Harmo13 Paris 2-4 June 2010

A TOOL TO SUPPORT EMISSION REDUCTION PLANNING AT REGIONAL SCALE

C. Carnevale, <u>G. Finzi</u>, E. Pisoni, M. Volta

DII, Università di Brescia, Italy

G. Guariso

DEI, Politecnico di Milano, Italy

G. Maffeis, R. Gianfreda, E. Bossi

TerrAria Srl, Italy

P. Thunis, G. Triacchini, P. Dilara

IES-JRC, Ispra, Italy

L. White

Les White Associates Ltd, UK

Integrated Assessment Modelling

European scale

Rains/Gains by IIASA

National scale

- □ Rains Italy by ENEA
- RAINS-Netherlands
- FRES-Finland
- UK-IAM

aim of RIAT (Regional Integrated Assessment Tool)

to identify efficient sub-national and local policies

- national and EU air quality standards
- financial, technological and social constraints
- focused on local to meso-scale:
 - specific features of the area
 - the meteorological and chemical conditions of the domain
 - the contribution of mesoscale and local precursor emissions

Decision problem

Source-receptor models: ANN

- Input data: NOx, VOC, PPM10, PPM2.5, NH3, SOx emissions
- □ Target data: PM10, PM2.5, AOT40, SOMO35

Identification pattern: 21 TCAM simulations (POMI project)

TCAM model

- gas phase chemical mechanisms: SAPRC90, SAPRC97, COCOH97, CBIV
- □ 21 aerosol chemical species
- 10 Size classes
 - Size varying during the simulation
 - Fixed-Moving approach
- processes involved:
 - Condensation/Evaporation
 - Nucleation
 - Aqueous Chemistry

RIAT basecase

- □ Simulation domain: 570x372 km²
- □ Spatial resolution: 6x6 km²
- Emissions: CLE2010
- Meteo: 2005 (MM5)
- □ B.C.: 2005 (EMEP)

PM10 and PM2.5 ANNs: identification and validation patterns

- □ for each PM AQI, one ANN was identified
- for the considered region (Lombardy)
- Identification area: Lombardy region + 2 contour cells

Identification pattern: 932 cells x 21 scenarios
Validation pattern: 234 cells x 21 scenarios

PM2.5 and PM10 ANNs validation

Indexes	
Mean TCAM [mg/m³]	14.15
Mean ANN [mg/m³]	14.03
corr	0.99
Abs err [%]	0.06
rmse	1.23

Mean TCAM [mg/m ³]	15.9
Mean ANN [mg/m³]	15.87
corr	0.99
Abs err [%]	0.07
rmse	1.46

Pareto boundary (PM10)

System architecture

The data interface procedures

The internal procedures

The output databases

GIS visualization

Conclusions

- A DSS has been formalized to control secondary pollution exposure in Northern Italy
- Decision problem: multiobjective
- □ AQI are simulated by ANNs
- RIAT DSS implementation
- Optimal local/regional policy analysis

Acknowledgments

- This research has been supported by RIAT project funded by IES-JRC.
- We acknowledge APD-IIASA staff for suggestions and data sharing.
- The research has been partially developped in the framework of the Pilot Project QUITSAT (http://www.quitsat.it), sponsored and funded by the Italian Space Agency (ASI) and of EU NoE ACCENT (Atmospheric Sustainability).

Thanks to all of you!