

MODELED ESTIMATES OF HUMAN HEALTH AND ECOLOGICAL IMPACTS FROM THE ESTABLISHMENT OF A NORTH AMERICAN EMISSIONS CONTROL AREA (ECA)

Pat Dolwick¹, Lucie Audette², Ken Davidson², Jason Lynch³, and Tyler Fox¹

¹ Air Quality Assessment Division, Office of Air Quality Planning and Standards (OAQPS), U.S. Environmental Protection Agency ²Assessment and Standards Division, Office of Transportation and Air Quality (OTAQ), U.S. Environmental Protection Agency ³ Clean Air Markets Division, Office of Atmospheric Programs (OAP), U.S. Environmental Protection Agency

Abstract

U.S. EPA Air Ouality Modeling Configuration

Previous studies have concluded that emissions from ocean-going marine vessels may cause as many as 60,000 deaths annually worldwide. In this study, emissions of NOx, SOx, and PM from the shipping sector are shown to contribute significantly to poor air quality across North America and are increasingly contributing to the amount of sulfur and nitrogen being deposited in the U.S. and Canada. The outputs from a series of regional air quality simulation U.S. EPA's Community Multiscale Air Quality (CMAQ) modeling system, were paired with several "downstream" models to look at the impacts of potential regulations affecting oceangoing vessels on human health and welfare. As part of this analysis, several innovative linkages were developed to relate projected changes in air quality to impacts on health and welfare metrics such as human mortality, acidification of aquatic and terrestrial ecosystems. and forest health. This poster briefly summarizes the results of this integrated modeling and demonstrates that reductions in ship emissions from the use lower sulfur fuels would produce widespread benefits that would outweigh the costs of the fuel switch. Additionally, several sensitivity tests were conducted to quantify the air quality and health impacts of ship emissions at various distances from the North American shoreline. Based on this modeling, a joint proposal from the United States, Canada, and France to amend MARPOL Annex VI to designate specific areas of North American coastal waters as an Emission Control Area (ECA) was accented by the International Maritime Organization (IMO) in March 2010. This ECA is scheduled to begin to reduce emissions as early as July 2010 and is expected to deliver substantial public health benefits to many people living in the U.S., Canada and French territories, as well as to marine and terrestrial ecosystems over the next decade

Background

A natural by-product of a global economy is the need for transportation of commodities from their source of origin to their source of consumption. Steady growth in international shipping over the past half-century has resulted in emissions from this sector increasingly being viewed as a significant contributor to degraded air quality and health worldwide. Recent studies have shown that shipping-related emissions are responsible for as many as 60,000 cases of prenature mortality every year globally (Corbett et al., 2007; Winebrake et al., 2009).

However, emissions from international shipping and the associated air quality problems have traditionally been difficult to regulate due to jurisdictional issues (Shrader, 2008). To address this issue, the International Maritime Organization (IMO), an agency of the United Nations, established Annex VI of the MARPOL convention to assist in the prevention of air pollution from ships. This international convention allows countries to apply for a designation of an Emissions Control Area (ECA) for specific portions of their coastal waters. Ships operating in a designated ECA are required to not to exceed 0.1 percent fuel sulfur by 2015. This requirement is expected to reduce PM and SOx emissions from this sector by more than 85 nercent. Additionally, beginning in 2016, vessels operating in an ECA will need to meet engine emissions standards that will result in an 80 percent reduction over present-day NOx emissions. In March 2010, the International Maritime Organization (IMO) member states formally agreed to designate a large portions of U.S. and Canadian waters as an ECA. Based on modeling analyses described further in this poster, the decision was made to extend the North American ECA boundary to 200 nautical miles from the relevant shorelines. As shown in the rest of the poster, this regulatory action is expected to significantly improve air quality along the affected coastlines as well as improve ecosystem health in the same areas

Cridde 3 main (PPA) references exter a description (cg. H) Others

Gridded estimates of NOx emitted in 2020 from Category 3 marine vessels in tons per year (EPA, 2009). Note that preferred shipping routes tend to concentrate emissions from this sector along the California coast and several major U.S. ports (e.g., Houston and New Orleans).

When considering the potential effects of any particular air quality regulation, it is common practice to apply a photochemical air quality wodeling system to estimate the change in regional air quality expected to occur with the emissions reductions proposed as part of the control program. At their core, air quality models are quantitative approximations of the numerous complex physical and chemical interactions in the atmosphere that determine the formation and fate of air pollutants in the atmosphere. The U.S. EPA has traditionally used air quality modeling results to support policy decisions and as inputs into regulatory impact analyses. As part of this exercise, a fine-resolution, national air quality modeling analysis was performed to estimate the effect in 2020 of the proposed ECA emissions reductions on future 8-hour conce concentrations, sibility levels, and acid deposition to watersheds and ecosystems across the U.S.

EPA's Community Multi-scale Air Quality (CMAQ) modeling system was used in this analysis (Byun and Schere, 2006). CMAQ is a publicly available, per reviewed, state-off-he-science model consisting of a number of science attributes that are critical for simulating the oxidant precursors and nonlinear organic and norganic chemical relationships associated with the formation of cozone as well as sulfate, nitrate, and organic aerosols. The CMAQ modeling analyses were performed for three separate domains, as shown above. This modeling used a parent horizontal grid of 36 km (black boundry) with two nested, finer-scale 12 km grids covering the Eastern (blue) and Western U.S (trod). The model teatends vertically from the surface to 100 millibrus using a signa-pressure coordinate system. Air quality conditions at the outer boundary of the 36 km domain were downscaled from the global GEOS-Chem model and tid not change over the simulated scenarios.

Expected Impacts On Ozone & Fine Particulate Levels

He life difference

High levels of ozone and fine particulates are expected to continue to be a problem over the US. For at least the next two decades, despite recent extensive mitigation programs for landbased sources. Without any further action, emissions from ocean-going vessels would contribute a larger share to the projected levels of ozone and fine particulates in the future as emissions from other sources decrease. The CMAQ modeling projects that the designation of an ECA within 2000 maniful mikes for the US, coastline will result in large improvement in pra2.5 air quality. The figure (efb) shows the improvement in pra2.4 about PML2.5 levels in 2020 as a result of the lower 50x and NOx emissions. The air quality hendif will be largest in coastal areas, exceeding 1.0 ug/m3 manually in some locations. This is a significant increment of the current US, annual PM2.5 air quality standard (15.0 ug m3).

Large improvements in ozone air quality are also projected to occur as a result of an ECA designation. Some locations are projected to experience reductions of 0.5 to 2.0 pp by 2020 as a result of the tighter ECA NOX engine standards. The figure (left) shows the change in average daily maximum 8-hour ozone levels in 2020 as a result of this reduction in shipping emissions. The modeling also shows some limited areas of ozone increases over portions of Los Angeles and Seattle due to less titration of ozone when NOX shipping emissions are reduced. However, as local emissions of U.S. NOX are further reduced in these areas in the future to meet national air quality standards, it is expected that the ozone chemistry will become increasingly favorable to NOX controls. Based on the modeled air quality improvements, the ECA designation is estimated to result in benefits ranging from \$27-60 billion dollars annually due to reduce health costs and reduced rementure mortality.

Impacts on Deposition, Visibility, & Ecosystems

Not surprisingly, given the large reductions in NOx and SOx emissions that will occur in the coastal regions over the next decade due to the ECA designation, the modeling also projects large reductions in total introgen and total suffur deposition over the U.S. Reductions of more than ten percent in suffur deposition are projected in most coastal areas 9 2020. The figures below show the change in total nitrogen (lower left) and suffur (lower right) deposition in 2020 based on the CMAQ modeling. These reductions in acid deposition lead to a corresponding improvement in ecosystem health, which was modeled Rdge Mountains. The ecosystem modeling showed that shipping emissions contributed to cases in which more acid deposition occurred than could be neutralized.

environmental outcomes of the ECA designation, the modeling showed that improvements in visibility can be expected in many seenic national parks over the U.S. (left). The ECA consistons reductions are projected to result in 2-5 percent improvements in visibility in numerous locations. In some western locations, the improvements from the ECA program are equal to the improvements resulting from all other sector courtol between 2002 and 2020.

Conclusions

The U.S. coastline and many parts of the interior of the contry will experience significant improvements in air quality due to reduced fine particulates and ozone precursors in the future as a result from ships complying with ECA standards. Coastal areas will experience the largest improvements, however, significant improvements will extend hundreds of miles inland to reach nonatianiment areas in states sate. Tennessee and Pennsylvania. National treasures such as the Grand Canyon National Park and the Great Smoky Mountains will also see air quality improvements. Additionally, the North American ECA is expected to yield significant health and welfare benefits. EPA estimates that the annual henefits in 2020 will include preventing between 5500 and 14.000 premature deaths, 3,800 emergency room visits, and 4,900,000 cases of acute respiratory symptons in 202. For those that are interested, considerably more detail on the ECA modeling methodology and results is contained within the technical support document that supported the ECA designation (U.S. EPA, 2009)

References

Byun, D. W., and K. L. Schere, 2006: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models -3 Community Multiscale Air Quality (CMAQ) Modeling System. Applied Mechanics Reviews, Volume 59, Number 2 (March 2006), 51-77.

Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatha, P., Eyring, V., and A. Lauer, 2007: Mortality from ship emissions: A global assessment. Environ. Sci. Technol., Volume 41, Number 24, 8233-8239.

U.S. Environmental Protection Agency, 2009: Proposal to Designate an Emission Control Area for Nitrogen Oxides, Sulfur Oxides and Particulate Matter: Technical Support Document. Office of Transportation and Air Quality, EPA-420-R-09-007, 32900.

Winebrake, J.J., Corbett, J.J., Green, E.H., Lauer, A., and V. Eyring, 2009: Mitigating the Health Impacts of Pollution from Oceangoing Shipping: An Assessment of Low-Sulfur Fuel Mandates, Env Science & Technology, 43 (13), 4776-4782.