

06/07/2010

Non-linear chemical reaction terms for ozone chemistry in CFD-based Air Quality modelling

Bart De Maerschalck, Stijn Janssen, Clemens Mensink

Outline

- » Motivation
- » CFD-model: Envi-met
- » Chemical reaction terms and reaction coefficients
- » Examples:
 - » Street canyon
 - » Street canyon with vegetation
 - » Highway with vegetation barrier

Motivation

- » Traffic: direct emissions of NO and NO₂
- » After emission: *fast* chemical reaction with ozone: formation of secondary NO₂:

 $NO + O_3 \longrightarrow NO_2 + O_2$

» At the same time:

 $NO_2 + h\nu \longrightarrow NO + O$ $O + O_2 \longrightarrow O_3$

» If a chemical equilibrium is reached:

$$\frac{[\mathrm{NO}][\mathrm{O}_3]}{[\mathrm{NO}_2]} = \frac{j_{NO_2}}{k_{NO}}$$

Motivation

- » Equilibrium is dynamically reached during transport
- In complex urban environments (e.g. Streetcanyon) due to continuous mixing with fresh NO, NO₂ and O₃, equilibrium stat not reached within the domain of interest
- » Secondary NO₂ has a signifacant contribution
- » For regulatory purposes: NO₂ concentration is required
- -> implementation of chemical transformation process in CFD-based air quality and micro-climate model (Envi-met)

CFD-model: Envi-met

- » Envi-met: Micro climate + Air quality
 - » Prof. M. Bruse, University of Mainz, Germany (www.envi-met.com)
- » CFD based
 - » <u>Reynolds Averaged Navier Stokes</u>
 - » K-ε Turbulence model
 - » Structured mesh, resolution 0.5 10m
- » Soil model
 - » Water content
 - » Temperature
- » Radiative flux model
 - » Sw / Lw
 - » Clouds / shadows
- » Vegetation model:
 - » Aerodynamic resistance, source-term in turbulence model.
 - » Absorption of gases through the stomata, size dependent deposition on the leaf surface of PM

Gas Dispersion: Eulerian approach

Chemical reaction terms

$$R_{NO} = \left(\frac{d [NO]}{dt}\right)_{R} = -k_{NO} [NO][O_{3}] + j_{NO_{2}}[NO_{2}]$$
$$R_{NO_{2}} = \left(\frac{d [NO_{2}]}{dt}\right)_{R} = k_{NO} [NO][O_{3}] - j_{NO_{2}}[NO_{2}]$$
$$R_{O_{3}} = \left(\frac{d [O_{3}]}{dt}\right)_{R} = -k_{NO} [NO][O_{3}] + j_{NO_{2}}[NO_{2}]$$

- » K_{NO} bimolecular reaction rate coefficient (temperature)
- » j_{NO_2} Phototlysis coefficient (UV)
- » [] concentrations in ppb (-> convert to proper units)

Reaction rate coefficient

$$k_{NO} = A_0 \exp\left(-\frac{E}{R}\frac{1}{T}\right)$$

$$A_0 = 2.2 \times 10^{-12} \frac{cm^3}{molecule \ s}$$

$$\frac{E}{R} = 1430 \ K$$

06/07/2010 © 2010, VITO NV 8

T [°C]

Photolysis coefficient

- » Theoretically: integration over arctic flux: $j_{NO_2} = \int_{295nm}^{400nm} \sigma_{NO_2}(\lambda, T) \phi_{NO_2}(\lambda_1, T) I(\lambda) d\lambda$
- » Practically: empirical formula based on solar radiation¹:

$$j_{NO_2} = 0.8 \times 10^{-3} \exp(-10/R_s) + 7.4 \times 10^{-6} R_s$$

» R_s computed in Envi-met by radiative scheme

Computed photolysis coefficient during the day for Vaassen, The Netherlands (Left: 23/08/2006, mean cloud coverage 76%; Right: 26/09/2006, 99%)

vision on technology

Are k_{NO} and j_{NO_2} computed properly?

» If a chemical equilibrium is reached:

$$[NO_{2}] = [NO_{2}]_{0} + \frac{1}{2} \left([O_{3}]_{0} + [NO]_{0} + \frac{j_{NO_{2}}}{k_{NO}} \right) - \frac{1}{2} \sqrt{D}$$
$$[NO] = -\frac{1}{2} \left([O_{3}]_{0} - [NO]_{0} + \frac{j_{NO_{2}}}{k_{NO}} \right) + \frac{1}{2} \sqrt{D}$$
$$[O_{3}] = -\frac{1}{2} \left([NO]_{0} - [O_{3}]_{0} + \frac{j_{NO_{2}}}{k_{NO}} \right) + \frac{1}{2} \sqrt{D}$$
$$D = \left([NO]_{0} - [O_{3}]_{0} + \frac{j_{NO_{2}}}{k_{NO}} \right)^{2} + 4 \frac{j_{NO_{2}}}{k_{NO}} \left([NO_{2}]_{0} + [O_{3}]_{0} \right)$$

 Assuming the measured background concentrations are in equilibrium, and the coefficients are correctly calculated in Envi-met, the background cencentrations should be conserved: [] = []₀

Measured rural background concentrations and computed equilibrium for NO (left), NO2 (middle), and O3 (right). (Vaassen, The Netherlands, 23/08/2006, 76% cloudiness)

Measured rural background concentrations and computed equilibrium for NO (left), NO2 (middle), and O3 (right). (Vaassen, The Netherlands, 26/09/2006, 99% cloudiness)

Example 1: street canyon

- » Low windspeed 1.5 m/s
- » High background: $24\mu g/m^3 NO_1$, $72\mu g/m^3 NO_2$, $71\mu g/m^3 O_3$

© 2010, VITO NV

13

Secondary NO₂ production (%)

Example 2: Street canyon with vegetation

Secondary NO₂ production (%)

The effect of the vegetation in the street

Example 3: highway with vegetation barrier

Effect of the vegetation barrier

Conclusions

- » Dynamics chemistry model implemented in Envi-met
- » Photolysis coefficients: empirical formulation based on modelled radiation
- Strong increase of NO₂ due to secondary NO₂ production even at small scales
- » Different effects of the vegetation on NO₂ due to changes in secondary NO₂ production

