

THE MEGAPOLI PARIS CAMPAIGN FOR URBAN AEROSOL CHARACTERISATION – A COMPREHENSIVE DATA SET FOR AIR QUALITY MODEL EVALUATION

M. Beekmann (1), A. Borbon (1), J. Sciare (2), V. Gros (2), A. Prevot (3), U. Baltensperger (3), A. Wiedensohler (4), F. Drewnick (5), S. Pandis (6), A. Baklanov (7), M. Lawrence (5), and the MEGAPOLI Paris- campaign team

(1) LISA, France, (2) LSCE, France, (3) PSI, Switzerland, (4) IfT, Germany, (5) MPI, Germany, (6) FORTH, Greece, (7) DMI, Denmark,

HARMO June 1 – 4 2010, Paris

I. FP7 MEGAPOLI OBJECTIVES

- The main objectives
- <u>Objective 1</u>: to assess impacts of megacities and large air-pollution "hot-spots" on local, regional, and global air quality;
- <u>Objective 2</u>: to quantify feedbacks between megacity air quality, local and regional climate, and global climate change;
- <u>Objective 3</u>: to develop improved integrated tools for prediction of air pollution in megacities and their surrounding areas

<u>Megacities:</u> <u>Emissions</u>, urban, regional and <u>Global Atmospheric</u> <u>POL</u>lution and climate effects, and <u>Integrated tools for</u> assessment and mitigation

Ile de France Campaign objectives

 provide new experimental data to better quantify sources of primary and secondary organic aerosol in a large agglomeration and its plume

Region **Ile-de-France** = <u>12</u> <u>million inhabitants</u> (20% of the French population

Population density (PARIS)= 20,000 inh. / km²

Surrounded by rural areas

Dense scientific infrastructure

II. Campaign set-up

- Summer (July) 2009 campaign
- Winter (January 15 Febraury 15) campaign

Instrumentation set-up and parameters measured

* In situ

** Gases:

```
*** pollution tracers: CO, O3, NOx, NOy,
*** aerosol precursors: (O)VOC (cartridges, PTR-MS....), H2SO4
*** radical budget : OH, HO2, HONO, J's
```

** Aerosol

*** mass, size and number

*** physical properties (volatility, optical, hygroscopicity)

*** chemical composition: OA components and individual species, BC, dust, ions, ...

**** rapid AMS, PILS, MAAP, ECOC

**** detailed (filters with ~100 individual compounds)

** Dynamic (wind , T, turbulent fluxes, ...)

* Remote

```
** spectroscopic -> gas columns (NO2, HCHO, CO, O3, ....)
** Lidar (backscatter, partly multi-λ, polarized)
** wind profils (sodar, lidar)
```


3 primary sites

=> full suite of *in situ* measurements / + meteo at SIRTA.

3 primary sites 3 secondary sites => suite of *in situ* measurements / + meteo at SIRTA.=> lidar and spectrospcopic measurments / or in some situ

3 primary sites=> suite of *in situ* measurements / + meteo at SIRTA.3 secondary sites=> lidar and spectrospcopic measurments / or in some situ3 mobile labs=> full in situ measurements (PSI + MPI)1 mobile lab=> lidar measurements (CEA)1 mobile lab=> MAXDOAS (MPI)

3 primary sites=> suite of *in situ* measurements / + meteo at SIRTA.3 secondary sites=> lidar and spectrospcopic measurments / or in some situ3 mobile labs=> full in situ measurements (PSI + MPI)1 mobile lab=> lidar measurements (CEA)1 mobile lab1 aircraft ATR-42=> full in situ measurements (SAFIRE, CNRS, MPI)

In addition during winter => ALS - LEOSPHERE lidar network (five sites)

Organisation / Participants

Initial FP7 partners :

• CNRS (LISA, LSCE, GAME, LaMP, LGGE, subcontractor SAFIRE), PSI, IfT, FORTH, Univ. Helsinki

Additionnal EU Participants :

• MPI, Univ. College Cork, FMI, Univ. Duisburg

Additional French Participants :

• AIRPARIF, CEREA, Ecole de Mines, INERIS, LCME, LCP-IRA, LATMOS, LHVP, QUALAIR, SIRTA/LMD/IPSL

lead : M. Beekmann (LISA-CNRS), U. Baltensperger (PSI)

- Ground based segment : Jean Sciare, Valerie Gros (LSCE)
- Airborne segment : Agnès Borbon (LISA)
- Ad hoc coordinating committee with above persons, MEGAPOLI coordinators, aircraft instrument PI's, and site responsibles

III. First campaign results and how to be used for model evaluation

- Meteo / Transport
- Emissions
- Gas phase chemistry
- (Organic) aerosol chemical composition
- Aerosol properties

Meteo / Transport

Measurement type	Model parameter or
performed	process to be evaluated
Lidar and sodar wind profiles	Synoptic wind speed
Radiosounding wind and T	Synoptic wind speed and
profiles	boundary layer height
Surface meteo network	Urban heat island effect
(temperature)	
Lidar (ceilometer) derived	Urban heat island effect on
boundary layer height	BL height
Passive emission tracers	Urban scale dispersion
(urban scale NOx, urban +	(cumulated with uncertainty
plume BC and NOy)	on emissions), regional scale
	advection

Surface meteorology in July 2009 SIRTA (suburban sit)

Surface meteorology in Jan/feb 2010 SIRTA (periurban)

Measurements made at SIRTA/IPSL

Ecole Polytechnique, Palaiseau

M. Haeffelin SIRTA / IPSL

Snow and fog at the SIRTA site

PBL height derived from lidar and ceilometer measurements LHVP – SIRTA vs. MM5 and WRF

M. Haeffelin, SIRTA

Systematic comparison for July 2009 (afternoon)

Mesures ATR-42 Aethalometer (A. Schwarzeboeck, CNRS/ Lamp)

Simulations avec NFS/MM5/ CHIMERE Q. Zhang, M. Beekmann LISA

Black Carbon , in $\mu g/m3~(600m)$ Simulation of 16-07-2009 for day, 13 UTC

Emissions

Measurement type	Model parameter or
performed	process to be evaluated
Airborne plume	NOx, VOC, BC emissions
measurements of emission	(spatially integrated over
tracers (NOy, VOC, BC)	Paris agglomeration)
Urban scale VOC ratios	VOC emission ratios, source
	distribution
PM chemical composition	PM and organic aerosol
(individual tracers),	emission source distribution,
C14 ratio	modern vs. old OA
Airborne measurements of	Biogenic VOC emissions
biogenic VOC and oxidation	over forested areas
products	surrounding Paris
	agglomeration

Courtesy J. Sciare (LSCE)

Gas phase chemistry

Measurement type	Model parameter or
performed	process
	to be evaluated
Oxidant (sum O3+NO2)	Ozone formation efficiency
content	
Urban scale + plume NOy	NOx processing,
species	NOy budget
Urban scale + plume VOC	VOC reactivity + secondary
species	VOC build-up
Odd hydrogen radical and	Odd hydrogen (OH, HO ₂ ,
source/ sink measurements,	RO_2) radical budget,
VOC ratios of different	Oxidation capacity
reactivity	

LHVP: long-lived compounds time series

Courtesy V. Gros, LSCE

Diurnal radical profiles at SIRTA SAMU July 11 July 20

Combination with HOx source and sink measurements \Rightarrow Radical closure experiment

Courtesy A. Kukui, LATMOS

Aerosol chemistry

Measurement type	Model parameter or
performed	process to be evaluated
Chemical PM1, PM2.5 mass	Secondary and inorganic
closure (AMS, PILS,)	aerosol formation
AMS HOA + OOA	Oxidative state of organic
AMS elemental (H,C,O) ratio	aerosol
OOA/ CO ratio versus –	Normalized (emissions,
log(NOx/NOy)	photochemistry) secondary
	aerosol build-up
OOA/ OX ratio	

Context: Large uncertainties on primary and secondary organic sources

POA is semivolatile and can be oxidised ! (Robinson et al., 2007)

In addition => Aging of SOA : Oxidation, Oligomerisation / Polymerisation talk Q.J. Zhang on Thursday morning

Aerosol properties

Measurement type	Model parameter or
performed	process to be evaluated
Aerosol size distribution,	Correct representation of
hygroscopicity	nucleation, coagulation,
	hygroscopic growth in
	models
Hygroscopicity and single	Representation of mixing
particle measurements	state
Volatility measurements	Volatility representation of
	organic aerosol

Organic PM Volatility (SIRTA)

Ambient + Heated Organic PM vs Time

results from FORTH & CM S.Pandis et al.

Conclusion

- Megapoli Paris campaign data will allow extensive evaluation of urban / regional scale air quality models
- Pollution plume is well identified at 100 150 km downwind from Paris even for rather clean conditions in summer
- Oxygenated organic aerosol (OOA) seems to be major OA component during summer (preliminary result)
- Winter : much larger gas phase and aerosol concentrations of both local/regional and continental origin
- Strong wood burning source for OA in winter

More material

http://megapoli.dmi.dk/

http://megapoli.lisa.univ-paris12.fr

Acknowledgements

Support from FP7 / MEGAPOLI ANR French national program French LEFE-CHAT / ADEME Ile de France Soutien SEPPE IdF Other national + lab support

Logistical support SIRTA , LHVP , Golf de la Poudrière

Forecast PREVAIR <u>www.prevair.org</u>

Acknowledgements **MEGAPOLI** team

M. Beekmann¹, U. Baltensperger², A. Borbon¹, J. Sciare³, V. Gros³, A. Baklanov⁴, M. Lawrence⁵, S. Pandis⁶, V.Kostenidou⁶, M.Psichoudaki⁶, L. Gomes⁷, P. Tulet⁷, A. Wiedensohler⁸ A. Held^{*}, L. Poulain⁸, K.Kamilli⁸, W. Birmli⁸, A. Schwarzenboeck⁹, K. Sellegri⁹, A. Colomb⁹, J.M. Pichon⁹, E.Fernay⁹ J.L. Jaffrezo¹⁰, P. Laj¹⁰, C. Afif¹, V. Ait-Helal^{1*}, B. Aumont¹, S. Chevailler¹, P. Chelin¹, I. Coll¹, J.F. Doussin¹, R. Durand-Jolibois¹, H. Mac Leod¹, V. Michoud¹, K. Miet¹, N. Grand¹, S. Perrier¹, H. Petetin¹, T. Raventos¹, C. Schmechtig¹, G. Siour¹, C. Viatte¹, Q. Zhang^{1**}, P. Chazette³, M. Bressi³, M. Lopez⁵, P. Royer³, R. Sarda-Esteve³, F. Drewnick⁵, J. Schneider⁵, M. Brands⁵, S. Bormann⁵, K. Dzepina⁵, F. Freutel⁵, S. Gallavardin⁵, T. Klimach⁵, T. Marbach⁵, R. Shaiganfar⁵, S.L. Von der Weiden⁵, T. Wagner⁵, S.Zorn⁵, P. De Carlo², A. Prevot², M. Crippa², C. Mohr², Marie Laborde², M. Gysel², Roberto Chirico², Maarten Heringa², A. Butet¹¹, A. Bourdon¹¹, E. Mathieu¹¹, T. Perrin¹¹, SAFIRE team, J.Wenger¹², R. Healy¹², I.O. Connor¹², E. Mc Gillicuddy¹², P. Alto¹³, J.P.Jalkanen¹³, M. Kulmala¹³, P Lameloise¹⁴, V. Ghersi¹⁴, O. Sanchez¹⁴, A. Kauffman¹⁴, H. Marfaing¹⁴, C. Honoré¹⁴, L. Chiappini¹⁵, O. Favez¹⁵, F. Melleux¹⁵, G. Aymoz¹⁵, B. Bessagnet¹⁵, L. Rouil¹⁵, S. Rossignol¹⁵, M. Haeffelin¹⁶, C. Pietras¹⁶, J. C. Dupont¹⁶, and the SIRTA team, S. Kukui¹⁷, E. Dieudonné¹⁷, F. Ravetta¹⁷, J.C.Raut¹⁷, G. Ancellet¹⁷, F. Goutail¹⁷, J.L Besombes¹⁸, N. Marchand¹⁹, Y. Le Moullec²⁰, J. Cuesta²¹, Y.Te²¹, N. Laccoge²², S. Lolli²³, L. Sauvage²³, S.Loannec²³, D. Ptak²⁴, A. Schmidt²⁴, S. Conil²⁵, M. Boquet²⁶,

٠

¹Laboratoire InterUniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est et 7, CNRS, Créteil, France, ² Paul Scherrer Institut, Villingen, Switzerland, ³Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif sur Yvette, France,, ⁴ Danish Meteorological Institute, Copenhagen, Denmark, ⁵Max-Planck-Institute for Chemistry, Mainz, Germany, ⁶Foundation for Research and Technology, Hellas, University of Patras, Greece, ⁷Game,Centre National de Recherche Météorologique, Toulouse, France, ⁸Institut für Troposphärenforschung, Leipzig, Germany, ⁹Laboratoire de Météorologie Physique, Clermont-Ferrand, France, ¹⁰Laboratoire de Glaciologie et Géophysique de l'Environnement, Grenoble, France, ¹¹SAFIRE, Toulouse, France, ¹²University College Cork, Ireland, ¹³University Helsinki, Finland, ¹⁴AIRPARIF, Paris, France, ¹⁵INERIS, France, ¹⁶SIRTA/IPSL, Palaiseau, France, ¹⁷Laboratoire de Chimie Provence, Marseille, France, ²⁰Laboratoire de l'Hygiène de la Ville de Paris, France, ²¹Laboratorie de Météorologie Dynamique, Palaiseau, France, ²²Département Environnement et Chimie, Ecole de Mines de Douais, France, ^{, 23}LEOSPHERE, France, ²⁴Universität Duisburg-Essen), Germany, ²⁵ANDRA, Châtenay-Malabry, France, ²⁶CEREA, Marne La Vallée, France, **also ARIA-Technologie. France

Photogallerie

Systematic comparison for July 2009 (night)

Difference obs. - sim.

Model vs AMS PM1 observations at urban site during July 2009 [µg/m³]

