

Faire avancer la sûreté nucléaire

Source term assessment of a nuclear release: Inverse modelling method and application examples

A.MATHIEU, O.SAUNIER, D.DIDIER, M.BOCQUET, V.WINIAREK

Anne.mathieu@irsn.fr

IRSN is the French technical safety organization

Role of IRSN in case of a Radiological Emergency

Assess risk induced by accidental situation

Provide technical expertise to public Authorities

Task

Evaluation of the reactors state, releases to the environment (diagnosis/prognosis)

Evaluation of the radiological consequences (doses and depositions, diagnosis/prognosis), all spatial scales

Development of operational tools

Previous events

- □ Main nuclear accidents: Chernobyl, Fukushima
- Minor events: radionuclide detection by monitoring system (iodine detection 2011-2012, cesium detection 2013, forest fires in areas contaminated by the Chernobyl accident...)

7 Need do develop a tool to assess atmospheric releases by using environmental observations

- Source location
- □ Source term (ST: temporal evolution of the release rate + distribution between radionuclides)

Iodine detection by air sampling monitoring stations in Europe Oct-Nov 2011

- Description of the event
 - 9/11/2011 Iodine detection on several stations in Europe (7 countries) Source location and

Use of the IRSN's inverse modelling tool

- Source location: to narrow the list of potential candidates
- Source term: to assess the source term
- 17/11/2011 IAEA's confirmation of the source location + provision of a source term assessment – iodine measured in 9 countries in Europe)

Measurements

Averaged over 1 – 7	days periods		
Czech Republic	27 μBq/m³		
E of Austria	65 μBq/m³		
E of Germany	14 µBq/m³		
Poland	13 μBq/m³		
Slovakia	16 µBq/m³		
Sweden	5 μBq/m³		
Hungary	87 μBq/m³		
Ukraine	7 μBq/m³		
N-NE of France	5 μBq/m³		

1- Application to air concentration observations

АТМ	IdX (C3X platform)	Eulerian model	No chemistry of iodine
Meteorological data	ECMWF	Spatial resolution ~10 km	
Air concentration observations	41 Stations	59 Observations (>0: 17-oct – 10-nov 2011)	Time Averaged (1 to 7 days)

Step 1: Define the a priori information

- A priori source term unknown ($\sigma_b = 0$)
- "Shorten" the observation period (Consider only periods when iodine may have been observed in the stations location)
- Time scale of the inverted source term : daily

Step 3: Source term assessment

1- Application to air concentration observations

Validation of the source term: Comparison to other source term (IAEA source term)

IAEA ST:

Between 8/09/2011 – 16/11/2011 : 342 GBq released with a maximum rate of 108 GBq/48 hours in October 12-14

No inconsistencies between the 2 ST. Release rates were not constant

Validation of the source term: model to data comparisons

Direct simulation using the inverted source term and comparisons with observations

Better model to data agreement with the inverted ST.

Relatively good agreement between model and observations: inverted source term is realistic

2- Application to dose rate observations

Fukushima accident - Saunier et al., ACP 2013

Step 1: Define the a priori information

- □ A priori source term unknown ($\sigma_b = 0$)
- □ Time scale of the inverted source term : 1h
- □ Isotopic composition of the ST :

The dose rate signal is mainly due to 8 radionuclides: ¹³⁴Cs, ¹³⁶Cs, ¹³⁷Cs, ¹³⁷mBa, ¹³²Te, ¹³²I, ¹³¹I, ¹³³Xe with secular equilibrium and constant ratio (¹³⁴Cs/¹³⁷Cs) hypothesis, it leads to 5 radionuclides : ¹³⁴Cs, ¹³⁶Cs, ¹³²Te, ¹³¹I and ¹³³Xe

Define isotopic soft constraints

Radionuclides released in proportions that depends on their physicochemical properties + the core inventory

$$\begin{array}{l} 0.6 \leq \frac{\sigma_{132}Te}{\sigma_{134}Cs} \leq 16\\ 2 \leq \frac{\sigma_{131}I}{\sigma_{134}Cs} \leq 100\\ 0.1 \leq \frac{\sigma_{133}Xe}{\sigma_{134}Cs} \leq 10000\\ 0.1 \leq \frac{\sigma_{136}Cs}{\sigma_{134}Cs} \leq 0.5 \end{array}$$

2- Application to dose rate observations

Step 2: Identify the potential release periods

Inverse modelling

Cost function

$$J(\sigma) = \left\| \mu - H\sigma \right\|^2 + \lambda \left\| \sigma - \sigma_b \right\|^2$$

2- Application to dose rate observations

Step 3: Estimate the release rates

11

Validation - Comparisons to other ST

Source Term (PBq)	¹³³ Xe	¹³¹	¹³²	¹³⁷ Cs	¹³⁶ Cs
Inverted ST	12100	103	35.5	15.5	3.7
Mathieu et al. (2012)	5950	197	56.4	20.6	9.8
Winiarek et al. (2012)	-	190-380	-	12-19	-
Terada et al. (2012)	-	150		13	-
Stohl et al. (2012a)	13400-20000	-	-	23.3-50.1	-
TEPCO (2012)	500	500		10	

Inverted source term is consistent with the other estimations.

Underestimation in iodine and cesium in comparison to Mathieu et al ST (several events are not identified by inversion).

Amount of noble gases is similar to Stohl et al estimation: probably overestimated

Validation – Model to data comparisons

Inverted quantities are consistent with the other estimations. Model-to-data comparisons show a relatively good agreement.

- Assessment of the isotopic composition need to be improved.
- Releases transported toward the ocean (and not detected by the dose rate network) are not reconstructed).
- Model uncertainties (Met data, deposition process...).

Reliable inversed modelling method to assess the source term

- Efficient operational tool, perfectly suited to crisis management (Air concentration or Gamma dose rate measurements).
- □ Can be used with various ATM (Eulerian, Gaussian, Lagrangian).

What are the next steps ?

- Simultaneous reconstruction of release events detected close to the source location as well as those detected far away.
- □ Improve the reconstruction of the isotopic composition by using all together air concentration, deposition and dose rate observations.

What are the challenges ?

- How can we take observations with greatly diverging orders of magnitude into account? Inverse modelling tool (cost function) is designed to strengthen the higher values. Application to the Fukushima case: assess the releases transported toward the Pacific ocean as well as those detected on Japan territory.
- How can we use all together different kind of observations? Application to the Fukushima case: better assess the isotopic composition + assess the releases transported toward the Pacific ocean

Thank you for your attention

