A non-dimensional urban dispersion model and spurious self-correlation estimate

SUMMARY

A Gaussian plume urban dispersion model is presented, where the horizontal and vertical diffusion coefficients are determined according to the theories of Taylor (1921) and Hunt and Weber (1979) respectively. The model is validated with concentration measurements from field experiments conducted in Oklahoma City, Salt Lake City, London, and St. Louis. A statistical analysis of robustness is conducted on the data to determine the spurious self-correlation between the non-dimensional variables.

MOTIVATION

The extent of stratification in urban areas and its effects on dispersion are not well understood. The mechanical generation of turbulence and the release of thermal energy accumulated during the day contribute to weakening the stability of the flow.

Model

A reflected Gaussian plume model for ground-level releases is derived under the assumptions of daytime neutral stability and nighttime near-neutral stability:

$$C = \frac{Q}{\pi U \sigma_y \sigma_z} \exp\left(-\frac{y^2}{2\sigma_y^2} - \frac{z^2}{2\sigma_z^2}\right)$$

$$\sigma_{y}^{2} = \sigma_{yo}^{2} + 2\sigma_{v}^{2}T_{y}^{2} \left[\frac{t}{T_{y}} + \exp\left(-\frac{t}{T_{y}}\right) - 1 \right]$$

$$\sigma_{z}^{2} = \sigma_{zo}^{2} + \frac{b^{2}\sigma_{w}^{2}t^{2}}{1 + 12 + 2t^{2}}$$
(2)
(3)

$$\sigma_z^2 = \sigma_{zo}^2 + rac{b \sigma_w^2}{1 + b^2 \sigma_w^2 t^2 \pi / (2L_z^2)}$$

Eq. (2) is written according to Taylor (1921). Eq. (3) is modified with respect to Hunt and Weber (1979) to include the boundary layer height at L_z . The empirical constant *b* depends on the atmospheric stability.

EXPERIMENTS

Table: Estimates of turbulence and flow characteristics in the experiments.								
Experiment	Stability	<u>U</u> (ms ⁻¹)	<i>L</i> _y (m)	<i>L</i> _z (m)	σ_v (ms ⁻¹)	σ_w (ms ⁻¹)	<i>T_y</i> (s)	<i>T_z</i> (s)
Salt Lake City	nighttime davtime	0.49 1.03	1000 2000	200 800	0.25 0.52	0.16 0.34	4082 3883	1237 2354
Oklahoma City	nighttime daytime	2.08 2.13	1000 2000	200 800	0.99 1.09	0.68 0.70	1010 1835	294 1143
St. Louis	nighttime daytime	2.72 2.79	1000 2000	200 800	$0.45 \\ 1.76$	0.30 1.20	2208 1137	669 665
London	daytime	3.00	2000	800	1.08	0.72	1845	1118

RESULTS

Table: Statistical measures of error between modeled and observed scaled concentration C/Q: correlation (Corr), fractional bias (FB), normalized mean square error (NMSE), geometric variance (VG), and percentage of predictions falling within a factor two of the observations (Fac2).

	Corr	FB	NMSE	VG	Fac2
Nighttime	0.83	0.34	1.62	1.92	63.64
Daytime	0.84	0.50	2.19	1.82	64.71
All data	0.73	0.07	1.78	1.87	64.13

NON-DIMENSIONAL REPRESENTATION

	Corr	FB	NMSE	VG	Fac2
Nighttime	0.83	0.29	1.41	1.65	79.34
Daytime	0.91	0.53	1.58	2.13	53.92

P. Franzese¹ P. Huq² U. Panizza³

¹George Mason University, Fairfax, VA ²University of Delaware, Newark, DE ³UNCTAD, Geneva, Switzerland

Table: Statistical measures of error between modeled and observed non-dimensional concentrations CUL_yL_z/Q .

Asymptotic behavior

$$C = \left(\frac{Q}{L_y L_z} \frac{UT_y T_z}{\pi b}\right) x^{-2} \qquad \text{for } x \ll$$
$$C = \left(\frac{Q}{L_y L_z} \sqrt{\frac{T_y}{4\pi U}}\right) x^{-1/2} \qquad \text{for } x \gg$$

Spurious correlation analysis

Since the non-dimensional groups $CUL_{y}L_{z}/Q$ and x/(UT) both include is in principle the possibility that the observed relationship between th spurious. Statistical robustness tests show that the amount of spurious introduced by the common variable *U* is negligible.

Table: Statistical measures characterizing the linear regressions $\log(CUL_yL_z/Q)$ vs log vs log(x/UT): coefficient of determination R^2 , regression coefficient (or slope) β , its st statistic of the null hypothesis $\beta = 0$, probability *p* of obtaining a larger *t* assuming β intervals for both daytime and nighttime cases.

			R^2	β	δ	t	p > t	9
$\overline{\log(CUL_yL_z/Q)}$	vs	$\log(x/UT)$	0.89	-1.57	0.06	-28.29	0.00	
$\log(CL_yL_z/Q)$	VS	$\log(x/T)$	0.90	-1.61	0.05	-30.42	0.00	[
$\overline{\log(CUL_yL_z/Q)}$	vs	$\log(x/UT)$	0.85	-1.46	0.06	-25.89	0.00	[
$\log(CL_yL_z/Q)$	VS	$\log(x/T)$	0.84	-1.32	0.05	-24.96	0.00	[

CONCLUSION

- Simple, analytical model
- Accounts for the differences between nighttime and daytime atmosphere
- Accounts for the different trends between near and far field
- Identification of time and length scales governing urban dispersion
- Stratification in urban areas is weak but its effects on dispersion are not negligible

REFERENCES

Hunt, J. C. R., Weber, A. H., 1979. A Lagrangian statistical analysis of diffusion from a ground-level source in a turbulent boundary layer. Quart. J. Roy. Meteor. Soc. 105 (444), 423-443.

Taylor, G. I., 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–211.

UT_z	(4)				
UT _y	(5)				
the variable <i>U</i> , there the groups is partially correlation					
$f_{z}(x/UT)$ and $\log(CL_yL_z/Q)$ and ard error δ , <i>t</i> -test = 0, and 95% confidence					
5% Conf. int.					
-1.68, -1.46] -1.71, -1.50]	day				
-1.57, -1.35] -1.42, -1.21]	night				

e-mail: pfranzes@gmu.edu