[dstl]

The Importance of Concentration Fluctuations in Hazard Assessment and Source Term Estimation

13th International Conference on Harmonisation within Atmospheric Dispersion Modelling – 2nd June 2010

Dr. Steven Herring and Dr. Peter Robins. Defence Science and Technology Laboratory (Dstl), United Kingdom.

Background

 Response to a release of hazardous material depends upon identifying:

- Where the release occurred.
- How much material was released.
- Can be addressed by inverse modelling/source term estimation but:
 - Process must be rapid to be operationally useful (<5 minutes).
 - Process is difficult due to the large uncertainties associated with the data.

05 July 2010 © Dstl 2010 DSTL/CP45811

Aim

- Correlating sensor concentration fluctuations with predictions from a dispersion model is a critical part of the inverse modelling process.
- The aim was to:
 - Determine the impact on the source term estimate of different variance model assumptions.
 - Determine the best representation of variance to use.

05 July 2010 © Dstl 2010 DSTL/CP45811

MCBDF

- Dstl has prototyped a capability for source term estimation based on dynamic Bayesian graphical modelling:
 - Enables disparate data to be combined in mathematically tractable way with high level of error tolerance.
 - Outputs are source term posterior probability density functions (pdfs).
- Software is known as the Monte-Carlo Bayesian Data Fusion (MCBDF) code.

05 July 2010 © Dstl 2010 DSTL/CP45811

MCBDF Output

Source-term estimation for 9 parameters: location (x, y), time (t), release mass (m), agent type (a), wind vector (u, v), roughness length (z₀), Monin-Obukhov length (L):

Source term pdfs

- 0 ×

0.6

- 0 ×

90

0.5

80

Concentration variance in MCBDF

• The posterior pdfs are evaluated using Bayes' rule:

D is the total data set θ is the source term hypothesis

Dispersion model concentration mean (μ) and variance (c_{var}) are required to evaluate the likelihood of individual data (*d*):

 $\underbrace{p \mathbf{q} \mid \mu, c_{\text{var}}}_{likelihood} = \int_{0}^{\infty} \underbrace{p \mathbf{q} \mid c}_{measuremet} \underbrace{p \mathbf{q} \mid \mu, c_{\text{var}}}_{concentration} dc$

densitv

05 July 2010 © Dstl 2010 DSTL/CP45811 HARMO13

densitv

MCBDF Dispersion Model

- The dispersion model used in MCBDF is the Dstl Urban Dispersion Model (UDM):
 - Gaussian puff model based on the AERMOD equations.
 - Used in non-urban mode.
 - Very rapid execution time on desk-top PC.
 - Enables Bayesian probability reasoning to be applied to a sample set of thousands of hypothesised releases.

05 July 2010 © Dstl 2010 DSTL/CP45811 HARMO13

Concentration Variance

 Concentration variance at a point is dependent upon:

- The local turbulence scales.
- The time since release.
- Position relative to the puff centre.
- The puff interaction history.

05 July 2010 © Dstl 2010 DSTL/CP45811

Clipped Gaussian distribution

 Past analysis has suggested that the variability can be best represented by a clipped Gaussian distribution:

Clipped Gaussian

Under-lying Gaussian

UDM Variance Calculation

 Concentration variance due to a number of over-lapping puffs is:

$$c_{\rm var} = \frac{\overline{r}^2 \overline{c}^2}{\overline{G}}$$

Where: \overline{c} is the average puff concentration, \overline{r} is the average fluctuation intensity, \overline{G} is the average Gaussian factor

• Fluctuation intensity is:

$$r = \sqrt{\frac{\sigma_{ex}\sigma_{ey}\sigma_{ez}(1+K^2)}{\sigma_{ix}\sigma_{iy}\sigma_{iz}}} - 1$$

Where: subscript 'e' refers to ensemble average puffs, and subscript 'i' to instantaneous puffs. K is the internal fluctuation constant (= 0.3).

05 July 2010 © Dstl 2010 DSTL/CP45811

Testing of MCBDF against DP26

- Dipole Pride 26 (DP26) arranged to test the SCIPUFF variance model.
- UDM mean and variance values assumed to refer to clipped-Gaussian distribution.
- Inference concentration time-series had little in common with trial data.

05 July 2010 © Dstl 2010 DSTL/CP45811 HARMO13

An Alternative Assumption

 Assume that the mean and variance from UDM refer to an unclipped Gaussian distribution, and derive a clipped distribution:

unclipped Gaussian

clipped Gaussian

Testing of MCBDF against DP26

Unclipped Gaussian assumption provided much more realistic concentration time-series.

05 July 2010 © Dstl 2010 DSTL/CP45811

Testing of MCBDF against FFT07

HARMO13

- Trial arranged to provide test data for inverse modelling.
- MCBDF applied in 'blind test' exercise.
- Most likely hypothesis output.
- Unclipped Gaussian assumption applied.
- Release location and time generally good.

05 July 2010

DSTI /CP45811

 Release mass systematically under-estimated.

Case	Actual	MCBDF
	release	release mass
	mass (kg)	(kg)
16	0.698	0.185
22	1.159	0.294
61	1.159	0.292
70	0 698	0.231

Comparison of DP26 and FFT07 cases

 Both provided challenging cases; but had different temporal and spatial scales:

Release locations green circles; sensor locations blue circles

HARMO13

Comparison of clipped/unclipped results

- DP26 and FFT07 cases analysed with clipped and unclipped assumptions.
- Unclipped assumption:
 - True source location always within pdf.
 - Release mass 20-40% of true value.
 - Release time consistently later than actual time.
- Clipped assumption:

05 July 2010

/CP45811

- True source location not within output pdf.
- Earlier release times and larger release masses.

HARMO13

Comparison of results

Location pdfs and actual release location:

Clipped Gaussian assumption did not provide useful output.

Why is unclipped assumption best?

- Provided more concentration density values for comparison with sensor time-series data.
- Provided less precise hypotheses with low individual significance.
- Having more data at each step helped MCBDF construct sensible pdfs, as it does not take account of past history.
- Assumption did not provide a better model of the concentration variance.

05 July 2010 © Dstl 2010 DSTL/CP45811

Under-estimation of release-mass

- Unclipped assumption gave consistent under-estimation of release mass.
- This could stem from:
 - The assumption results in an effective loss of mass.
 - The variance values were too large.
- Further analysis based on applying simple factors to the concentration variance did not show a consistent benefit.
- Resolution requires a more sophisticated concentration variance model that captures more of the physics, and relates variance to local turbulence.

05 July 2010 © Dstl 2010 DSTL/CP45811

Conclusions

- If MCBDF is used, assuming that current UDM mean and variance values refer to an unclipped Gaussian distribution a partial solution is achieved: release location and time.
- A complete solution requires a more accurate concentration variance model.
- Complete inverse modelling solutions require variance calculations appropriate to the environment.

05 July 2010 © Dstl 2010 DSTL/CP45811

Questions?

05 July 2010 © Dstl 2010 DSTL/CP45811

