Hints to discriminate the choice of the wet deposition models applied to an accidental radioactive release

Arnaud Quérel (CEREA), Yelva Roustan (CEREA), Denis Quélo (IRSN), Jean-Pierre Cerea IRSN SN) HARMO 16th INSTITUT Centre d'Enseignement DE RADIOPROTECTION et de Recherche n Environnement ET DE SÛRETÉ NUCLÉAIRE

Atmosphérique

Case study: Fukushima

- Wet deposition
 is the main
 factor of
 contamination
- It is a long range problem: areas further than 100 km
- Observation map
 established late
 after the
 accident. Not
 available for
 emergency crisis
 management

Map of observed Cs-137 deposition

management Modelling of wet deposition is crucial

Physical processes of deposition

Modelling of the wet deposition Great diversity of models in the literature e.g. for the in-cloud, more than 2 decades for the same rainfall rate

Issue

- How to make a choice of a model for both in-cloud and below-cloud scavenging ?
- Approach: use Fukushima observations to determine the best model by performing model/observation comparisons
- The objective of this presentation is to illustrate the issue of the robustness of this approach. The choice of the wet deposition model relies on:
 - > Observations
 - Statistical indicators (which measure an agreement to the observations)
 - Model configurations (Dry deposition, meteorology input,...)

Observations used

- The total deposition is the most complete set of observations
- But, it is an accumulated value (in time and in deposition processes)

Precaution on using the total

- A good agreement between model and observations does not necessary imply that those possition well represented
- A good total deposition can hide a bad timing, potentially compensated by a wrong deposition model

Influence of the statistical indicators

- Statistical indicators measure an agreement of a simulation to the observations
- The choice of the wet deposition model is function of the statistical indicator
- Example :

Indicator	In-cloud scavenging model		
	Scott, 1978	Pudykiewicz, 1989	
Factor 2	77,3%	<u>87,2%</u>	
Correlation	<u>63,9%</u>	43,0%	

(rest of the set up: rain=radar, source=Winiarek, bcs=Andonache, dry dep=0,2cm/s)

Several statistical indicators are necessary to evaluate the relevance of a wet deposition model

Influence of the configuration

- Configuration of the model: input data + parameters
- Focus on rain due to its importance for the wet deposition

Both rains have almost similar behavior

Influence of the configuration

Even almost similar rain data can have a very strong influence on the total deposition

Influence of the configuration

Finally, when comparing to the observations, the best belowcloud scavenging model can be different:

Rain	Below-cloud scavenging	Correlation	Fac 2
Radar	<u>Quérel(2012)+</u> Blanchard (1953)	<u>69%</u>	<u>88%</u>
	Laakso	63%	87%
WRF	Quérel(2012)+ Blanchard (1953)	64%	86%
	<u>Laakso</u>	<u>70%</u>	<u>87%</u>

(rest of the set up: source=Winiarek, ics=Ellenton, dry dep=Zhang)

- If rain radar, Quérel et al, 2013+Blanchard, 1953
- If rain WRF, Laakso, 2003

The model choice depends on the modelling configuration

Summary

- Choosing a unique best wet deposition modelling is not an easy task. Choice is sensible to:
 - > Observation type
 - Statistical indicator
 - Configuration: changes in set-up may lead to even greater differences than changes in wet deposition model itself
- If the determination of a unique model is not possible, why not discriminate the worst ones ?

Then, to rank the wet deposition models <u>a global</u> <u>approach</u> is done (preliminary results)

The global approach

- Global approach: 480 simulations
- Parameter: In-cloud scavenging
- Observation type: <u>Total</u>
 <u>deposition</u>
- Indicator : <u>Fac 2</u>
- An example of ranking:
 - Factor 2, look on the incloud scavenging
 - Pudykiewicz is the worst model of in-cloud scavenging

Outlooks

- Look beyond statistical indicators to physically understand the ranking, (study maps, air activity, ...)
- Add more parameters (eg particle size distribution), remove some others (eg remove the worst models)
- Study other cases: verify that the same conclusions are obtained (eg Chernobyl)

Thank you for your attention

Robustness

- How improve the consistence of the indicators ? \succ
- Reduce the comparison database, focus on specific event \succ

In this particular case, the consistency of the statistical indicators is much better for each event studied

Hint 1

A global approach

- Parameters studied:
 - Below-cloud scavenging (10 models to test)
 - In-cloud scavenging(6 models to test)
 - Dry deposition(2 models)
 - Kz (2 models)
- In our case (3 sources)
 - 480 simulations are done
 - The ranking of the wet deposition modelling is dependent of the source, the dry deposition, weather, and more.
 - The ranking is function of the statistical indicator

Indicator	Best in-cloud scavenging model	Best below-cloud scavenging model
Factor 2	Ellenton	Quérel1+(SS2 or CT3)
Correlation	Roselle and Binkowski	Slinn4+SS2
1 Quérel et al, 2014 2 Sekhon and Srivasta, 19	18	

A global approach

All the combination of available models must be computed,. There is no systematic best model of wet deposition, only a statistical improvement of a model can be observed, or a combination of models

Hint 1

 E.g., using Jylha (1991) improved the fac 2 of 44% of the simulations, with a global improvement of +16%

All the interesting indicators must be calculated, for each simulation

Hint 2

The input data

- Example with the source, which must be independent from the deposition database
 - A source calculated by inversion is sensible to the observations used and the model of dispersion and deposition used. The risk is to identify only the configuration of the inversion model
- In this case, the weather and the ground observations are different from the inversed source model

Hint 3The database for comparison

- In a first approach, the database must be larger as possible
 - Here, the IRSN's database of Cs-137 is used
 - Numerous observations refered, and then meaned on the same cell than the simulations one. (maximum 3800 for one mesh, with a resolution of 0.05°)
- But, a global evaluation mixes all errors, is often easier to focus on a limited area (space and time)
 - In our case, the deposition runs during almost two weeks, presenting a very different weathers and deposition mode
 - Trying to include all the map leads to contradictions between indicators
 - ≻ E.g.:

Indicator	Best in-cloud scavenging model	Best below-cloud scavenging model
Factor 2	Ellenton	Quérel+(SS or CT)
Correlation	Roselle and Binkowski	Slinn+SS

Hint 4Timing of the deposition

- The event approach leads to give more careful of the deposition timing
- A good deposition shape linked with a bad timing can lead to wrong conclusions
- Two different
 configurations (but
 same source), area
 South
- Two different dates of deposition

Hint 4Timing of the deposition

The deposition date can also have a strong influence to deposition itself, the example of the snow:

> One day later, and the wet deposition would be only due to the snow, and not to he rain

> Snow and rain have very different deposition capacities

Issues for the dispersion and deposition models

- Great diversity of the wet deposition models due to:
 - > Different inputs (rainfall rate, relative humidity, liquid water content)
 - Different determination (empirical, theoretical, mix)

The <u>in-cloud</u> <u>scavenging</u> example:

Issues for the dispersion and deposition models

Great diversity of the literature models e.g. for the in-cloud, more than 2 decades for the same rainfall rate

Global approach

Make a selection among the models provided by the literature (because of lack of an indisputable model)

Sensitivity study applied to Chernobyl and Fukushima cases

Global approach

- To model Chernobyl and Fukushima cases for numerous combinations of models
 - Parameters: meteorology, in-cloud scavenging, belowcloud scavenging, dry deposition, source, ...
 - Several <u>models</u> for each parameter: eg, Zhang (2001) or deposition velocity set to 0.2 cm/s for the dry deposition
- Compare each of these simulations to the observations, use of fair <u>statistical indicators</u> to compare
- 3. Establish a list of sensitive parameters
- 4. Rank the combinations with the help of the

Parameters studied

- Below-cloud scavenging (10 models)
 - Laakso, Andronache, Slinn + pluie monodisersée (Blanchard, Sekhon et Srivastava, Coutinho et Tomas), Slinn modifié + pluies monodispersées, Slinn + pluie polydispersée (Ulbrich, Marshall et Palmer)
- In-cloud scavenging(6 models)
 - Pudykiewicz, Roselle et Binkowski, Scott, Maryon, Jylha, Ellenton
- Dry deposition(2 models)
 - Zhang, vitesse constante
- Kz (2 models)
 - Louis, Troen et Mahrt
- Source (2 or 3 sources)

Observations used

IRSN Cs-137 ground contamination database

10000 **IRSN** have \succ compiled a 3000 large database of Ground contamination (kBq.m $^{-2}$ measurement S The database is report into our mesh

Observations used

IRSN Cs-137 ground contamination database

2 Description du modèle

Maillage :

➤Taille du domaine : 6100 km (N-S) x 8500 km (O-E)

Résolution verticale : 15 niveaux jusqu'à 8000 m (40m, 120m, 280m, 600m...)

Résolution horizontale : 1,1,25° =

2 Destest, l'accident Destruction du modèle

4 de la sola Fukushima

Maillage :

Taille du domaine : 3900 km (N-S) x 5000 km (O-E)

Résolution verticale : 15 niveaux jusqu'à 8000 m (40m, 120m, 280m, 600m...)

Résolution horizontale : 0,05° =

5 Approchetatistical indicators reading

2. But! Contradictions can existed between indicators

- Parameters: In-cloud scavenging
- > Observation type: <u>Deposition</u>
- Indicators: Correlation & NMSE

5 global Lecture des indicateurs

2. But!

Contradictions can existed for different observed type

- Parameter: <u>In-cloud scavenging</u>
- Observation type: Deposition flux & <u>Total deposition</u>
- Indicator : <u>NMSE</u>

Physics and modeling

- Wet deposition = 2 different phenomenon :
 - In-cloud scavenging
 - Below-cloud scavenging

- Ideally, 3 elements to know :
 - The collect aspect itself
 - The interaction plume/cloud/precipitation (cloud height, plume height...)
 - The physical data necessary to the collect determination (granulometry, humidity, ...)

Model used Polyphemus model

Polyphemus

Statistical indicators

Interest to use other parameters than the wet deposition models

- Parameters: In-cloud scavenging & Source
- Observation type: Activity in the air
- Indicator: <u>BC RMSE</u>

Main results obtained

- For the Fukushima case, the source is sensible for deposition
- > Different ranking if the deposition or the air activity are considered
 - Parameter: Source
 - > Observation type: <u>Air activity</u>

- Parameter: Source
- Observation type: Total deposition

Comparison to the observations

- What are the available observations?
- Multiple kind of database are possible (cumul, air concentration, dose activity)

<u>Hint</u>: The larger database of observations concerning the total deposition of Cs-137