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Abstract: In case of dispersion of hazardous CBRN species in the atmosphere, Source Term Estimation (STE) algorithms 

can be employed to provide an estimation of the release parameters (localization, intensity,…) by making use of 

concentrations and meteorological measurements. These algorithms have to be fast, reliable and accurate. One of the 

fastest methods for solving the source estimation inverse problem is the renormalization technique. It gives a source 

estimate linear with respect to the observations. This estimate corresponds to a minimum weighted-norm solution which 

can be expressed by making use of the generalized inverse concept. In this paper, a method for an efficient computation of 

this inverse solution is proposed. This method is illustrated using continuous release trials conducted during the Kitfox 

field experiment from September 11th to September 15th 1995, just after the 52 well known releases of August 1995. 

From the author’s knowledge, these smooth desert experiments have never been used for validation purposes and thus can 

be considerate as a new data set. 
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INTRODUCTION 

Significant recent advances in sensing technology have made field measurements less complex and more 

accurate. As a consequence, real time concentrations and meteorological measurements from array of sensors 

are now being used, by local authorities, to support rescue teams which respond to accidental or intentional 

dispersion of hazardous CBRN species in the atmosphere. Currently, these near-live measurements feed into 

models of atmospheric dispersion to get a clear picture of the situation and provide basics for decisions 

(COST ES1006, 2012). Successful forecasts from these models rely on an accurate estimation of the source 

strength and location. But, in most of the cases, these release parameters are not available. To characterize 

those parameters, several data assimilation techniques exist (Source Term Estimation algorithms). In general, 

for local scale emergency response, fast, safe and reliable source estimates are obtained from deterministic 

methods only using the observed data and by adding a minimum of a priori information to the problem. One 

of them, the renormalization technique, has been tested, and found to be working efficiently, against several 

Atmospheric and Tracer Data (ATD) sets from research studies from the past 20 years (Issartel et al., 2007, 

2011, Sharan et al. 2009, 2012). Recently it has been demonstrated that the source estimate obtained by this 

approach can be interpreted as a minimal weighted-norm solution to the linear source term estimation 

problem. As a consequence, it can be written in terms of a weighted generalized inverse (or weighted Moore–

Penrose inverse). In this paper, an appropriate method for efficient computations of the weight matrix and 

generalized inverse operator is proposed. Then, results computed from a series of dispersion experiments 

conducted over a flat open terrain are provided for illustrative purposes. From our knowledge, those 

experiments known as the “smooth desert – Kitfox” or “DRI /WRI CO2-II” experiments (Coulombe et al., 

1999) have never been used, for validation purpose, during the last 20 years. 

 

INVERSION TECHNIQUE  

A continuous release of a tracer may be described, on a grid of N points, defined within the atmospheric 

domain, by a vector named the source vector and denoted as s. A component sj (j=1…N) of this vector 



 

represents the rate of release at the location of coordinates xj=(xj,yj,zj). This source vector generates a field of 

concentrations C(xj). This field is known only through a finite number of observations i=C(xi) performed by 

a network of m sensors at locations xi (i=1…m). The STE inverse problem consists in reconstructing s  ℝN 

from the measurements vector   ℝm. Such a problem is necessarily addressed by use of a model which 

describes the relationship between the measurements and the source vector. In the approach proposed by 

Issartel (2005), this relationship is represented by an integral equation which can be transformed into a system 

of linear equations: 

 sAμ  (1)  

where A  ℝN×m
 is a sensitivity matrix, the retroplumes matrix, with elements corresponding with the discrete 

values of adjoint functions ai, )( jiij aA x . The retroplumes functions are obtained from physical modeling 

(dispersion models used in backward mode, Issartel et Baverel, 2003). The estimation of s from (1) is an ill-

posed problem since the system is highly underdetermined (N>m). This under-determination gives rise to the 

non-uniqueness of the inverse solution. By using a diagonal weight matrix W ℝN×N
 with elements 

satisfying the properties: (i) 0jjw  (ii) 
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m , the following change of variable can be applied to (1) 

 sWAμ w  (2)  

where wA is the modified sensitivity matrix with components jjjiwij waA /)(x . The estimation of s from 

(2) is still an ill-posed problem, but a unique minimum W-weight norm solution can be obtained as  

 μHAs
1

w
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  (3)  

where T1T
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   ℝm×m
 is a weighted Gram matrix (superscript “

T
” denotes the 

transposition). If the components of the weight matrix W satisfy a third condition, also called the 

“renormalizing condition”, (iii)   11 
www AHAdiag , equation (3) provides the unique renormalized 

estimate. It has been demonstrated that, in case of noiseless observations generated from a single point source, 

the maximum value of this estimate corresponds to the location of the source. This localization accuracy is 

due to the condition (iii) which gives to the method optimal properties. Moreover, the optimal weight 

verifying this condition are currently interpreted as the discrete value of a visibility function )( jjj ww x  

which characterizes the regions well or poorly monitored by the network. From a theoretical point of view, 

the optimal elements of W are the diagonal elements of the square projection matrix AHAR ww
1 , when the 

diagonal elements of the symmetric matrix wwww AHAR
1  are equal to one. 

 

COMPUTATION OF THE METHOD 

Equation (3) shows that ws //  can be computed from the observed concentration  by using the generalized 

inverse operator
11 )(   Τ11

ww AAWAWHAG . Since W is an Hermitian positive definite matrix, G  

ℝN×m
 is unique and satisfies the following equations: 

 WGAWGAAGAGGGAGAAGA
TT  )( (d)  )( (c) (b) (a)  (4)  

G is known as the W-weighted Moore–Penrose inverse (or W-weighted generalized inverse) of A often 

denoted by  WAG  (Ben-Israel and Greville, 2003). Since mm  )rank( and N A , G can be obtained by: 

   1/21/2
AWWG  

(5)  

where the superscript “
+
” denotes the Moore–Penrose inverse (or pseudo-inverse) of a matrix. Thus, to obtain 

G, the pseudo-inverse of the matrix AW
-1/2

 has to be computed. To that, several efficient methods exist, the 



 

most accurate one being based on the well-known Singular Value Decomposition (see for example the pinv() 

function in Matlab). But, to determine G from (5), the optimal weight matrix W satisfying the renormalized 

condition (iii) has first to be computed. To obtain the renormalizing weights, the first idea is to iteratively 

compute the projection matrices R and Rw. But the dimension of these matrices is N×N and the storage, and 

processing time, resources of such matrices rapidly become prohibitive as N increases (if each entry is an 8-

byte, 64 bits, double precision floating-point number, the required storage is 8*N*N/1024
3
 Go). As a 

consequence, to obtain W, only the N diagonal elements of R have to be computed. By writing the j columns 

of the matrices A as vectors denoted as aj  ℝm
 (j=1…N), the diagonal components of R and Rw can be 

respectively written as  
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In this case, the renormalisation condition is 
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Thus W can be computed as the converged diagonal matrix Wp (with W0=m/N*IN) obtained from the 

following iterative Algorithm 1. It has been observed that this algorithm converges uniformly to a matrix W 

with components satisfying the renormalization condition. Once this optimum weight matrix has been 

obtained, the generalized inverse can be computed from (5) and, for a given set of measurements, the source 

estimate ws // can be calculated from (3). The location of the maximum component of this vector k
//s w  

corresponds to the location of the actual point source and the intensity of the release is given by kk
k
// ws /w . 

 
Algorithm 1. Computing the optimal weighted matrix W  

Require: Let A ℝm×N . 

1: N=columns[A] 

2: m=rows[A] 

3: W=m/N*IN     (initialization of W) 

4: while dmin < =0.99   (definition of the convergence criteria) 

5:  H-1=(AW-1AT)-1   (computation and inversion of the weighted Gram matrix) 

6:   For j=1 to N 

7:   aj=A(j)   (writing the j columns of the matrices A as vectors) 

8:  dj= aj
TH-1aj*wjj

-2   (computation of the diagonal elements of Rw,  

9:  End for    stored in a vector d) 

10:  dmin = min(d)    (convergence verification) 

11:  W=W*(diag[d])1/2   (definition of a new weight matrix) 

12: end while 

13: return W 

 

THE SMOOTH DESERT KITFOX DATA SET 

In late August and early September 1995, a series of dispersion experiments were conducted at the Nevada 

Test Site. In all the experiments of this series, known as the “KIT FOX series”, carbon dioxide (CO2) was 

released as a tracer. The gas releases were conducted, during stable and neutral atmospheric conditions, under 

three different surface roughness configurations: Equivalent Roughness Pattern (ERP), to simulate a refinery 

tank farm at reduced scale, Uniform Roughness Array (URA) to simulate the surface surrounding a refinery 

and smooth desert surface configuration. High-concentration and low-concentration CO2 sensors were laid out 

in four arrays located downwind from the source and oriented perpendicular of the predicted transport of the 

cloud. Meteorological conditions were measured by adequate instrumentation both over the flat desert surface 

and within the dispersion grid. From August 22 to August 31, 70 releases have been conducted under two 

separate surface configurations: ERP+URA and URA only. Those releases were described in a well-

documented report (Western Research Institute, 1998). From criteria recommended by G. Briggs, 52 of them 

have been selected. Those appropriate releases, and some analyses of the data, have been described by Hanna 

and Chang (2001). As part of the Modelers’ Data Archive (MDA), these 52 experiments have been 



 

extensively used for evaluating model performance or for developing new algorithms. From September 11 to 

15 1995, 30 releases with the smooth desert configuration were conducted. These experiments, also referred 

to as the “DRI /WRI CO2-II” experiments, have been described in a separate report (Coulombe et al., 1999), 

only mentioned by King et al. (2002). From the author’s knowledge, these late experiments have never been 

used for validation purposes and thus the “smooth desert - Kitfox data set” can be considerate as a new data 

set. Thanks to J. Chang and S. Hanna, W. Coulombe sends us his report in April 2013.  

 

 
Figure 1: KITFOX, smooth desert surface configuration, from Coulombe et al. (1999) 

 

For these experiments, the sensors were laid out in three arrays of sensors located downwind from the source 

(at 50m, 100m and 225m) and oriented perpendicular to the centreline of the predicted transport course of the 

cloud. The meteorological measurements (wind components and temperature at different levels) were made 

by using a permanent 24-m tower (located southwest of the site) and two 8-m towers located, on the nominal 

232° centreline, upwind and downwind of the source location, see Figure 1. The 30 releases were performed 

under atmospheric stability ranging from neutral (Pasquill D) to very very stable (designated in the report as 

Pasquill G). A release rate of 1.5 kg/s was used for the 22 short duration releases (20s). For the 8 other 

experiments, the gas was released continuously over longer periods of time (150-360s) at a rate of 1.5 kg/s (3 

experiments) and 1 kg/s (5 experiments). In this study, some of the concentration and meteorological 

measurements from those 8 continuous release experiments have been used for illustrating the 

renormalization technique.  

 
Table 1: Characteristics of the continuous release experiments 

Test 

No. 

Average wind speed 

2m a.g.l. (ms-1) 

Average wind direction 

2m a.g.l. (degree) 

Release rate 

(kgs-1) 

Release duration 

mm:ss 

Stability 

Class 

9-4 3.5 234 1.527 2:31 D-E 

9-7 2.5 229 1.497 3:31 F 

9-9 1.9 235 1.438 5:31 F-G 

10-5 2.0 232 1.037 5:58 G+ 

10-6 1.9 198 0.995 5:00 F-G 

12-7 1.6 211 1.019 4:59 F-G 

13-6 3.0 227 1.114 3:32 E 

13-7 2.3 213 1.028 3:00 F 

 

RESULTS & DISCUSSION 

In local emergency response applications, adequate results from the available observations are needed as 

quickly as possible. This tends to favor simplest models, such as the one used in this study to compute the 

components of the sensitivity matrix A. Indeed, use was made of an analytical Gaussian dispersion model 

(Sharan et al., 1996) in a backward mode (since dense gas effects dominate only in immediate vicinity of the 

source, it has been assumed that by the time the plume reaches the captors, it should likely be modelled as 

Gaussian). The values presented in Table 1, and the empirical estimate of Briggs for the lateral and vertical 

standard deviations of dispersion, have been used as parameters. The observed concentrations from 24 captors 

of the 50m and 100m arrays have been averaged over the sampling duration in order to obtain the measured 

concentrations vector (i.e. m=24). The inversion technique described in the previous section has been 

implemented on a discretized domain of N=300×300 points with a resolution of 1m. With this grid, the 



 

computational (CPU) time on a machine Intel® Core™ i5-3427U CPU 1.80GHz, 8Go RAM, involved in 

estimating the components of A, W and ws //  was approximately 30 seconds.  

 

   
Figure 2: Isopleths of w(x) in the computational domain for cases 9-9,12-7 and 13-7 (from left to right). 

 

   
Figure 3: ws //  for cases 9-9,12-7 and 13-7 (from left to right). The center of the domain denotes the source location. 

 

In every case, the function )(xw is focused at the detectors locations and decreases with increasing downwind 

distance from the monitoring network. This function is currently interpreted as the visibility of the monitoring 

network characterizing the regions well or poorly monitored. If the value of the visibility function at a point is 

nearly zero (black regions in Figure 2), a source at that point will be hardly identified. In this study, the source 

location lies in a well monitored region of the network, see Figure 2. As a consequence, a sharp maximum 

region of ws //  is distinctly observed, see Figure 3. The maxima of ws //  is unique at position (xs,ys). The 

lateral positions of the source are retrieved within 5 m (i.e 0 ≤ ys/xm ≤ 0.08, where xm is the mean distance 

between the source and sensors in the downwind direction). This accuracy is mainly due to the configuration 

of the network with two arrays across the plume. The estimates for xs are, on the whole, of lower quality than 

those for ys (0 ≤ xs/xm ≤ 0.2). The longitudinal source locations are placed upstream of the true position, 

basically because the sensitivity matrix has been derived from a Gaussian model (which includes the use of 

mean wind speed and direction) associated with empirical dispersion parameters. In practice, the use of 

empirical parameters will inevitably lead to uncertainty in source term localization. This model error can be 

reduced by using turbulence-based schemes for lateral and vertical dispersion.  

 

CONCLUSION 

For local scale emergency response, fast and reliable source estimates can be obtained from limited 

concentration measurements by using the renormalization method. The renormalized estimate, given in a 

discrete form by equation (3), can be obtained by using a weight generalized inverse operator. This operator 

satisfies criteria used to define good inverses. It can be easily obtained from equation (5) after having 

computed the pseudo-inverse of a weighted sensitivity matrix. To compute pseudo-inverses, classical 

algorithm based on a Singular Value Decomposition method can be used. In this paper, an algorithm to 

compute the optimal weight matrix has been proposed. The components of this matrix are currently 

interpreted as the discrete value of a visibility function which characterizes the regions well or poorly 

monitored by the monitoring network. By using this optimal matrix, the maximum value of the source 

estimate corresponds to the location of the point source. The study has been illustrated using measurements 



 

from a new KITFOX data set. By using mean measurements, the method converges onto reasonable 

estimates: the source is observed to be distinctly located and lies in a highly illuminated region of the 

monitoring network. The lateral position of the point source is retrieved within 5 m of the true source location 

but the longitudinal location is placed upstream of the true location. The errors on source localization, 

observed in this study, can be imputed to the performances of the models (and on the parameters which they 

are associated) used to obtain the sensitivity matrix. 
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