

Experimental and Numerical study of a Near-Field Pollutants Dispersion Campaign in a Stratified Surface Layer

Xiao Wei, Eric Dupont, Bertrand Carissimo, Eric Gilbert and Luc Musson-Genon

HARMO 16, 8-11 Sept 2014, Varna, Bulgaria

Introduction

- Pollutants dispersion in a stable atmospheric boundary layer and in complex environment still relatively poorly described by modeling
- **Stable condition difficult to reproduce in a wind tunnel**
- Major interest in the field of air pollution from human activities (industrial risks, road transportation, etc.)
- Experimental program on the site SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) measuring structure of turbulence and associated pollutants dispersion through high temporal and spatial resolution measurements in a stratified surface layer and in near-field

- **SIRTA dispersion experimental program**
- **Data analysis**
- Preliminary numerical simulations
- Conclusion and future works

SIRTA dispersion experimental program: objectives and characteristics

Objectives:

- Document in high temporal and spatial resolution and in near field, wind fluctuations and concentration fluctuations of a tracer gas
- Relationships expected between concentration fluctuations and passage of turbulent structure

Characteristics:

- Experiment in near field (50 to 200 m)
- Focus on stable thermal stratification, but may include some neutral stratification or slightly convective situations
- High frequency measurements (about 10Hz) to cover the entire frequency spectrum of fluctuations
- Large number of sensors measuring turbulence and concentration of tracer gas

SIRTA dispersion experimental program: field and meteorological conditions

Meteorological conditions :

- Wind direction between 75° and 105° , being as close as possible to 90° (easterly wind)
- Wind velocity between about 1 and 5 ms⁻¹ (at the release height i.e. 3 m) in order to stay in unfavorable dispersion conditions
- Stable stratification checked both with positive temperature difference T(30m) T(10m) and with positive Monin-Obukhov length

SIRTA dispersion experimental program: devices and sensors position

Source (at 3m height)

12 ultrasonic anemometers:

- Continuous measurements
- Measuring at 10 Hz: three components of wind speed and air temperature
- "Sonic square" (at 3m height): NW, NE, SW, SE
- "Sonic arc at 50m" (at 3m height):
 20N, 10N, 0, 10S, 20S
- Two masts: 10mSW, 10mSE and 30mSE

6 photo ionization detectors (PID):

- Measurements during tracer tests
- Measuring concentration at 50Hz
- All at 3m height

Sonic data analysis: statistic

- Intensive Observation Period (IOP) on 5th June 2013 (18:48-20:17): selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- *dd* as mean wind direction
- (*a*,*b*,*w*) as longitudinal , transverse and vertical component of wind velocity
- Vertical stability verified by *T* gradient and *L_{MO}*

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_{*}(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
$Q_0 (Kms^{-1})$	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
L_{MO} (m)	21	16	40	20	24	34	176	131	416

Sonic data analysis: integral length scale

 Integral length scale : characteristic of the largest scales in a turbulent flow

$$L = a_{mean}T_e$$

Integral time scale approximation

$$T_i = \int_0^\infty R(\tau) d\tau \qquad T_e = \int_0^{\tau_e} R(\tau) d\tau \approx \tau_e$$

	NE	NW	SE	SW	20N	20S	10mSW	30mSE
L_{aa} (m)	14.82	13.13	14.86	16.69	19.62	14.28	33.31	91.95
L_{bb} (m)	5.67	6.42	11.11	12.47	7.68	12.27	11.51	24.76
L_{ww} (m)	1.83	2.00	1.96	2.02	2.07	2.35	5.96	8.84

- Quantified anisotropy of turbulence near ground in stable conditions
- *L* increasing with altitude

Concentration data analysis: baseline correction

- IOP on 5th June 2013 : continuous gas release about 70min (18:53 20:03)
- **Raw data: gas concentration in ppm at 50 Hz**
 - Negative values, sensor drift and non zero off-set, background concentration
- Negative values elimination: linear interpolation of its non-negative neighbors
- Baseline method to remove sensors drift and background concentration: average of the 200 smallest values every 5min

Concentration data after value correction for PIDs (from top to bottom) 1, 2, 3, 4, 5 and background

Concentration data analysis: histogram

Concentration histogram for PIDs (from top to bottom) 1, 2, 3, 4, 5 and background

Concentration data analysis: statistic

	PID 1	PID 2	PID 3	PID 5	PID background
Height (m)	3	3	3	3	3
Ι	0.52	0.54	0.41	0.18	0.00
<i>C</i> (ppm)	5.46	5.58	3.87	1.79	0.25
C_P (ppm)	9.72	9.62	8.68	7.83	-
σ_c (ppm)	7.98	8.19	7.10	5.07	0.25
σ_c/C	1.46	1.47	1.83	2.84	0.98
$(\sigma_c/C)_P$	0.82	0.85	0.82	0.65	-
$L_{C}(\mathbf{m})$	6.29	6.52	3.12	12.91	-

Statistical values:

- intermittency factor *I* (probability that the concentration is non-zero)
- mean concentration C and conditional mean C_P
- standard deviation σ_c
- fluctuation intensity σ_c/C and conditional intensity $(\sigma_c/C)_P$
- threshold value $C_T=2$ ppm

Discussion:

- *I* and *C* have higher values for PID 1 and 2 \rightarrow coherent with the south-easterly wind
- great differences found between C and C_P , σ_c/C and $(\sigma_c/C)_P$
- C_P and $(\sigma_c/C)_P$ almost constants between all the PIDs
- integral length scales of plume $L_C \sim L_{bb}$
- plume meandering effect plays probably an important role in concentration measurements

Concentration data analysis: spectra

- Spectra more fluctuating with a smaller intermittency factor
- Inertial subrange found in PID background → might be other source around during the IOP

Preliminary numerical simulation: modelling

Boundary conditions

Objective: the open source CFD code *Code_Saturne* can reproduce correctly the mean flow on the experiment area

Modelling area

- Zone 1(1600m×700 m×200m, red): horizontal resolution 5m
- Zone 1 instrumented area (180m×100m ×200m, yellow): horizontal resolution 1m
- Shelters taken into account explicitly in the mesh
- Inlet condition: analytical profiles generated with measurements of anemometers 10mSE and 30mSE in IOP on 5 June 2013
- Outlet condition: free outflow
- Ground and shelters surfaces: a constant roughness length $z_0=0.1$ m

Preliminary numerical simulation: modelling

- **RANS**, standard k- ε turbulence model , with stable thermal stratification
- Identification of different land cover types
- Forest modelling:
 - drag porosity model proposed in Katul et al.(2004)
 - 1 source term in the Navier-Stockes momentum equation

$$S_{u,i} = -\frac{1}{2}\rho\alpha C_D |U|\overline{U_i}$$

• 2 source terms in the k- ε equations

$$S_{k} = \frac{1}{2}\rho\alpha C_{D}B_{p}|U|^{3} - \frac{1}{2}\rho\alpha C_{D}B_{d}k|U| \qquad B_{p} = 1, \quad C_{\mu} = 0.03,$$

$$S_{\varepsilon} = \frac{1}{2}\rho\alpha C_{D}C_{\varepsilon4}B_{p}\frac{\varepsilon}{k}|U|^{3} - \frac{1}{2}\rho\alpha C_{D}C_{\varepsilon5}B_{d}\varepsilon|U| \qquad \text{with} \qquad B_{d} = \sqrt{C_{\mu}}\left(\frac{2}{0.05}\right)^{2/3}B_{p} + \frac{3}{\sigma_{k}} = 5.03,$$

$$C_{\varepsilon4} = C_{\varepsilon5} = 0.9$$

 α : leaf area density, H: forest height and C_D : drag coeficient

Simulation results: observed effects

Simulation results: zone 1 whole area

Velocity field at 3m height

Wind channelling effect of the forest on the velocity

<u>Simuation results: zone 1 instrumented area</u>

Velocity field at 3m height

TKE field at 3m height

- Wind velocity slowed down and direction changed by forest
- **TKE :** lower values close to the forest, higher values behind shelters

TurbEner

Simulation results: comparison

TKE (m2/s2)

Conclusion and future works

Conclusion:

- Characterization of the turbulence strong anisotropy
- Perturbation from the forest : slow down wind velocity and change wind direction
- Evidence of plume meandering effect in stable stratified surface layer
- Numerical simulation reproduced qualitatively wind channelling effect of forest on velocity and impact of shelters on turbulence kinetic energy

Future works:

- Turbulence data analysis for continues measurements over 2 years \rightarrow turbulence characteristics varied with stability condition
- Additional PIDs allowing to extend the instrumental set-up
- Relationships between turbulence and concentration fluctuations
- Numerical simulations in mode RANS with *Code_Saturne*: using a second-order turbulence model R_{ij} - ε → to model turbulence anisotropy

References

- Mylne, K.R., 1992: Concentration Fluctuation Measurements in a Plume Dispersing in a Stable Surface Layer. *Boundary Layer Meteorology*, 60, 15–48.
- Katul G.G., L. Mahrt, D. Poggi, C. Sanz ,2004: One- and two-equation models for canopy turbulence. *Boundary-Layer Meteorol* 113, 81-109
- Wei, X., E. Dupont, B. Carissimo, E. Gilbert, L. Musson-Genon, 2004 : A preliminary analysis of measurements from a near-field pollutants dispersion campaign in a stratified surface layer, *Int. J. Environ. Pollut.* in press.
- Zaïdi, H., E. Dupont, M. Milliez., L. Musson-Genon and B. Carissimo, 2013: Numerical simulations of the microscale heterogeneities of turbulence observed on a complex site. *Boundary-Layer Meteor.*, 147, 237-259.

THANK YOU !

Email: xiao.wei@edf.fr

HARMO 16, 8-11 Sept 2014, Varna, Bulgaria