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Abstract: According to the European Air Quality Directive (AQD) (2008/50/EU), Member States should establish 

and periodically review zones and agglomerations to control and manage air quality throughout their territory. 

Madrid currently considers seven zones of air quality based on administrative, geographic and land use criteria. This 

zoning was proposed in 2014 and needs to be reviewed according to the AQD. However, there is a lack of 

standardized methodologies based on scientific criteria to define the new zoning.  

In this study, we developed and applied a new methodology based on mesoscale air quality modeling and statistical 

cluster analysis. We rely on a CMAQ 5.0.2 with 1 km2 resolution air quality simulation over the whole Madrid region 

for the year 2015. From the 1-hour resolution model outputs, we computed all the relevant indicators for NO2, PM2.5, 

PM10 and O3 as defined in the Directive 2008/50/EU. Representative statistics (mean, median, quartiles, etc) were 

calculated from the individual values of the grid cells overlapped for each of the 179 municipalities in the region. 

Then, the most informative parameters were selected as classification variables according to the result of a Principal 

Components Analysis (PCA). Subsequently, a k-means clustering algorithm was applied to identify municipalities 

with similar air quality features that could be homogeneous zones. The number of zones (or clusters) was defined 

through a series of tests that inform of the distribution of variance within and between clusters and the statistical 

significance of the differences found for each of the legal AQ indicators. The efficiency of the zoning is done by 

analyzing WCSS (Within Cluster Sum of Squares) in comparison to the total Sum of Squares. Besides, it is important 

to check the spatial continuity of municipalities within a cluster and the distribution of air quality monitoring stations 

(47 in the region) among them.  

Following this methodology, we compared two alternative zonings to the current one: i) an optimal zoning from the 

statistical point of view and ii) one under consideration by the Madrid Greater Region air quality service.    
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INTRODUCTION 

The European Air Quality Directive (AOD) (2008/50/EU) indicates that air quality zoning of the territory 

should be revised every 5 years. Air Quality (AQ) is supposed to be homogenous within AQ zones, so the 

whole zone is in a non-compliance situation if there is a single station that exceeds the legal limit values.  

 

Madrid is located in the center of Spain and currently has seven zones established on important factors 

from the air quality point of view such as administrative divisions (179 municipalities), geographic data 

and land use, meteorological conditions, and emission sources. There is a dense AQ monitoring network, 

with 48 AQ monitoring stations in the region The last review for AQ zones of Madrid was 2014, therefore 

it is necessary to be revised. However, there is a lack of standardized methodology to define and revise 

the current zoning. 

 

The principal aim of this study is to assess the current zoning of Madrid from the AQ point of view, 

considering the main pollutants (NO2, PM2.5, PM10 and O3), which have a major impact on human health 

and vegetation and are relevant regarding AQ regulation. Then, we intend to identify an alternative that 

includes more homogenous AQ zones. Also, we perform a statistical comparison of these two zoning 



schemes (the current and the alternative), and a third one zoning currently under consideration by the 

Madrid Greater Region air quality service. Moreover, we try to contribute to the definition of objective 

criteria that may be used elsewhere for the definition of homogeneous AQ zones. 

 

METHODOLOGY AND RESULTS 

As a first step, we obtain the spatial and temporal distribution of the target pollutants in 2015 through the 

Comunity Multiscale Air Quality (CMAQ) modeling system with a 1 x 1 km2 over the Madrid region. 

This system consists of three models, i) WRF, the Weather Research and Forecasting (WRFV 3.7.1) 

model (Borge et al., 2008; Skamarock and Klemp, 2008), ii) the Sparse Operator Kernel Emission 

(SMOKEV 3.6.5) model processes the emission inventory for the Region (Borge et al., 2014; UNC, 

2015) and lastly, iii) the Chemistry Multiscale Air Quality (CMAQV 5.0.2) (Byun and Schere, 2006), an 

Eulerian transport-chemical model. Model setup details can be found in Borge et al. (2018). We use this 

modeling system to calculate the legal parameters of all relevant pollutants according to the AQD: 

- Annual mean NO2 concentration, 

- Annual mean PM10 concentration, 

- Annual mean PM2.5 concentration, 

- 99.8th percentile of hourly NO2 concentration, 

- 93.2th percentile of eight-hourly O3 concentration, 

- 90.4th percentile of daily PM10 concentration, 

- AOT 40 (Accumulated dose of ozone Over a Threshold of 40 ppb) for the period May – July. 

 

The following seven statistical variables are calculated for each one of the 179 municipalities, considering 

all the grid cells overlapped: mean, median, quartile 25 (Q1), quartile 75 (Q3), interquartile range (IQR), 

standard deviation (sd) and coefficient variation (cv).  

 

Then, a Principal Component Analysis (PCA) is performed to identify the most statistically relevant 

metrics for each parameter because (Lletı et al., 2004) studied that the results can be changes if there are 

irrelevant variables for the analysis. Consequently, the classification variables selected are mean, median, 

Q1 and Q3 for all the parameters, and additionally, cv is relevant for PM10, PM2.5 and annual mean NO2 

concentration. This selection guarantees a good separation for the alternative zoning in the clustering 

process. 

 

These variables are used for the k-mean clustering analysis (MacQueen, 1967; Hartigan and Wong, 1979) 

known as unsupervised learning to separate homogenous groups, following the steps: 

- Assign randomly k numbers of clusters, 

- Calculate the distances between centroid points and other observations in k clusters, 

- Reassign the mean value of the distances to new centroid points of clusters, 

- Repeat until finding adequate centroid points that have a minimum distance with the 

observations in a cluster. 

 

Among others, three methods are employed to specify the optimal number of groups o clusters: Elbow, 

Silhouette (Kaufman and Rousseeuw, 2009) and Gap statistic (Tibshirani, Walther and Hastie, 2001). We 

performed two cluster classifications: one for NO2, PM10, and PM2.5, and the other for O3 due to the 

different characteristics between pollutants. The optimal number obtained is five in the case of the three 

pollutants and four as for O3 and this zoning is referred to as optimal zoning in this study. Then, the three 

zonings are compared: the current, the optimal (one for O3 and another one for all other pollutants) and 

the proposed (Figure 1). 

 

For the comparison to assess the three alternative zoning options, boxplot graphs are generated for 

concentration dispersions of each zone and each municipality. In an ideal classification, the groups would 

have very similar mean values with a small dispersion, given by a reduced IQR and absence of extreme 

values far from the mean (outliers). As shown in Figure 2, the separation seems better in the optimal 

zoning than in the others as the IQR values of zones are comparably small. Zone 1, which corresponds to 

Madrid city, tends to have high concentrations as for NO2, but low respecting O3, having great IQR 



values for both pollutants. However, it was considered as a single zone due to administrative reasons and 

considering that it has its own AQ network.  

 

 
Figure 1. The current zoning of the Madrid region (a), the optimal obtained by the analysis (b): (b1) shows the 

zoning for the three pollutants and (b2) is for ozone, and the proposed by the Madrid Greater Region air quality 

service (c). The distribution and type of air quality monitoring stations is included in all cases. 
  

 
Figure 2. Boxplot graphs generated by each zone for 99.8th percentile of hourly NO2 concentration (a) and AOT 40 

(b): (a1) and (b1) present the current zoning, (a2) and (b2) are for the optimal and (a3) and (b3) for the proposed by 

the Madrid Greater Region.  

 

After that, two statistical tests are performed: the Kruskal-Wallis test and the Dunn test. These tests are 

employed to find significant differences between the objects, the groups o clusters in this study. The 

Kruskal-Wallis test (Kruskal and Wallis, 1952) compares them with a null hypothesis which is the objects 

come from the same population as a non-parametric test, on the other hand, the Dunn test (Dunn, 1964) 

compares them in pair as post-doc, whose null hypothesis is two groups are from the same population. 

According to the results of the Dunn test, we can observe some non-different zones in the current zoning. 



There are little differences between zones 6 and 7 of the parameters of NO2, and zones 4 and 7 of the 

90,4th percentile of daily concentration of PM10 are similar. Also, zones 1 and 4, and zones 5 and 6 of the 

93.2th percentile of eight-hourly O3 concentration, and zones 4 and 6 of the AOT 40 are considered 

identical. On the other hand, all zones are significantly different in the proposed zoning, while the two 

zones found very similar in the optimal alternative. This result is due to the similarity among center 

values (mean or median) although the IQR value of zone 1 is much greater. 

 

Besides, the distribution of the Sum of Squared Error (SSE) between BSS and WSS for each zoning is 

analyzed. The total SSE (TSS) is the sum of distances between an object and the mean value of the entire 

dataset and consists of between SSE (BSS) that is the inter-cluster variance and within SSE (WSS) that is 

the intra-cluster variance. Therefore, BSS is close to TSS if the groups are well-separated. As shown in 

Table 1, the optimal zoning obtains the best separation for all pollutants according to this. 

 
Table 1. SSE values of the three zonings 

Pollutant Parameter 
Current zoning Optimal Zoning Proposed Zoning 

k BSS/TSS (%) k BSS/TSS (%) k BSS/TSS (%) 

NO2 
Annual Mean 7 56.7 5 60.3 3 45.5 

Hourly Percentile 7 71.3 5 88.3 3 65.0 

PM10 
Annual Mean 7 48.7 5 58.9 3 33.6 

Daily Percentile 7 57.5 5 76.3 3 40.8 

PM2.5 Annual Mean 7 44.0 5 53.1 3 29.0 

O3 
8-hourly Percentile 7 45.0 4 68.8 3 7.9 

AOT 40 7 48.3 4 78.1 3 4.8 

 

Additionally, it was checked that the optimal zoning complies with the minimum coverage and 

distribution of air quality monitors currently available in the region. In general, redundancy increases 

along with coverage. The current zoning has poor coverage and redundancy, while the optimal has better 

coverage and redundancy, but less than the proposed one. The proposed zoning shows less redundancy 

than the optimal zoning, mainly because it consider a smaller number of groups. 

 

CONCLUSION 

A novel methodology is used to revise the current air quality zoning of Madrid and to propose an 

alternative one that reflects a better homogeneity in the AQ zones from the AQ point of view. We use a 

combination of a Chemical-transport model and k-mean clustering analysis. This methodology is found 

quantitative and replicable. However, it requires a precise AQ simulation, and the results could be 

changed depending on the model validation. 

We found that a single classification cannnot define homogeneous AQ areas for all pollutants since the 

dynamics of O3 considerably differs from that of the rest of the species of interest (NO2, PM10 and PM2.5). 

The zoning assessment indicates that the optimal zoning obtained with the new methodology shows the 

best statistical result and the most homogeneous zones from the AQ point of view and improves the 

current zoning of the Madrid region.  
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