Dispersion parameters in a wind tunnel and in the field:
 analysing Thompson's 1991 wind tunnel data for isolated stacks with IFDM and its application to building downwash modelling

Guido Cosemans and Wouter Lefebvre, Flemish Institute for Technological Research - VITO, Mol, Belgium

INTRODUCTION

We want formulae for the ground-level concentrations at short distances from buildings for plumes subject to building downwash.

These concentrations should be accurate enough to allow for reverse modelling.

Steps towards goal

1) Literature: state of art:

Gaussian models: PRIME / OML ... problem: poor performance at near building distance

CFD models: Miscam, Envi-met, ..
© : better looking concentration profiles problem: too much computer resources question: scaling with the field
2) Do it yourself:

Steps:
A) identify reference data-sets: Thompson (1991) wind-tunnel
B) reproduce concentrations for isolated stacks in wind-tunnel
C) compare wind-tunnel dispersion with dispersion in the field (of interest)
D) investigate whether a combination of ground-level concentration profiles from isolated stacks can reproduce these of a building down-wash plume.

B: Reproduction of isolated ;) stack concentration profiles

A: Thompson's (1991) US-EPA WindTunnel Data

,Measurements of ground-level centreline concentration profiles for 350 combinations of building shape, stack height and stack location relative to the building
, Non-buoyant plume
, Neutral atmospheric stability conditions
350 combinations, with approx. 45000 groundlevel concentrations measured

Building types:

(Side cube $=150 \mathrm{~mm}$)

Stack heights (mm): 38

$$
150 \quad 188 \quad 225
$$

300375450
Stack location: from 2100 mm upwind of building to 1800 mm downwind

Receptors (distance from stack):
closest: from -300 mm till 4000 mm
spacing: from 10 mm till 300 mm greatest distance: till 9800 mm

Isolated stacks (without building): 9 profiles

C: Dispersion parameters for the field (IFDM, Bultynck-Malet) and the wind-tunnel ()

$\sigma_{y}(x)=a x^{\alpha}$	Dispersion parameters		$\sigma_{v}(x)$		$\sigma_{z}(x)$	
	Coeffic	\& exponent	a	α	b	β
	windtunnel	generic	Eq. 1	0.796	Eq. 2	0.711
$\sigma_{z}(x)=b x^{\beta}$		$\mathrm{h}=37$	0.441	0.796	0.350	0.711
		$\mathrm{h}=450$	0.256	0.796	0.532	0.711
	field	slightly stable	0.297	0.796	0.382	0.711
		neutral	0.418	0.796	0.52	0.711

$b(h s)=b\left(E_{2}\right)+0.0001\left(4.5 h s-0.0005(h s-150)^{\wedge 2}\right)$
$C\left(x, H_{S}\right)=\frac{Q}{\pi u\left(H_{S}\right) \sigma_{y}(x) \sigma_{z}(x)} \exp \left(-\frac{1}{2}\left\{\frac{H_{S}}{\sigma_{z}(x)}\right\}^{2}\right)$
Implicit scale assumption: 1 mm wind-tunnel $=1 \mathrm{~m}$ in the field.

D: Building downwash

Personal observation in the field. The material of the plume in the wake of the building is distributed chaotically between two heights.

Mathematical approach. The long-term averaged ground-level concentration is the sum of the impact of a number of plumes whose heights and pollutant content are log-normally-type distributed

Basic Formula. (For details:see paper.)
$C\left(x_{\text {receptor-S }}, 0,0, H_{S,} H_{\text {building }}, X_{S \text {-building }}\right)=$
$\int_{-\infty}^{+\infty} \frac{Q_{z p}}{\pi u\left(h_{z p}\right) \sigma_{y}\left(x^{*}\right) \sigma_{z}\left(x^{*}\right)} \exp \left(-\frac{1}{2}\left\{\frac{h_{z p}}{\sigma_{z}\left(x^{*}\right)}\right\}^{2}\right) d z_{p}$

Some results (Status at May, $\left.24^{\text {th }}\right)$)

Some ground-level concentrations (measured: markers, modelled: broken lines) for the cubical building:

1) Stack $=75 \mathrm{~mm}$, at different locations downwind the building
2) Stack height = building height, at 3 positions on the roof (wind side, middle, downwind side) and at 5 different locations downwind the building
3) Stack $=188 \mathrm{~mm}$, three positions above roof of building
4) Stack height = building height, at 6 different upwind positions of the building

