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Abstract: We analyze the temporal variations which can be observed within time series of variogram parameters 
(nugget, sill and range). Datasets have been obtained from previous geostatistical analysis of country wide datasets of 
daily air quality data (PM10) over a ten years time frame. Applying the Kolmogorov-Zurbenko filtering method, time 
series are being decomposed into their short-, mid-, and long-term component. Furthermore, the significance of a 
long term trend component is investigated by a block-bootstrap-based approach combined with linear regression. It is 
discussed if within these datasets the times series of nugget variance can provide information about the evolution of 
the mean measurement uncertainty of the related air pollutant, whereas the sill and the range parameter could contain 
information about the spatial representativeness of the monitoring stations. 
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INTRODUCTION 
A common step in the evaluation of model performance and in model validation is to compare the 
modelled results to observations obtained from air quality monitoring. In this context, statistical 
indicators which aim to determine whether model results have reached a sufficient level of agreement 
with the observations, require an assumption to be made about (i) the measurement uncertainties and (ii) 
the spatial representativeness of the air quality parameters being used. Quantitative values for the 
measurement uncertainty are usually derived from experimental work specifically addressing the 
individual measurement techniques. Quantification of spatial representativeness in conventional practice 
is frequently based on the evaluation of specific site characteristics and assumptions being made about 
similarities of those characteristics within the surrounding domains. However, in order to facilitate the 
thorough exploitation of comprehensive observation datasets, the use of geostatistical techniques can 
serve as an interesting alternative which can be immediately applied to the monitoring data without need 
to refer to secondary information. The underlying idea is that within such datasets the nugget variance can 
provide information about the measurement uncertainty and the micro-scale variability of the related air 
quality measurements (Gerboles and Reuter, 2010), whereas the sill and the range parameter contain 
information about their spatial representativeness. However, this information is assumed to be obfuscated 
by several atmospheric processes which are superimposing the signal of interest on a range of different 
time scales.  
 
METHODOLOGY 
In this exercise, we analyzed the temporal variations observed within time series of variogram parameters 
(nugget, sill and range) obtained from spherical variogram model fits. The underlying time series data 
used for this study were obtained within previous projects from the analysis of country wide datasets of 
hourly PM10 data from the AirBase ambient air quality database over a ten years time frame (Gerboles et 
al. 2014, in prep.). More details about these preceding geostatistical evaluations can be obtained from 
Gerboles and Reuter (2010). All simulation codes were developed in the R environment (R Development  
Core Team, 2014). For the scope of this assessment, it was decided to apply the evaluation to the sole 
stations of background type, but for all area types (urban, suburban and rural). 
 



Table 1. Overview of daily variography sets (individual variogram models fitted to PM10 daily values) available.  
Country First Available Fit 

(year) 
Last Available Fit 

(year) 
Available Fits 

(count) 
Accepted Fits 

(count) 
FR 2001 2007 2051 1221 
DE 1998 2007 3232 1555 
GB 1997 2007 3932 2415 
AT 2001 2007 2280 1189 
IT 2003 2007 1737 890 
NL 2003 2007 1258 1235 

Constraints applied for accepting a valid variogram model fit have been:  
(I) 1 < nugget < 150 (µg/m3)2, (II) 0 < sill < 104 (µg/m3)2, (III) 0 < range < 2 deg, (IV) 0.04 < sill / nugget < 5·103 

 
In a first step, the time series of variography parameters were screened for internal consistency by 
applying a set of constraints (I, II, III, IV, see note in Table 1) for accepting a valid variogram model fit 
(Table 1). Using the Kolmogorov-Zurbenko (KZ) filtering method (Rao et al., 1997; Eskridge et al., 
1997) we then aimed to separate the original time series X(t) into its different components (equation 1).  

 ( ) ( ) ( ) ( )X t e t S t W t= + +  (1) 

In this conceptualization, the short-term component W(t) is attributable to variations of weather and to 
short-term fluctuations in precursor emissions. The mid-term (seasonal) component S(t) can be interpreted 
as a result of changes in the solar angle (induced variations of emissions and temperature dependencies). 
The long-term signal e(t) can be interpreted to result from long-term changes in overall emissions, 
pollutant transport, climate, economics, and environmental policies (Wise and Comrie, 2005). e(t) is as 
well supposed to be influenced by evolutions in the operational principles of the monitoring network. In 
addition, Baseline(t) is defined as the sum of the long-term and seasonal component. 
 
Furthermore, the significances of long term trend components of the nugget and the sill effect were 
investigated from the slope of linear regression lines fitted to each set of the unfiltered time series X(t). 
This required specific care to be taken because of the serial autocorrelation inherent in these data, which 
became evident from systematic patterns observed in S(t). A simple linear regression would have all 
observations within an individual time series of variogram parameter values assumed to be independent. 
This is likely to give reasonable estimates of the regression coefficients, but to overstate their 
significance. To obtain more accurate confidence intervals, we chose to combine linear regression with a 
block-bootstrap-based approach (Künsch, 1989). In this way, the slope parameter was estimated by 
ordinary linear regression applied to bootstrap replicates chosen randomly from the original time series. 
We used a variable block length following a geometric distribution with a mean value of 30 days (CF-
Interval 1) and 365 days (CF-Interval 2), respectively. Confidence intervals on the 95% level were then 
estimated by applying a coverage factor of 1.96 to the empirical standard deviation of the bootstrapped 
slope estimates. After some initial tests, it was considered suitable to perform 10´000 resamples per time 
series to obtain good stability in the significance level estimates. 
 
RESULTS AND DISCUSSION 
Figure 1 and Figure 2 are illustrating the decomposition and trend analysis being applied to the nugget 
and sill datasets of background stations from six different countries (FR, DE, GB, AT, IT and NL). Note 
that for the convenience of the discussion the nugget and sill values have been recalculated from variance 
to 2-times standard deviations and are thus presented in units of µg/m3. As a first observation, several 
data series are revealing a pronounced cyclic behaviour in their seasonal component S(t), and a non-
stationarity (change of variance over time) in their short-term component W(t). These effects clearly 
indicate the presence of temporal variations in the macroscale spatial correlation structures (sill). 
Furthermore, for the examples of Austria, Italy, Germany and France a phase relationship of the S(t) 
component consisting in a winter increase of the sill effect is observed. It is likely that spatial variability 
increases in winter time because of local emission caused by heating, sanding and particulate matter re-
suspension, as well as by limited air mixing increasing the discontinuity of PM10 concentration levels. 
However, for Austria and Italy this phase relationship is also observed in the nugget effect time series, 
which might indicate the influence of increasing small scale variability in winter time, too.  



 
Figure 1. Time series of estimated nugget parameter values from spherical variogram models fitted to PM10 daily 
values of AirBase v.4 background stations. Nugget values have been recalculated from variance to 2-times standard 
deviations and are presented in units of [µg/m3]. Note that KZ[15,5] has a low pass periodicity of 34 days that gives 
the baseline air quality. KZ[365,3] has a low pass periodicity of 632 days. W(t) can be used to characterize the short-
term component, S(t) for the seasonal component, and e(t) reflects the long-term signal and trend. Baseline(t) is 
defined as the sum of the long-term and seasonal component. 



 

 
Figure 2. Time series of estimated sill parameter values from spherical variogram models fitted to PM10 daily values of 
AirBase v.4 background stations. Sill values have been recalculated from variance to 2-times standard deviations and are 
presented in units of [µg/m3]. Note that KZ[15,5] has a low pass periodicity of 34 days that gives the baseline air quality. 
KZ[365,3] has a low pass periodicity of 632 days. W(t) can be used to characterize the short-term component, S(t) for the 
seasonal component, and e(t) reflects the long-term signal and trend. Baseline(t) is defined as the sum of the long-term 
and seasonal component. 



A closer look at the nugget effect time series is indeed of high practical interest, as it can provide 
information about the evolution of the mean measurement uncertainty of the related air pollutant. From a 
conceptual point of view, the two dominant causes of the nugget effect should consist of (i) the 
uncertainty of the measurements, and (ii) the microscale variability. Nevertheless, for the generalized case 
it is actually difficult to distinguish the proportions contributed by these two components, by using 
information obtained from geostatistics and time series analysis only. Interpretations of seasonal effects 
on the spatial correlation length have been discusses in the previous paragraph. However, as the 
composition and properties of particulate matter and ambient parameters (like temperature and relative 
humidity) vary in time, they do as well influence the uncertainty of different PM10 mass measurements 
principles (Pernigotti et al., 2013). Thus, the observed short term influences (non-stationarities) and 
seasonal variations in the nugget time series are as well considered compatible with the assumption of 
related short term influences and seasonal fluctuations of measurement uncertainty. Note that in order to 
minimize the influence of small scale variability the data sets used in this exercise have been preselected 
to comprise background type stations only. 
 
The magnitude of the individual spectral signal contributions to the total variation of the nugget and sill 
parameter time series can be compared from the overall variance calculated for each of the filter-
separated time series. Table 2 provides an overview of the observed total variances. In addition, it also 
summarizes normalized values (given in parentheses), for which the total values of the different filter-
separated spectral components have been adjusted by division with the variance of the raw values. 
Example given for interpretation, the seasonal component S(t) of absolute values is less expressed in both 
the nugget and the sill data series from France, but more strongly pronounced within the data series from 
Italy and Austria. Also the short term component W(t) has its largest expression in the datasets of Italy 
and Austria. We consider that this observation can be attributable a lack of continuity due to the stronger 
topographic roughness and dissection of these two countries. In contrary, within the comparison of the 
absolute values, Great Britain and the Netherlands are characterized by the least strong total seasonal 
variation of both the nugget and the sill parameter values. On the other hand, because of this weakly 
pronounced S(t) component, the relative importance of W(t) is most prominent for these two countries 
(normalized values in Table 2). 
 
Table 2. Overall variance of the raw variogram parameter data and of the filtered time series. Note that data have not 
been de-trended for these calculations. Values in parentheses are normalized by the variance of the raw values series. 

Country Parameter Raw Values 
((µg/m3)2) 

Baseline 
((µg/m3)2) 

e(t) 
((µg/m3)2) 

S(t) 
((µg/m3)2) 

W(t) 
((µg/m3)2) 

FR Nugget (2s) 2.51 (1.00) 1.48 (0.59) 0.14 (0.06) 0.46 (0.18) 1.16 (0.46) 
DE Nugget (2s) 3.28 (1.00) 0.94 (0.29) 0.08 (0.02) 0.73 (0.22) 1.96 (0.60) 
GB Nugget (2s) 2.87 (1.00) 0.43 (0.15) 0.03 (0.01) 0.34 (0.12) 2.16 (0.75) 
AT Nugget (2s) 5.41 (1.00) 1.95 (0.36) 0.06 (0.01) 2.28 (0.42) 3.17 (0.59) 
IT Nugget (2s) 6.50 (1.00) 2.09 (0.32) 0.01 (0.00) 2.34 (0.36) 4.28 (0.66) 
NL Nugget (2s) 2.92 (1.00) 0.47 (0.16) 0.00 (0.00) 0.30 (0.10) 2.21 (0.75) 
FR Sill (2s) 5.98 (1.00) 1.99 (0.33) 0.19 (0.03) 1.33 (0.22) 2.76 (0.46) 
DE Sill (2s) 13.95 (1.00) 3.86 (0.28) 0.14 (0.01) 4.00 (0.29) 7.32 (0.52) 
GB Sill (2s) 6.50 (1.00) 0.73 (0.11) 0.05 (0.01) 0.57 (0.09) 5.04 (0.78) 
AT Sill (2s) 30.47 (1.00) 15.29 (0.50) 0.34 (0.01) 16.44 (0.54) 13.58 (0.45) 
IT Sill (2s) 53.66 (1.00) 26.47 (0.49) 0.54 (0.01) 29.76 (0.55) 26.16 (0.49) 
NL Sill (2s) 8.38 (1.00) 0.94 (0.11) 0.01 (0.00) 0.74 (0.09) 6.63 (0.79) 

 
Results of the trend analysis are presented in Table 3. A significant trend component could only be found 
in the nugget time series of France (a negative slope of -0.73 ± 0.31 µg/m3/year) and Great Britain (a 
weakly positive slope of 0.11 ± 0.09 µg/m3/year). For all other series the slope of the linear trend 
component was not significant in consideration of the bootstrapped confidence intervals. However, the 
expressiveness of trend analysis was partially limited by the relatively short range of valid variogram time 
series for some of the countries. For future work, an improvement of the robustness of the variogram fit 
procedures is needed, in order to obtain more comprehensive sets of time series for the trend analysis. 
 



A negative trend in the nugget time series can be interpreted by an improvement of the measurement 
uncertainty of the monitoring stations over the years, but also by a reduction in small scale variability 
(change in the nature or quantity of emissions, transported pollution, or atmospheric reactions). Other 
reasons causing either negative or positive trends might be the increase / decrease of the number of 
monitoring stations or a change in the station classifications. In conclusion, further investigations are 
needed to determine if the trends of nugget variance are caused by a decrease / increase of the 
measurement uncertainty or by long term variations of air pollution and / or meteorological factors. 
 

Table 3. Summary of bootstrap based trend analyses performed on the nugget and sill parameter time series. 
CF-Interval 1 and CF-Interval 2 are corresponding to resampling with mean block lengths of 30 days and 365 days. 
Country Parameter Median Value 

(µg/m3) 
Trend Slope 
(µg/m3/year) 

95% CF-Interval 1 
(µg/m3/year) 

95% CF-Interval 2 
 (µg/m3/year) 

FR Nugget (2s) 6.45 -0.73 ± 0.24 ± 0.31 
DE Nugget (2s) 6.99 -0.02 ± 0.18 ± 0.28 
GB Nugget (2s) 6.13 0.11 ± 0.07 ± 0.09 
AT Nugget (2s) 8.29 -0.09 ± 0.41 ± 0.47 
IT Nugget (2s) 12.67 -0.09 ± 0.51 ± 0.56 
NL Nugget (2s) 7.97 -0.11 ± 0.30 ± 0.41 
FR Sill (2s) 9.17 -0.28 ± 0.44 ± 0.64 
DE Sill (2s) 9.25 0.13 ± 0.36 ± 0.45 
GB Sill (2s) 7.01 -0.01 ± 0.11 ± 0.14 
AT Sill (2s) 11.31 0.11 ± 1.04 ± 1.03 
IT Sill (2s) 19.85 0.54 ± 1.89 ± 2.24 
NL Sill (2s) 8.29 0.00 ± 0.45 ± 0.35 
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