Harmo 13
 Paris
 2-4 June 2010
 A TOOL TO SUPPORT EMISSION REDUCTION PLANNING AT REGIONAL SCALE

C. Carnevale, G. Finzi, E. Pisoni, M. Volta
DII, Università di Brescia, Italy
G. Guariso
DEI, Politecnico di Milano, Italy
G. Maffeis, R. Gianfreda, E. Bossi
TerrAria Srl, Italy
P. Thunis, G. Triacchini, P. Dilara
IES-JRC, Ispra, Italy
L. White
Les White Associates Ltd, UK

Integrated Assessment Modelling

European scale

\square Rains/Gains by IIASA

National scale

\square Rains Italy by ENEA
\square RAINS-Netherlands
\square FRES-Finland
\square UK-IAM

aim of RIAT (Regional Integrated Assessment Tool)

to identify efficient sub-national and local policies
\square national and EU air quality standards
\square financial, technological and social constraints
\square focused on local to meso-scale:

- specific features of the area
- the meteorological and chemical conditions of the domain
- the contribution of mesoscale and local precursor emissions

Decision problem

Source-receptor models: ANN

\square Input data: NOx, VOC, PPM10, PPM2.5, NH3, SOx emissions
\square Target data: PM10, PM2.5, AOT40, SOMO35

ANNs inputs:
quadrant precursor emissions

\square Identification pattern: 21 TCAM simulations (POMI project)

TCAM model

\square gas phase chemical mechanisms: SAPRC90, SAPRC97, COCOH97, CBIV
$\square 21$ aerosol chemical species
$\square 10$ Size classes

- Size varying during the simulation
- Fixed-Moving approach
\square processes involved:
- Condensation/Evaporation
- Nucleation
- Aqueous Chemistry

RIAT basecase

\square Simulation domain: $570 \times 372 \mathrm{~km}^{2}$
\square Spatial resolution: $6 \times 6 \mathrm{~km}^{2}$
\square Emissions: CLE2010
\square Meteo: 2005 (MM5)
\square B.C.: 2005 (EMEP)

PM1O and PM2.5 ANNs:

 identification and validation patterns\square for each PM AQI, one ANN was identified for the considered region (Lombardy)
\square Identification area: Lombardy region +2 contour cells

\square Identification pattern: 932 cells $\times 21$ scenarios
\square Validation pattern: 234 cells $\times 21$ scenarios

PM2.5 and PM10 ANNs validation

indexes

Mean TCAM $\left[\mathrm{mg} / \mathrm{m}^{3}\right]$	14.15
Mean ANN $\left[\mathrm{mg} / \mathrm{m}^{3}\right]$	14.03
corr	0.99
Abs err $[\%]$	0.06
rmse	1.23

Mean TCAM $\left[\mathrm{mg} / \mathrm{m}^{3}\right]$	15.9
Mean ANN $\left[\mathrm{mg} / \mathrm{m}^{3}\right]$	15.87
corr	0.99
Abs err [\%]	0.07
rmse	1.46

Pareto boundary (PM10)

System architecture

The data interface procedures

The internal procedures

The output databases

GIS visualization

Conclusions

\square A DSS has been formalized to control secondary pollution exposure in Northern Italy
\square Decision problem: multiobjective
$\square \mathrm{AQI}$ are simulated by ANNs
\square RIAT DSS implementation
\square Optimal local/regional policy analysis

Acknowledgments

\square This research has been supported by RIAT project funded by IES-JRC.
\square We acknowledge APD-IIASA staff for suggestions and data sharing.
\square The research has been partially developped in the framework of the Pilot Project QUITSAT (http://www.quitsat.it), sponsored and funded by the Italian Space Agency (ASI) and of EU NoE ACCENT (Atmospheric Sustainability).

Thanks to all of you!

