

IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

ROBUSTNESS OF A RECONSTRUCTED SOURCE TERM TO METEOROLOGICAL DATA AND DEPOSITION SCHEME: APPLICATION TO THE CASE STUDY OF RUTHENIUM-106 RELEASE IN FALL 2017.

O. Saunier, D. Quélo, A. Quérel and J. Groell

Context

Radionuclides detections event by European monitoring networks

- Known source location
 - Release of ⁷⁵Se from SCK-CEN research reactor, Mol in Belgium (2019)
 - Forest fires in the Chernobyl area (April 2020)
- Unknown source location
 - Meltdown of ¹³⁷Cs source in Elekstrostal, Russian Federation (2013)
 - Multiple ¹³¹I detection events (2011 2020)
 - ¹⁰⁶Ru detection at continental scale (> mBq/m³) in fall 2017
 - Radionuclide detection in northern Europe in June 2020
- The knowledge of the source (magnitude, temporal evolution and sometimes location) is required to better understand the event

Detection of Ruthenium-106 in fall 2017

□ Observations of ¹⁰⁶Ru in the atmosphere in Europe between late September and middle of October 2017

- Air concentration measurements
 - > 1000 measurements collected (maximum value 180 mBq/m³ in Romania)
 - Huge differences between air sampling durations: 11 hours to 1 month
- Deposition measurements:
 - The first positive deposit measurements are reported on 23 September in South Ural (several tens of Bq/m²)
 - Other deposits measurements are reported in Europe (several Bq/m² in Sweden, Poland and Austria) at the beginning of October

□ Source reconstruction using inverse modelling techniques

- Sensitivity analysis of the reconstructed source
 - Cost function in the inversion procedure
 - Meteorological data
 - Deposition scheme

IRSN

Definition of a grid containing potential source locations

- Potential sources are located within the blue domain
- Coverage area of potential sources: [6W, 65E], [35N, 65N]
- 2° x 2° spatial resolution between

two potential sources (720 potential sources)

Computational domain dimensions: [10W, 90E], [20N, 75N]

Source term assessment using inverse modelling

□ Inverse modelling based on variational approach

Gaussian errors:

$$J_{G}(x) = \frac{1}{2}(y - Hx)^{T}R^{-1}(y - Hx) + \frac{1}{2}(x - x_{b})^{T}B^{-1}(x - x_{b})$$

Model/measure match

ST magnitude

Log-normal errors:

$$J_{LN}(x) = \frac{1}{2} \left(\ln(y + y_t) - \ln(Hx + y_t) \right)^T R^{-1} \left(\ln(y + y_t) - \ln(Hx + y_t) \right) + \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b)^T R^{-1} \left(\ln(y + y_t) - \ln(Hx + y_t) \right)$$

□ Assumptions

IRSN

- a priori x_b=0
- Threshold y_t
- Enforce positivity of the source vector
- Simple modelling of **R** and **B** matrixes (diagonal)

Construction of H operators

Construction of 8 H operators: all combinations of meteorological data and deposition schemes

- Eulerian model ldx (C3X platform)
- Meteorological fields
 - ECMWF: 0.28125° x 0.28125, 1 h
 - ARPEGE (Météo-France): 0.5° x 0.5°, 3 h
- Deposition scheme (dep1, dep2, dep3, dep4)
 - Dry deposition (m.s⁻¹): $v_{dep} = 2 \ 10^{-3}$; $v_{dep} = 10^{-3}$
 - Wet deposition:
 - In-cloud scavenging (s⁻¹): Λ =5 × 10⁻⁵*I*
 - Below-cloud scavenging (s⁻¹): Λ =5 × 10⁻⁴ $I^{0.64}$; Λ =5 × 10⁻⁵I
- Release period
 - 22/09 to 13/10 with daily frequency (N=21)
 - 720 x 21 = 15120 daily releases to estimate for H_k
 - 15120 x 8 = 120960 daily releases to estimate for all the H_k

Source reconstruction: location

Percent of the simulated activity concentrations that is within a factor of 2 of the observed values: Log-normal cost function, ECMWF and ARPEGE meteorological fields

- Most reliable source localization is situated in southern Urals in Russian Federation
- Agreement between observed and simulated concentrations is satisfactory (FAC2 > 40%)
- Weak influence of cost function / meteorological data / deposition scheme on the source location
- Mayak Production Association is a possible candidate

IRSN

¹⁰⁶Ru source term assuming a release from Mayak Production Association

Source term	Gau dep1	Log dep1	Gau dep2	Log dep2	Gau dep3	Log dep3	Gau dep4	Log dep4	
Total release (TBq) ARPEGE	783	291	840	218	993	309	843	218	ARPEGE
Total release (TBq)	743	201	504	146	688	297	488	216	ECMWF

□ Source terms are in the range of 146 to 840 TBq

□ The impact of the deposition scheme is moderate

Total quantities can vary by a factor of 2 when changing only the deposition scheme

□ The cost function is the most influent parameter

- Total quantities can vary by a factor of 3.7 when changing only the cost function
- When using log-normal cost function:
 - More robust (less sensitive to other parameters)
 - The variation on the total quantities does not exceed 30 %
 - Source terms are lower than those estimated using Gaussian cost function

Duration and period of the releases

ARPEGE meteorological data

- Release occurred on:
 - 26/09 using log-normal cost function
 - 23/09 and 26/09 using Gaussian cost function

ECMWF meteorological data

- Release occurred on:
 - 23/09, 24/09, 26/09 and 27/09 using Gaussian cost function
 - 24/09, 25/09 and 26/09 using Log-normal cost function
- Log-normal cost function will result in shortened release duration
- Deposition scheme has a very weak influence on the release duration

9

Model to data comparison: air concentration

□ Highest FAC2 scores are obtained using ECMWF meteorological fields

- The gain is around ten points on FAC2 scores
- □ FAC2 scores are slightly enhanced using log-normal cost function
- The impact of the deposition scheme is low and not quantifiable
 - $v_d = 10^{-3} \text{ m.s}^{-1}$ leads to better FAC2 scores...

¹⁰⁶Ru plume dispersion from Mayak Production Association (best simulation)

10.0

0.4

0.2

20-09-2017 01:00

- The plume reached most European countries between September 28 and October 10
- The duration of the plume's passage varied from a few hours (Russia) to
- nearly a week (Italy) 1.0
 - Great Britain, Spain and Portugal remained outside the detections
- 0.8 The plume reached the extreme southeast of France while the rest of the country was not affected 0.6
- Several rain events occurred during the passage of the plume (wet deposition)

Modelled cumulated ¹⁰⁶Ru deposition

Comparison with observations

□ The impact of the deposition scheme is moderate on the FAC2 scores

- v_d =10⁻³ m.s⁻¹ leads to better FAC2 scores...
- FAC2 scores are slightly improved using wet deposition scheme based on:
 - In-cloud scavenging $\Lambda = 5 \times 10^{-5} I$
 - Below-cloud scavenging $\Lambda = 5 \times 10^{-4} I^{0.64}$

Conclusion and perspectives

- Inversion techniques based on ¹⁰⁶Ru air concentrations measurements including several meteorological data and deposition schemes highlight that a release emitted from the southern Urals could best explain the detections reported in Europe.
 - The ¹⁰⁶Ru released was estimated to range from 146 to 821 TBq
 - Duration of the release differs according cost function and meteorological data used

Outcome of the sensitivity analysis

- Scores related to air concentrations measurements are improved using log-normal cost function with ECMWF meteorological data
- Scores associated to deposition measurements are impacted by the choice of the deposition scheme
- Uncertainties remain significant due to the behavior of the ¹⁰⁶Ru

G Further developments are in progress

- Using meteorological data with 0.1° x 0.1° resolution in collaboration with Météo-France
- Better consideration of detection limits in the inversion process
- Using air concentrations and deposition measurements simultaneously in the inversion process

Thank you for your attention!

