallery Wind Tunnel c⁺ Data Tree Modeling Data Base References Terms & Conditions 	What is CODASC? CODASC stands for "COncentra planting. What is the purpose of CODA The purpose of CODASC is sim For whom is CODASC of inter CODASC is addressing scientis Where is CODASC from? CODASC data is from the Labor The Laboratory of Building- and Atmospheric boundary layer win	ation DAta of Street Canyon SC? apply to make wind tunnel c rest? ts working on urban air qu ratory of Building- and Env Environmental Aerodynan d tunnel: <u>wind tunnel boun</u>	ons". It is a data base co oncentration data acces lality issues. It is of spec vironmental Aerodynami nics runs a number of w	ontaining concentration sible for everybody in ial interest for validation cs at the Institute for H ind tunnels, among the	n measurement data o terested. on of numerical simula Hydromechanics (IfH) em are several atmosp	f street canyons with avenue ations or experimental investi at the University of Karlsruhe oheric boundary layer wind tu	-like tree
funded by: Deutsche	W/H = 1 (aspect ratio: street width W to H) Ier_orginale/CODA/figures/SC BH=1 tree l.jpg	building height α	TREE PLANTING	normalized cono file name = [<i>WIH</i>]	centration data <i>c</i> ⁺ _[α]_[ρ _s]_[λ]_[wall]	concentration contour plot (300 dpi)	<u>.</u>
🥂 Start 📴 🥝 🖾 🧐 📣 💾 📀 🛓	Total Commander 7.04a 🔀 Microsoft Power	Point - [🤇 🕘 CODASC - Mozilla Firef.					🏷 🕗 😋 🕅 09:19

Christof Gromke

Institute for Hydromechanics, University of Karlsruhe/KIT

Introductio	n Approach	Resu	lts Max	. Concentration	CODA	ASC Sur	mmary	
CODASC - Mozilla Firefox File Edit View History Bookmarks Io	ols <u>H</u> elp						<u></u>	8×
	p://www.ifh.uni-karlsruhe.de/science/aerodyn/CODASC.htm					Google		~
Meadlines 💆 LEO 🕜 dict 🛛 Wiki E 🔪	W Wiki D 🍇 IT SLF 👯 SLF 🔄 mobilo 🚺 Meet_Mak 🚺 GSN 👻 R	es_SLF 🏅	🕤 Google 🎽 Maps 🝺 Kalender 🛹 N	EBIS 【 GKB 🐨 SD 坐 Springe	er 📑 ISI 📑 LGU 📑 SNF 📑	DFG 📋 CODASC.de 📋 IfH 坐 BLM	1 W Wikti 😭 WSL php 🚧 GMX	-
		Labo	CO Concentration Da oratory of Building- an Karlsruhe Institu M	DASC ata of Street Can d Environmental Ad te of Technology A mepage	iyons erodynamics (IT		The view	
 ▲ ● Home ● Photo Gallery ● Wind Tunnel ● c⁺ Data ● Tree Modeling 	W/H = 1 (aspect ratio: street width W to building height H) α 90°	TREE PLANTING tree-free (wind perpendicular to street)	normalized conce file name = [<i>W</i> / <i>H</i>] <u>1 90 0,0 000 A.bt</u>	entration data c ⁺ [α] [ρ _s] [λ] [wall] <u>1 90 0,0 000 A.xls</u>	concentration contour plot (300 dpi)		
 Data Base References Terms & Conditions 			, trae free	<u>1 45 0,0 000 A.bt</u>	<u>1 45 0,0 000 A.xis</u>	<u>1 90 0,0 000.jpg</u>		
more information: gromke@ifh.uka.de ruck@uka.de	turntable	45°	(wind inclined to street)	<u>1 45 0,0 000 B.bt</u>	<u>1 45 0,0 000 B.xls</u>	<u>1 45 0,0 000.jpg</u>		
funded by: Deutsche Forschungsgemeinschaft DFG Project: Ru 345/28		0°	tree-free (wind parallel to street)	<u>1 00 0,0 000 A.b.t</u> <u>1 00 0,0 000 B.b.t</u>	<u>1 00 0,0 000 A.xls</u> <u>1 00 0,0 000 B.xls</u>	<u>1 00 0,0 000.jpg</u>		
Done								<u> </u>
🏄 Start 🛛 🚱 🥝 🙆 🧶 💾 📀 🛓	Total Commander 7.04a 🖸 Microsoft PowerPoint - [🥹 CODA	SC - Mozilla Firef] DE 🗞 🗐 😧 🕅 C)9:21

Christof Gromke

Introduction	Approach	Results	Max. Concentration	CODASC	Summary
			CODASC		

CODASC

Concentration Data of Street Canyons

www.codasc.de

Introduction	Approach	Results	Max. Concentration	CODASC	Summary

Summary and Conclusions

Introduction	Approach	Results	Max. Concentration	CODASC	Summary

Summary and Conclusion

- Vegetation/Tree modeling approach for wind tunnel studies
 - accounts for the porosity/permeability of tree crowns/vegetation
 - is based on similarity criterion
 - proofed to give reasonable results in wind tunnel dispersion studies

Tree planting and traffic pollutant concentrations

- tree planting resulted in higher/lower concentrations at the leeward/windward wall
- overall increase in traffic pollutant concentrations
- max. concentrations for flow approaching inclined

Maximum pollutant concentration

- for regulatory purposes in dispersion modeling
- can be used by town planers to estimate the implications of trees on pollutant concentrations

CODASC – Concentration Data of Street Canyons

- comprises more than 40 wind tunnel experiments
- is a useful tool for validation of CFD codes and numerical simulations

Appendix

Related Journal Papers

Buccolieri, R., Gromke, C., Di Sabatino, S., Ruck, B. (2009) Aerodynamic effects of trees on pollutant concentration in street canyons, Science of the Total Environment, Vol. 407, No. 19, pp. 5247-5256.

Gromke, C., Ruck, B., (2009) Effects of trees on the dilution of vehicle exhaust emissions in urban street canyons, International Journal of Environment and Waste Management, Vol. 4, No. 1/2, pp. 225-242.

Balczó, M., Gromke, C., Ruck, B. (2009) Numerical modeling of flow and pollutant dispersion in street canyons with tree planting, Meteorologische Zeitschrift, Vol. 18, pp. 197-206.

Gromke, C., Ruck, B. (2009) On the impact of trees on dispersion processes of traffic emissions in street canyons, Boundary-Layer Meteorology, Vol.131, pp. 19-34.

Gromke, C., Buccolieri, R., Di Sabatino, S., Ruck, B. (2008) Dispersion modeling study in a street canyon with tree planting by means of wind tunnel and numerical investigations - Evaluation of CFD data with experimental data, Atmospheric Environment, Vol. 42, pp. 8640-8650.

Gromke, C., Ruck, B. (2008) Aerodynamic modeling of trees for small scale wind tunnel studies, Special Issue on Wind and Trees in Forestry, Vol. 81, No. 3, pp. 243-258.

Gromke, C., Ruck, B. (2007) Influence of trees on the dispersion of pollutants in an urban street canyon – experimental investigation of the flow and concentration field, Atmospheric Environment, Vol. 41, pp. 3387-3302.

Under Review

Gromke, C., Ruck, B. () Wind-tunnel study and dimensional analysis on traffic pollutant concentrations in urban street canyons with trees, submitted to Boundary-Layer Meteorology.

Buccolieri, R., Di Sabatino, S., Salim, M. S., Ielpo, P., Gennaro de, G., Piacentino, C. M., Chan, A., Gromke, C. () Influence of tree planting on flow and pollutant dispersion in urban street canyons in Bari (Italy), submitted to Atmospheric Environment.

Measurement Instrumentation

Concentration Measurements

- Electron Capture Detector (ECD) model Meltron LH 108
- measurement of mean tracer gas concentrations (sulfur hexafluoride SF₆)
- determination of dimensionless concentrations c⁺ according to

- c_m measured concentration
- *u_{ref}* reference velocity
- L_{ref} reference length
- Q_T / I strength of line source

Velocity Measurements

- Laser Doppler Velocimetry (LDV)
- 4 W Argon-Ion Laser
- 2-component LDV-system
- Bragg-cells 40 MHz
- backscatter system
- sampling frequency 50 Hz

Estimate for the max. pollutant concentration

$$c_{max} = f_1(H, B_A, B_B, L, W, x_{ls,i}, z_{ls,i}, \boldsymbol{x_{k,j}}, \boldsymbol{K_j}, P_{Vol,j}, u_H, \alpha, v, Q_I)$$

Elimination of parameters

- · which have not been varied for the wind tunnel study
 - B_A , B_B building width
 - L street canyon length
- · are considered not to vary strongly in typical urban street canyons
 - $x_{Lq,i}$, $z_{Lq,i}$ source positions
 - $x_{K,i}$, K_i positions and length scales of trees
- Buckingham π theorem
 - elimination of 2 more parameters
 - dimensionless $\boldsymbol{\pi}$ parameters

$$\rightarrow$$

$$c_{max} = f_2 \left(\frac{W}{H}, \rho_b, P_{Vol}, \alpha, Re, \frac{Q_l}{u_H H}\right)$$

(6 parameters)

$$c_{max} = f_2 \left(\frac{W}{H}, \rho_b, P_{Vol}, \alpha, Re, \frac{Q_l}{u_H H}\right)$$

(6 parameters)

Further considerations

- π_5 Reynolds No. $Re = u_H H/v$
 - sharp-edged geometries \rightarrow critical Reynolds number similarity Re_{crit} > 10.000
 - experimental evidence

 $\Rightarrow c_{max}$ can be considered to be independent of Re

- π_6 dimensionless source strength $Q/(u_H H)$
 - $c_{\text{max}} \sim Q_l$ (twofold source strength \rightarrow twofold concentration)

=> c_{max} is linear in $Q/(u_H H)$

$$c_{max}^{+} = f_{3}\left(\frac{W}{H}, \rho_{b}, P_{Vol}, \alpha\right)$$

(4 parameters)

$$e_{\max}^{+} = f_{3}\left(\frac{W}{H}, \rho_{b}, P_{Vol}, \alpha\right) \qquad (4 \text{ parameters})$$

$$\bullet \rho_{b} \quad \text{planting density}$$

$$\bullet P_{Vol} \quad \text{crown porosity} \qquad begin{subarray}{c} \text{describe the avenue-like tree planting} \\ \text{describe the avenue-like tree planting} \\ \end{array}$$

Idea: combination of ρ_b und P_{Vol} to a single "alley parameter" *AP* which is a measure for the amount of vegetation (solid crown material)

General approach: $AP = (\rho_b)^{c_1} \bullet (100 - P_{Vol}[\%])^{c_2} \qquad c_i > 0$

- AP increases with increasing vegetation
- determination/choice of values for c_1 and c_2 remains (moist obvious choice: $c_1 = c_2 = 1$)

$$c_{\max}^{+} = f_4 \left(\frac{W}{H}, AP, \alpha\right)$$

("3" parameters)

Christof Gromke

Relationship

 c_{max}^{+} from experimental results for $c_1 = c_2 = 1 = AP = (\rho_b) \cdot (100 - P_{Vol}[\%])$

=> exponential relationship between c_{max}^{+} und AP

Christof Gromke

Relationship

Requirements to the relationship between c_{max}^+ and AP

- exponential dependency
- asymptotically approach c^+_{\max} for $AP \to \infty$

General approach:

$$c_{\max}^{+} = a_1 - a_2 \exp(-a_3 AP)$$
 $a_i > 0, \quad a_i = f(\frac{W}{H}, \alpha)$

• determination of a_i by regression analyses in dependency of W/H and α

Meaning of *a_i*

- a_1 largest possible maximum concentration ($AP \rightarrow \infty$)
- a_2 range of maximum concentrations (tree-free $AP \rightarrow \infty$)
- *a*₃ stretching factor

Functional relationship for c+_{max}

• asymptotically approaches limit case $\lambda \to \infty$

$$c_{max}^{+} = a_1 - a_2 \exp\left\{-a_3 \left[\rho_b \bullet (100 - P_{Vol}[\%])\right]\right\}$$
 $a_i = f\left(\frac{W}{H}, \alpha\right)$

• determination of a_i by regression analyses in dependency of W/H and α

Konzentrationen in "breiter" Straßenschlucht (B/H = 2, $\alpha = 90^{\circ}$)

Baumfreie Straßenschlucht (Referenzfall)

normierte Konzentrationen c+ [-]

im Vergleich zur engen Straßenschlucht (*B*/*H* = 1)

- geringere Konzentrationen an der leeseitigen Wand A (im Wandmittel: -24 %)
- ähnliche Maximalbelastung an Wand B
- vergleichbare Verteilung der Konzentrationen
- \Rightarrow Strömungsregime ähnlich, Schadstoffbelastung unkritischer

Konzentrationen bei Schräganströmung (B/H = 1, $\alpha = 45^{\circ}$)

Baumfreie Straßenschlucht (Referenzfall) bei Schräganströmung

normierte Konzentrationen c+ [-]

bei schräger Anströmung

- · Konzentrationen an Wand A deutlich höher als an Wand B
- helixartige Wirbelstruktur (Überlagerung von Canyon Vortex und Paralleldurchströmung)
- Totwassergebiet an Einströmseite von Wand A
- max. Konzentrationen am Straßenschluchtende
- akkumulativer Schadstofftransport entlang der Straßenlängsachse
- kritisch bei längeren Straßenschluchten (L/H > 10)

Christof Gromke

Pollutant Concentrations for Inclined Approaching Flow (W/H = 1, $\alpha = 45^{\circ}$)

Single-row tree planting

- high planting density $\rho_b = 1.0$, high crown porosity $\lambda = 80 \text{ m}^{-1}$ ($P_{Vol} = 97.5\%$)

- increases and decreases of concentrations at wall A (wall average: +91 %)
- decreases in concentration at wall B (wall average: -49 %)
- · accumulative traffic pollutant transport along street canyon axis
- max. rel. changes in concentration for inclined approaching flow
- · max. pollutant concentrations at canyon end

Influence of Crown Porosity on Velocity Field

Comparison of impermeable and permeable tree crown

• continuous block-shaped permeable crown (97 % pore volume, $\lambda = 250 \text{ Pa Pa}^{-1}\text{m}^{-1}$)

Christof Gromke

impermeable - permeable

- vertical velocities are similar
- volume flux at z/H = 0.7 differs only by 8 %
- no significant influence of crown permeability on flow field

Traffic induced Turbulence

Turbulence production ratio T_P

Similarity is given when:

```
T_{P,Model} = T_{P,Nature}
```


 $P_T = \frac{\rho c_D n_T F_T u_T^3}{W H}$

 $P_W \propto \frac{\rho \, c_f \, u_\delta^3}{\mu}$

turbulence production by moving traffic assumption (total kin. energy of traffic is transformed into TKE)

turbulence production by interaction of building environment with atmospheric wind

Christof Gromke

Konzentrationen bei Berücksichtigung Verkehrsinduzierter Turbulenz

Referenzfall: Baumfreie Straßenschlucht *B*/*H* = 1 bei senkrechter Anströmung

- Gegenverkehr, $u_v = 40$ km/h
- Verkehrsstärke $n_v = 37 \text{ Kfz/km}$
- $c_f = 0.02 \ (c_f = \rho u_*^2 / (0.5 \ \rho U_{\delta}^2))$
- Turbulenzproduktion $P_W \approx 10 P_T$
- Konzentrationsabnahmen
 - Wand A: 2 %
 - Wand B: 31 %

-2

-1

Ó

у/H

1

H∕N 0.5-

-5

-4

-3

5

2

Ś

4

Konzentrationen bei Berücksichtigung Verkehrsinduzierter Turbulenz

Straßenschlucht mit impermeabler Baumpflanzung ($B/H = 1, \alpha = 90$)

Christof Gromke

- Gegenverkehr, $u_v = 40$ km/h
- Verkehrsstärke $n_v = 37$ Kfz/km
- $c_f = 0.02 \ (c_f = \rho u_*^2 / (0.5 \ \rho U_{\delta}^2))$
- Konzentrationsänderungen
 - Wand A: -23 %
 - Wand B: +19 %

	С	Н	В	$ ho_{b}$	P _{Vol}	u _H	α	V	Q ₁	х	У	Z
L	0	1	1	0	0	1	0	2	2	1	1	1
Т	0	0	0	0	0	-1	0	-1	-1	0	0	0

Aufstellen der Dimensionsmatrix

Elimination der Basisgröße Länge [L] durch Einflussgröße Gebäudehöhe H

	С	B/H	$oldsymbol{ ho}_b$	P _{Vol}	u _H /H	α	v/H²	Q/H ²	x/H	y/H	z/H
L	0	0	0	0	0	0	0	0	0	0	0
Т	0	0	0	0	-1	0	-1	-1	0	0	0

Elimination der Basisgröße Zeit [T] durch Einflussgrößenkombination H/u_H

	π ₁	π2	π3	π4	π ₅	π ₆	π ₇	π ₈	π ₉	π ₁₀
	с	B/H	$ ho_b$	P _{Vol}	α	∨/(u _H H)	Q/(<i>u_HH</i>)	x/H	y/H	z/H
L	0	0	0	0	0	0	0	0	0	0
Т	0	0	0	0	0	0	0	0	0	0

Funktionaler Zusammenhang

Regressionsanalysen zur Bestimmung der Parameter a_i

2.) Beschreibung der Parameter a_i in Abhängigkeit der **T** Gruppen *B*/*H* und α mittels gemischt quadratischer Polynomansatz für funktionalen Zusammenhang $a_i = f(B/H, \alpha)$

$$\boldsymbol{a}_{j} = \sum_{j=0}^{2} \boldsymbol{c}_{B/H,j} \left(\frac{\boldsymbol{B}}{\boldsymbol{H}}\right)^{j} \cdot \sum_{j=0}^{2} \boldsymbol{c}_{\alpha,j} \boldsymbol{\alpha}^{J}$$

$$\boldsymbol{a}_{i} = \boldsymbol{c}_{i0} + \boldsymbol{c}_{i1} \left(\frac{B}{H}\right) + \boldsymbol{c}_{i2} \alpha + \boldsymbol{c}_{i3} \left(\frac{B}{H}\right)^{2} + \boldsymbol{c}_{i4} \alpha^{2} + \boldsymbol{c}_{i5} \left(\frac{B}{H}\right) \alpha + \boldsymbol{c}_{i6} \left(\frac{B}{H}\right)^{2} \alpha + \boldsymbol{c}_{i7} \left(\frac{B}{H}\right) \alpha^{2} + \boldsymbol{c}_{i8} \left(\frac{B}{H}\right)^{2} \alpha^{2}$$

3.) Regressions analyse zur Bestimmung der Parameter c_i

	С _{і0}	C _{i1}	C _{i2}	C _{i3}	C _{i4}	С _{і5}	C _{i6}	C _{i7}	С _{і8}
<i>i</i> = 1	55.3	-23.8	94.2	0.0	-48.7	-15.5	0.0	10.7	0.0
<i>i</i> = 2	14.1	-5.3	41.0	0.0	-17.6	6.4	0.0	-6.0	0.0
<i>i</i> = 3	0.0	0.9	0.3	0.0	-0.2	-0.8	0.0	0.4	0.0

Funktionaler Zusammenhang

Gegenüberstellung berechneter und aus Windkanalversuchen resultierenden Parametern a_i

- 1.0 < B/H < 2.0 Zwischenwerte liegen im physikalischen sinnvollen Bereich (B/H = 1.5)
- höchst mögliche Maximalkonzentrationen bei schräger Anströmung ($\alpha \approx 50 \dots 55$)

Christof Gromke