FAIRMODE

The combined use of models and monitoring for applications related to the European air quality Directive: SG1-WG2 FAIRMODE

> Bruce Denby Wolfgang Spangl

13th Harmonisation conference, Paris 1- 4 June 2010

Content

- Terms of reference for FAIRMODE
- Aims of SG1-WG2
- Overview of methods
- Institute list
- Some examples
- Representativeness
- Work plan

Terms of reference

- To provide a permanent European forum for AQ modellers and model users
- To produce guidance on the use of air quality models for the purposes of implementation of the AQ Directive and in preparation for its revision
- To study and set-up a system (protocols and tools) for quality assurance and continuous improvements of AQ models
- To make recommendations and promote further research in the field of AQ modelling

Aims of SG1

- To promote 'good practice' for combining models and monitoring (Directive related)
- To provide a forum for modellers and users interested in applying these methodologies
- To develop and apply quality assurance practices when combining models and monitoring
- To provide guidance on station representativeness and station selection

Some concepts

- 'Combination' used as a general term
- Data integration
 - Refers to any 'bringing together' of relevant and useful information for AQ modelling in one system (e.g. emissions/ meteorology/ satellite/ landuse/ population/ etc.)
- Data fusion
 - The combination of separate data sources to form a new and optimal dataset (e.g. models/monitoring/satellite/land use/etc.). Statistically optimal but does not necessarily preserve the physical characteristics
- Data assimilation
 - The active, during model integration, assimilation of observational data (e.g. monitoring/satellite). Physical laws are obeyed

Some concepts

- Geometrical methods
 - Methods for interpolation or 'combination' that are based on geometrical arguments. E.g. Inverse distance weighting, bilinear interpolation, as an interpolation method. Simple combinations of data, some GIS based methods.
- Non spatio-temporal statistical methods
 - Covers methods such as regression and bias corrections that do not take into account the spatial or temporal correlation of the data.
- Spatio-temporal statistical methods
 - Covers a wide range of methods e.g. 2-4 D variational methods, kriging methods, optimal interpolation. Based on Bayesian concepts. Minimalisation of some specified error.

Expertise required for methods

Users and developers (DA)

Person	Institute/project	Contact	Model	Method	Application (resolution)
Hendrik Elbern	RIU /MACC/PASA DOBLE	he@eurad.Uni-Koeln.DE	EURAD-IM	3-4D var	European forecasts (45 – 1 km)
Martijn Schaap	TNO/MACC	<u>martijn.schaap@tno.nl</u>	LOTOS_EUROS	Ensemble Kalman filter	European assessments and forecasting (25km)
L. Menut	INERIS/MACC	<u>menut@lmd.polytechniqu</u> <u>e.fr</u>	CHIMERE	Optimal interpolation , residual kriging and EnKF (in development)	European and Urban scale forecasts and assessments (25 km)
Hilde Fagerli	Met.no/MACC	hilde.fagerli@met.no	EMEP	3 – 4D var (in development)	European scale forecasts and assessment (25km)
Valentin Foltescu	SMHI/MACC	<u>Valentin.Foltescu@smhi.s</u> <u>e</u>	MATCH	2 – 4D var (in development)	European to Urban scale (25 - ? km)
Sébastien Massart	CERFACS/MACC	massart@cerfacs.fr	MOCAGE/PALM	3 -4D var	Global to European
Bruno Sportisse	INRIA,CEREA	Bruno.Sportisse@inria.fr	Polyphemus	3 -4D var, OI, EnKF	European

Users and developers (DF:1)

Person	Institute/project	Contact	Model	Method	Application (resolution)
John Stedman	AEAT	John.stedman@aeat.co.uk	ADMS	Statistical interpolation, residual kriging	UK wide assessment of air quality
Bruce Denby	NILU/ETC-ACC	<u>bde@nilu.no</u>	EMEP, LOTOS- EUROS	Statistical interpolation, residual kriging	European wide assessments at 10 km
Jan Horálek	CHMI/ETC	horalek@chmi.cz	EMEP	Statistical interpolation, residual kriging	European wide assessments at 10 km
Dennis Sarigiannis	JRC Ispra	Dimosthenis.SARIGIAN NIS@ec.europa.eu	CTDM+ (model not important, platform more relevant) ICAROS NET	Data fusion (unknown methodology)	Urban scale
Marta Garcia Vivanco Palomino Marquez Inmaculada Fernando Martín	CIEMAT	<u>m.garcia@ciemat.es</u> <u>inma.palomino@ciemat.e</u> <u>s</u> <u>fernando.martin@ciemat.</u> <u>es</u>	MELPUFF CHIMERE	Anisotropic inverse distance weighting Regression and residual kriging.	Assessment Spain

Users and developers (DF:2)

Person	Institute/project	Contact	Model	Method	Application (resolution)
Clemens Mensink Stijn Janssen	VITO	stijn.janssen@vito.be Clemens.mensink@vito.b e	RIO and BelEUROS	Detrended kriging. Land use regression model used for downscaling CTM	Belgium (3km)
J.A. van Jaarsveld	RIVM	<u>hans.van.jaarsveld@rivm.</u> <u>nl</u>	OPS	Kriging with external drift	Nederland (5km)
Florian Pfäfflin (Goetz Wiegand Volker Diegmann)	IVU Umwelt GmbH	fpf@ivu-umwelt.de	FLADIS/ IMMISnet/ EURAD	Optimal interpolation	Ruhr, Germany (5km)
Arno Graff	Umwelt Bundes Amt, UBA II	arno.graff@uba.de	REM-CALGRID	Optimal interpolation	Germany
Wolfgang Spangl	Umweltbundesamt	Wolfgang.spangl@umwel tbundesamt.at		Representativenes s of monitoring data	
Sverre Solberg	NILU/EMEP	sso@nilu.no	EMEP	Representativenes s of monitoring data	EMEP monitoring network

Comparison of Residual kriging and Ensemble Kalman Filter for assessment of regional PM_{10} in Europe

Denby B., M. Schaap, A. Segers, P. Builtjes and J. Horálek (2008). Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale. Atmos. Environ. 42, 7122-7134.

Comparison of Residual kriging and Ensemble Kalman Filter for assessment of regional PM_{10} in Europe

Denby B., M. Schaap, A. Segers, P. Builtjes and J. Horálek (2008). Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale. Atmos. Environ. 42, 7122-7134.

MACC ensemble forecast system

Model	Assimilation method	Implementation		
CHIMERE	Innovative kriging, Ensemble Kalman filter	Not implemented in operational forecasts		
EMEP	Intermittent 3d-var	In development		
EURAD	Intermittent 3d-var	Implemented in forecast, using ground based observations and satellite derived NO ₂		
LOTOS- EUROS	Ensemble Kalman filter	Not implemented in operational forecasts		
MATCH	Ensemble Kalman filter	In development		
MOCAGE	3d-FGAT and incremental 4d- VAR	Not implemented in operational forecasts		
SILAM	Intermittent 4d-var	Not implemented in operational forecasts		

http://www.gmes-atmosphere.eu/.

Examples: Local and urban

- Few examples of data fusion/assimilation on the local and urban scale
 - Spatial representativeness of monitoring sites is very limited (10 1000 m)
 - Often the number of sites is limited (compared to their spatial representativeness)
 - Monitoring contains little information for initialising forecasts
- Application for assessment is possible
 - E.g. regression, optimal interpolation

Representativeness

- Two types of representativeness:
 - spatial and temporal (physical)
 - similarity (categorisation)
- Knowledge of this is important for:
 - validation of models
 - data fusion/assimilation

Representativeness

 For modelling applications the representativeness of monitoring data should be reflected in the uncertainty of that data

NB: Not just the measurement uncertainty

• This is reflected in the AQ Directive (Annex I)

"The fixed measurements that have to be selected for comparison with modelling results shall be representative of the scale covered by the model"

 Representativeness will be pollutant and indicator dependent

Representativeness and the AQD

- For monitoring the AQ Directive states:
 - For industrial areas concentrations should be representative of a 250 x 250 m area
 - for traffic emissions the assessment should be representative for a 100 m street segment
 - Urban background concentrations should be representative of several square kilometres
 - For rural stations (ecosystem assessment) the area for which the calculated concentrations are valid is 1000 km² (30 x 30 km)
- These monitoring requirements also set limits on model resolution

Defining spatial representativeness

- The degree of spatial variability within a specified area
 - $-\,$ e.g. within a 10 x 10 km region surrounding a station the variability is $\pm\,30\%$
 - Useful for validation and for data assimilation
- The size of the area with a specified spatial variability
 - e.g. < 20% of spatial mean (EUROAIRNET) or < 10% of observed concentration range in Europe (Spangl, 2007)
 - Useful for determining the spatial representativeness of a site

Observed spatial variability

Coefficient of variation σ_c/c for annual indicators as a function of area (diameter) for all stations (Airbase)

Future progress in SG1-WG2

- Complete a review/list of activities and institutes carrying out DA and DF
- Provide an accessible review of these methods
- Recommend methods for quality assurance (-> SG4 'Bench marking')
- Develop a consensual understanding of representativeness (→ SG4 'Bench marking')
- Further develop the network and funding

For information and contributions contact

Bruce Denby bde@nilu.no

and register interest on the website http://fairmode.ew.eea.europa.eu/

