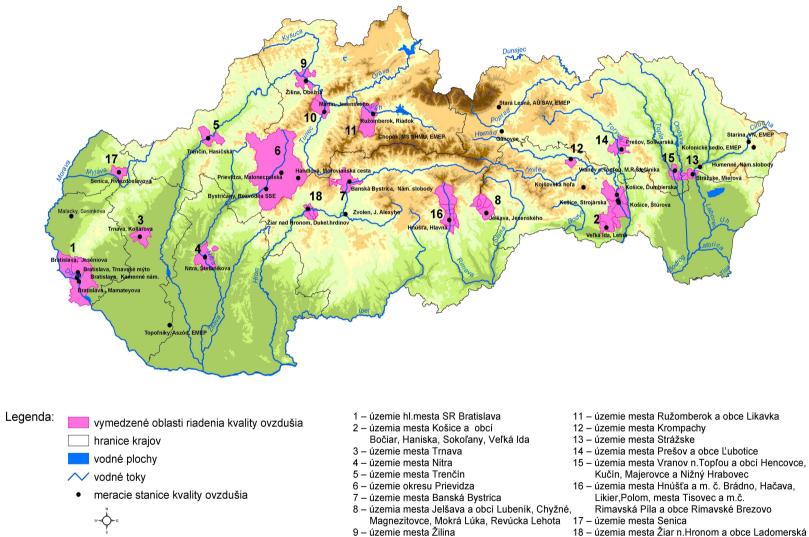
PM₁₀ Source Apportionment for Non-attainment Areas Based on Routinely Available Data

Jana Krajčovičová, Jana Matejovičová, Gabriel Szabó Slovak Hydrometeorological Institute, Bratislava, Slovakia



Directive 2008-50/EC:

Postponement of attainment deadlines of PM_{10} concentrations can be granted, if:

- adverse dispersion characteristics
- adverse climatic conditions
- transboundary contributions

10 – územia miest Martin a Vrútky

Vieska

SOURCE APPORTIONMENT

- It is necessary regardless of justification argument (i.e., transboundary contributions, adverse climatic conditions)
- It is necessary to perform for all exceedance situations at all monitoring sites: In case of daily limit exceedances each case should be analyzed

Ref. number	Air quality management area (AQMA)	No. of monitor. stations	Pollutant above LV	Population	Justification
1	Bratislava	3	PM ₁₀	428 791	Т
2	Košice, Veľká Ida	3	PM_{10}	239 524	Т
3	Trnava	1	PM_{10}	67 726	Т
4	Nitra	1	PM_{10}	84 070	Т
5	Trenčín	1	PM_{10}	56 826	A,T
6	District of Prievidza	3	PM_{10} , SO_2	139 639	A,T
7	Banská Bystrica	1	PM_{10} , NO_2	80 106	А
8	Jelšava	1	PM_{10}	6 180	А
9	Žilina	1	PM_{10}	85 327	А
10	Martin, Vrútky	1	PM_{10}	65 821	А
11	Ružomberok	1	PM_{10}	32 794	A,T
12	Krompachy	1	PM_{10}	8 929	А
13	Strážske	1	PM_{10}	4 594	А
14	Prešov	1	PM_{10}	94 239	Т
15	Vranov nad Topľou	1	PM_{10}	26 952	А
16	Hnúšťa	1	PM_{10}	12 331	А
17	Senica	1	PM ₁₀	20 751	А
18	Žiar nad Hronom	1	PM_{10}	20 347	А

NATURE OF PM_{10} EMISSIONS

- efficient long range transport
- multitude and variety of emission sources
- industrial stacks mostly minor contributors
- fugitive emissions and wind erosion play important role

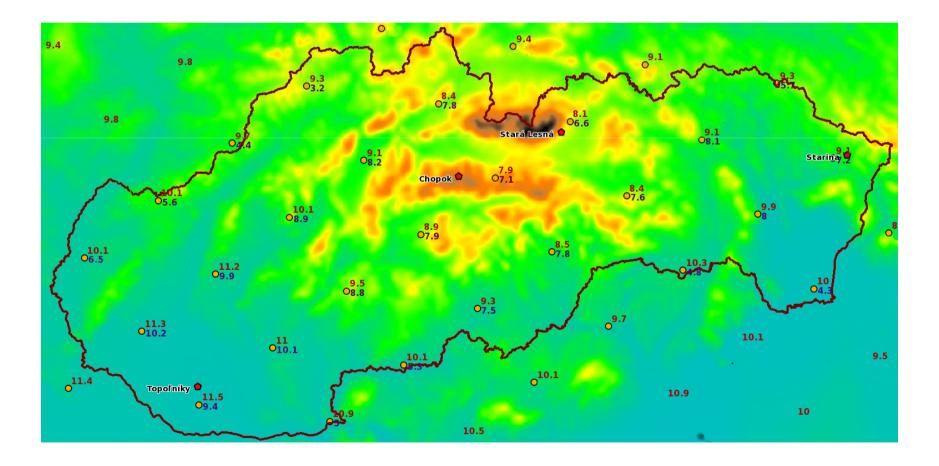
MAIN COMPONENTS OF PM₁₀ SOURCE APPORTIONMENT

- Regional (including transboundary) transport
- Local household heating in winter
- Traffic exhaust and non-exhaust emissions
- Dust resuspension from roads and open surfaces (arable land in spring and winter, quarries, landfills, construction sites ...)
- Industrial fugitive and stack emissions
- Seasonal agricultural activities

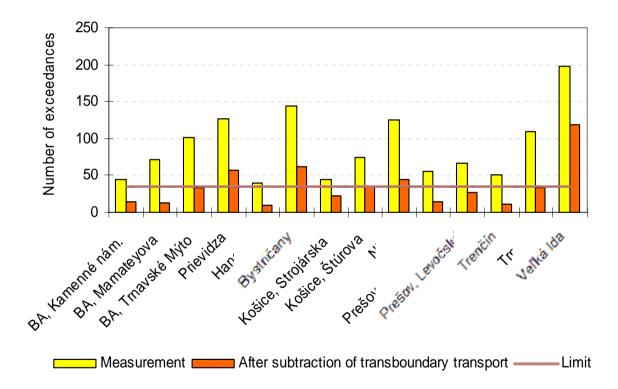
QUANTITATIVE SOURCE APPORTIONMENT - MODELING

- Regional (including transboundary) transport
- Traffic exhaust and non-exhaust emissions
- Industrial stack emissions

TWO ISSUES HAVE TO BE CONSIDERED:


- determine the portion of PM₁₀ concentration which is to be subtracted from the measured concentration (postprocessed EMEP model)
- 2. prove that the PM_{10} measured at the day of an exceedance originated outside the territory of Slovakia

(EMEP and HYSPLIT model backward trajectories)

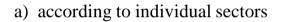

Results of EMEP annual modeling with and without SK emissions

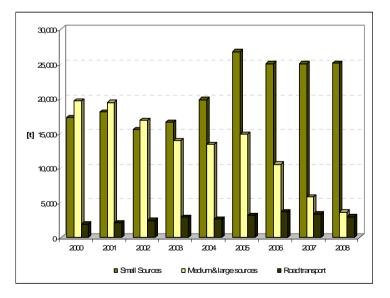
Total mean annual PM_{10} concentrations (red values, in $\mu g/m^3$) and mean annual transboundary contributions (blue values, in $\mu g/m^3$) at gridpoints.

Number of exceedances in 2005 - evaluation of transboundary transport

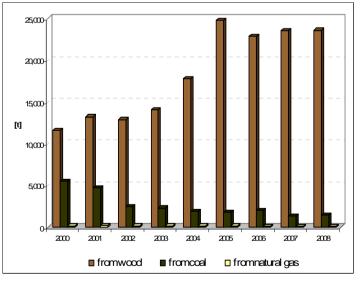
CEMOD model – annual simulation

	Large and medium	Mobile sources	Regional background (%)		Other
AQMA/AMS station	stationary sources (50%)	(%)	Domestic	Transboundary	sources (%)
Kamenné námestie	0.3	6.9	9	57	26.8
Trnavské mýto	0.3	12.0	6	41	40.3
Mamateyova	0.3	6.2	8	54	31.4
Košice Štúrova	3.3	20.7	7	47	21.9
Košice, Strojárska	3.2	3.9	8	56	28.8
Banská Bystrica	0.0	1.6	5	42	51.0
Jelšava	0.3	0.3	4	41	51.5
Hnúšťa	1.3	0.5	5	45	48.6
Žiar nad Hronom	1.7	0.8	7	61	29.2
Veľká Ida	18.3	0.0	4	27	51.2
Strážske	0.9	0.6	8	52	39.1
Krompachy	0.6	0.3	6	52	41.6
Nitra	0.0	0.8	8	44	47.4
Humenné	0.7	0.7	6	57	35.4
Prešov	1.6	0.9	6	48	43.7
Vranov	1.3	0.3	5	44	49.5
Prievidza	0.6	0.4	5	28	67.0
Bystričany	1.0	0.0	5	29	64.7
Handlová	1.5	0.3	7	43	47.9
Trenčín	0.0	0.9	6	45	48.7
Senica	0.0	0.3	5	48	46.3
Trnava	0.3	1.0	6	42	49.9
Martin	1.7	0.9	5	34	58.6
Ružomberok	0.2	0.3	2	22	75.1
Žilina, Obežná	0.0	0.7	9	57	55.5




THE MOST IMPORTANT "OTHER" SOURCES:

- Domestic heating (wood, coal)
- Resuspension from roads and other open surfaces



PM₁₀ EMISSIONS IN SLOVAKIA

b) small sources according to type of fuel

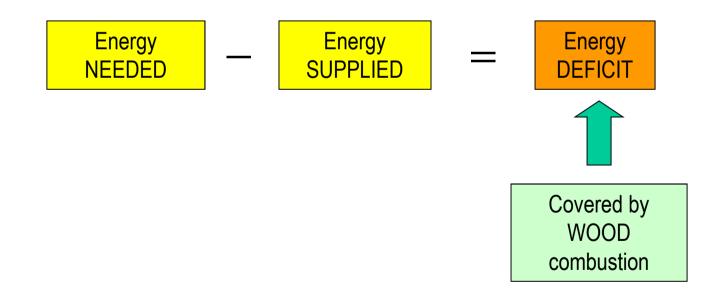
High Resolution PM₁₀ Emission Database From Domestic Wood Combustion

DATA

Data available for each municipality:

- Census data (2001):
 - $\,\circ\,\,$ number of inhabited apartments in family houses $\,$ N_{rd}
 - \circ number of inhabited apartments in apartment blocks N_{bd}
 - o population per apartment Pap
 - $\circ~$ average area of an apartment A_{ap}
 - o portion of apartments equipped with a bathroom NP_{kup}
- Annual data:
 - population P
 - o natural gas sold to households S_p (in m³)
 - $\,\circ\,\,$ number of connections to natural gas supply N_{gas}
- GIS data
 - \circ vector map of municipalities
 - o raster map of CORINE landuse data

Data available for each district:


- Annual data:
 - $\circ\,$ coal and coal products sold in retail
 - $\circ~$ length and average temperature of heating season

Data available for the whole territory of Slovakia:

• Annual use of electrical energy for heating of households

ENERGY BALANCE METHOD

ENERGY NEEDED

For heating of each municipality is a function of:

• $Q_{vr}(Q_{c}, T_{es}, d)$

where

- Q_{vr} is annual energy needed for heating of a building (GJ),
- Q_c is thermal loss of the building (kW),
- *d* is the length of heating season (days), and

 T_{es} is the average temperature of the heating season (degrees of Celsius).

- Statistical data on:
 - \circ number of inhabited apartments in family houses N_{rd}
 - \circ population per apartment P_{ap}
 - \circ average area of an apartment A_{ap}
 - \circ portion of apartments equipped with a bathroom NP_{kup}

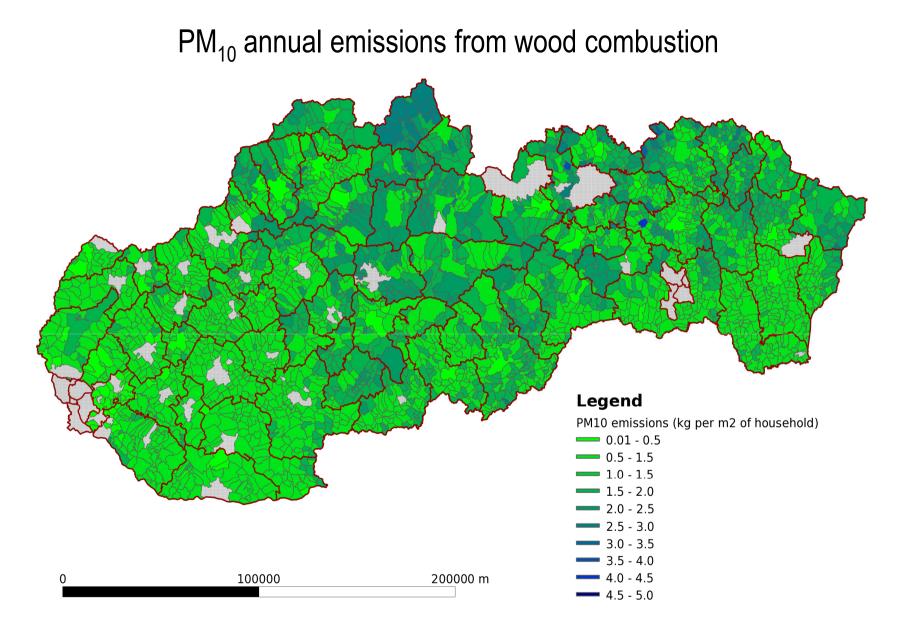
ENERGY SUPPLIED

$$E_k = G_h H V_g E F_g + \sum_i F_i H V_i E F_i$$

where

 E_k

$$E_k$$
is the total energy supplied by all sources (J), HV_g , HV_i are heat values of particular fuels (J/m3, J/kg), EF_g , EF_i are efficiencies of mass to energy conversions of
particular fuels.



PM₁₀ EMISSIONS FROM WOOD COMBUSTION

$$PM_{wood} = \frac{G_{wood}}{HV_{wood} EF_{wood}} EM_{wood}$$

where

G_{wood}	is the energy deficit covered supposedly by wood combustion	
PM_{wood}	are the total annual emissions of PM_{10} for the municipality from residential wood combustion (kg/year),	
HV_{wood} , EF_{wood}	are heat value and energy conversion efficiency of wood, and	
EM_{wood}	is PM_{10} emission factor of wood combustion, as given in MZP SR (2007)	

FUTURE WORK – IMPROVEMENT OF THE EMISSION DATABASE

- Obtain more disaggregated data on the gas consumption and the number of gas connections (household vs. commercial), especially in cities.
- Introduce regionally and population-varying thermal loss factor,
- Investigate the most appropriate value for the PM₁₀ emission factor for wood,
- Obtain newer housing and household-associated data (new population census in 2011) (number and age of apartments in family houses vs. apartment blocks, household equipment statistics),

FUTURE WORK -MODELING

- Implementing CAMx model (long range transport)
- Local modeling on small domains using CALPUFF (source apportionment)

Thanks for your attention !