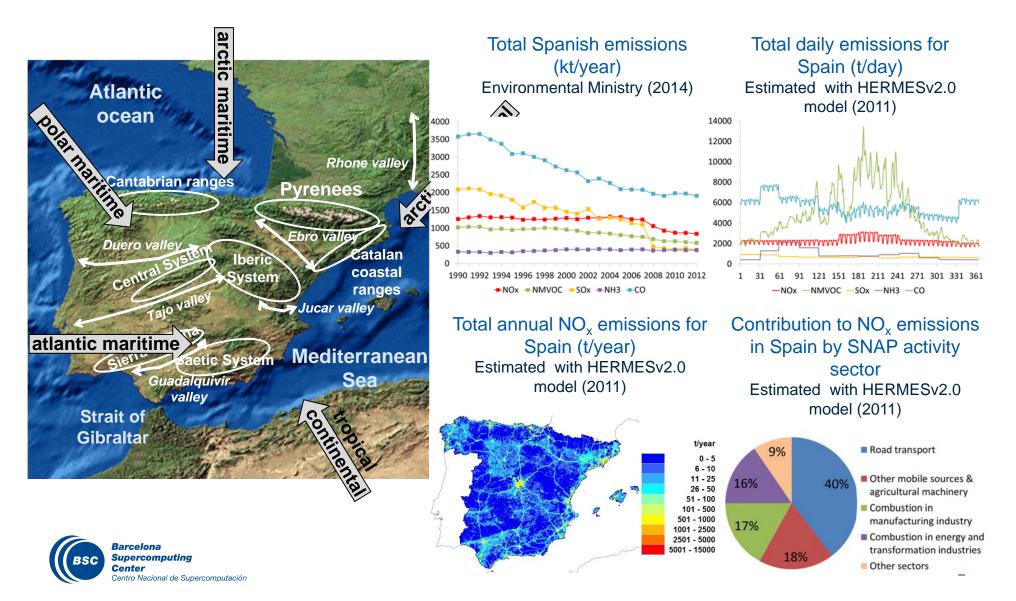
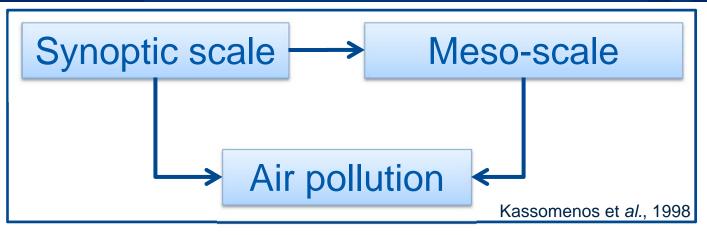


Barcelona Supercomputing Center Centro Nacional de Supercomputación

USE OF A CLIMATIC SYNOPTIC CLASSIFICATION TO IDENTIFY AND CHARACTERIZE NO₂ POLLUTION PATTERNS OVER THE IBERIAN PENINSULA


Víctor Valverde¹, María T. Pay^{1,2} and José M. Baldasano^{1,3}

¹Earth Sciences Department, Barcelona Supercomputing Center-Centro Nacional de Supercomputación, Barcelona, Spain ²Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau, Cedex, France ³Environmental Modeling Laboratory, Technical University of Catalonia, Barcelona, Spain


16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. 8-11 September 2014, Varna, Bulgaria

Air pollution in the Iberian Peninsula

Air pollution ► function(meteorology, emissions & topography)

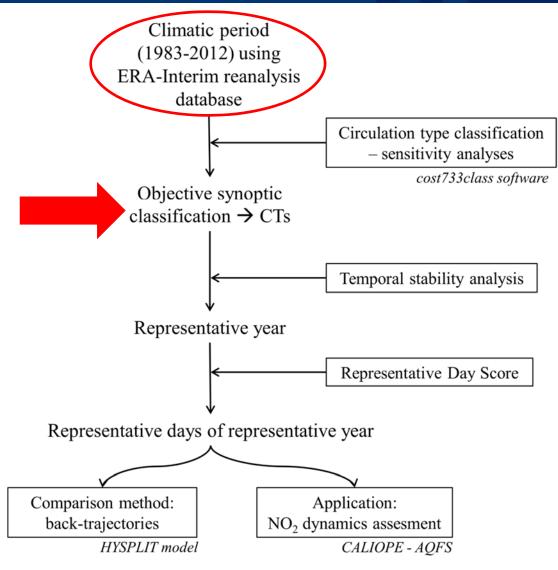
Synoptic, meso-scale meteorology and air pollution

"The understanding of the relationship of the pollutants' concentration with the prevailing circulation, both synoptic and local scale, is a key element to explain air pollution dynamics in a given territory. This relationship is primarily examined by classifying the atmospheric circulation".

Flocas et al., 2009

Objectives

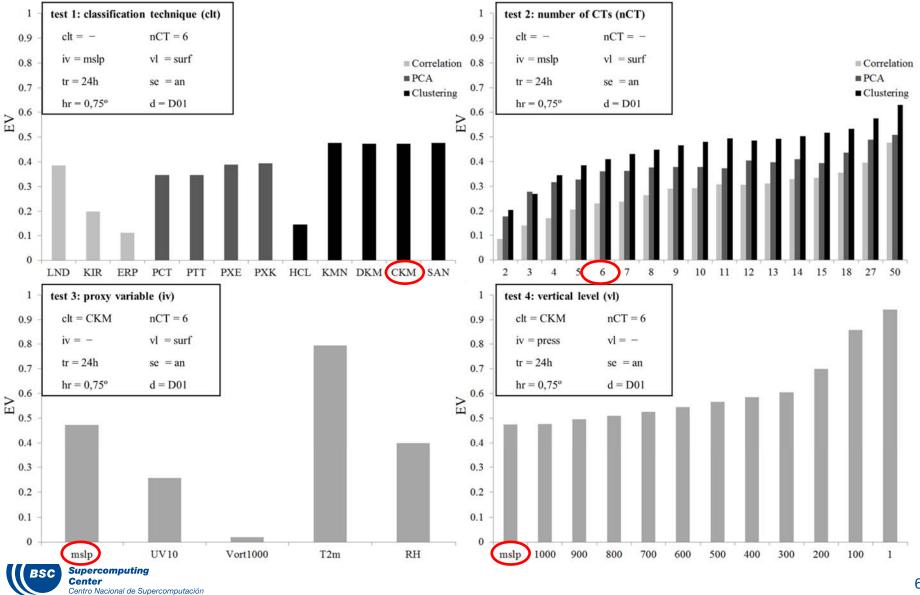
1. Objectively classify synoptic circulation on a climatic basis (1983-2012) into typical circulation types (CTs) 2. Explain NO₂ surface concentration and dynamics over the Iberian Peninsula


Methodology: synoptic circulation type classification

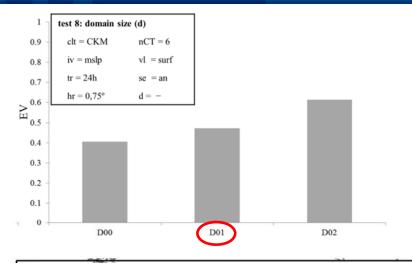
- (Automatic and objective classification of synoptic circulation over the Iberian Peninsula
 - Sensitivity tests to classification techniques and other parameters affecting the classification
 - Selection of a reference configuration based on statistical criteria & objective of the classification

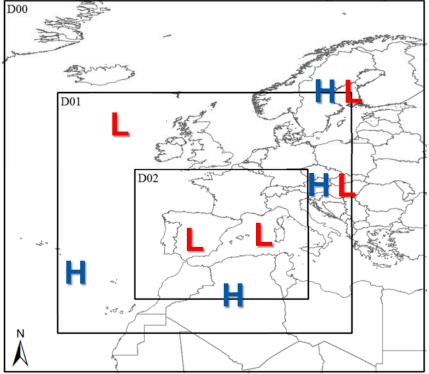
(Characterization of CTs

- Pressure and wind fields at surface and 500 hPa geopotential height
- Climatic and monthly frequency, seasonal distribution, persistence, transitions
- (Objective selection of representative year and days of the CTs


Sensitivity analyses performed

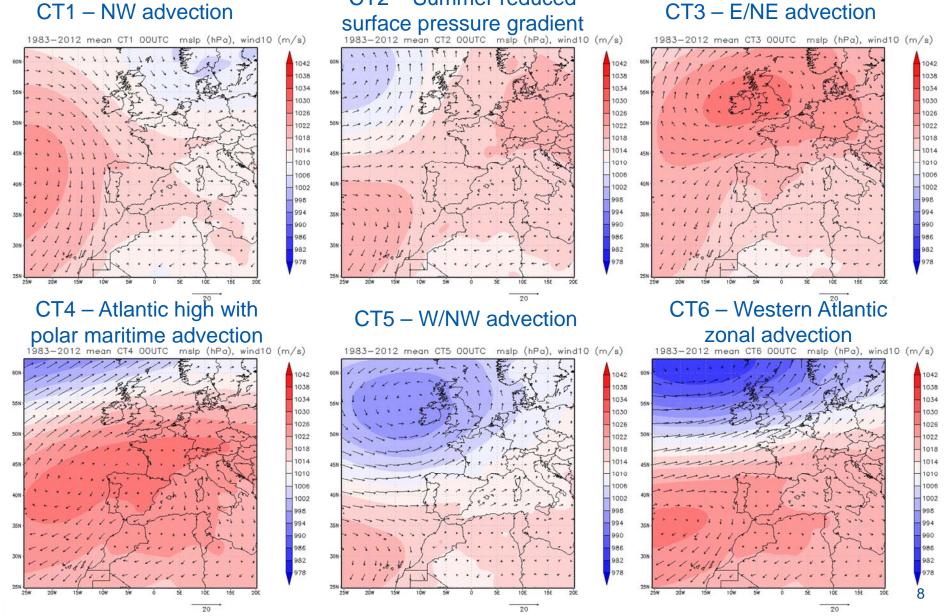
# test	Studied criterion	Variability range							
1	Classification technique	Correlation techniques (3); Principal Component Analysis (4); Clustering techniques (5)							
2	Number of circulation types	From 2 to 15, 18, 27, 50							
3	Meteorological variable used as proxy	Mean sea level pressure (mslp), 10-meter U and V wind components (UV10), 1000-hPa vorticity (Vort1000), 2-meter temperature (T2m), relative humidity (RH)							
4	Vertical level	Surface, 11 geopotential levels from 1000 to 1 hPa each 100 hPa							
5	Temporal resolution	Data each 6, 12, 24 hours, 06 h mean							
6	Seasonality	Winter, spring, summer, autumn, annual (an)							
7	Horizontal resolution	0.125° x 0.125°, 0.25° x 0.25°, 0.75° x 0.75°, 1.5° x 1.5°, 3° x 3°							
8	Spatial domain	D00 (18.75N – 76.5N / 33.75W – 31.5 E), D01 (24.75N – 62.25N / 25.5W – 20.25 E), D02 (30N – 50.25N / 13.5W – 13.5 E)							
	Explained Variation criterion + objective of the classification enable to select the most useful configuration to identify CTs for air quality								


to select the most useful configuration to identify CTs for air quality



Results of the sensitivity analyses

Results of the sensitivity analyses

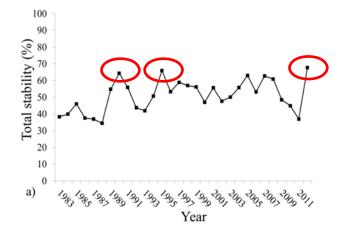


Selected configuration										
Classification technique	C-k means	Temporal res.	6 h							
# of CTs	6	Seasonality	Annual							
Meteo variable	Atmospheric pressure	Horizontal res.	0.75° x 0.75°							
Vertical level	Surface	Spatial domain	D01							

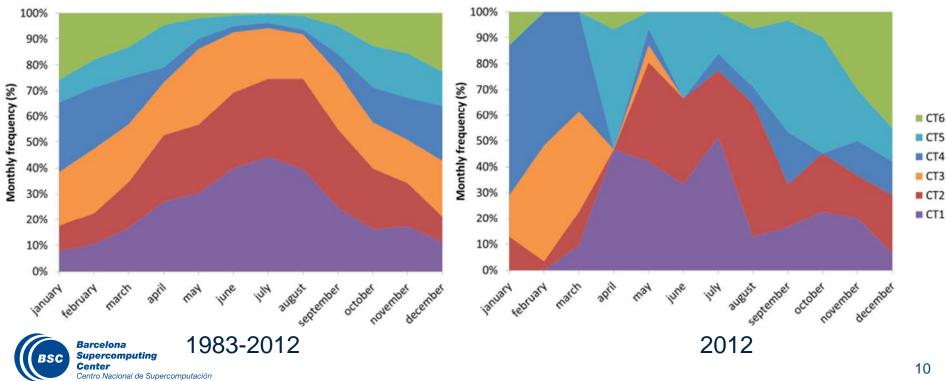
Circulation types identified (data base 1983-2012)

CT2 – Summer reduced

CT1 – NW advection



Characteristics of the CTs identified in 1983-2012


	CT1 - NW advection	CT2 - Summer reduced surface pressure gradient	CT3 - E/NE advection	CT4 - Atlantic high with polar maritime advection	CT5 - W/NW advection	CT6 - Western Atlantic zonal advection
Frequency (%)	23.9	22.4	21.3	12.0	10.4	10.1
Most frequent month	JUL	AUG	MAY	JAN	APR/OCT	JAN
Seasonal frequency (%): DJF/ MAM/ JJA/ SON	10.1/26.1/ 43.5/ 20.3	11.7/26.2/ 35.8/ 26.3	25.9/28.5/ 23.5/22.0	49.8/19.9/ 4.4/25.9	26.0/28.7/ 10.4/35.0	54.3/16.4/ 1.9/27.4
Mean / Max persistence (days)	2.9 / 23	2.9 / 22	3.8 / 19	2.7 / 27	3.0 / 17	2.9 / 19
Transitions	CT2	CT1	CT2	CT6	CT1	CT4

Representative year

CT1	CT2	СТ3	CT4	CT5	CT6
NW advection	Summer reduced surface pressure gradient	E/NE advection	Atlantic high with polar maritime advection	W/NW advection	Western Atlantic zonal advection

Characteristics of the CTs: 1983-2012 vs year 2012

	Period	CT1 - NW advection	CT2 - Summer reduced surface pressure gradient	CT3 - E/NE advection	CT4 - Atlantic high with polar maritime advection	CT5 - W/NW advection	CT6 - Western Atlantic zonal advection
Frequency (%)	1983-2012 2012	23.9 21.9	22.4 21.6	21.3 8.8	12.0 17.8	10.4 20.5	10.1 9.3
Most frequent month	1983-2012 2012	JUL JUL	AUG AUG	MAY FEB	JAN JAN	APR/OCT APR/NOV	JAN DEC
Seasonal frequency (%): DJF/ MAM/ JJA/ SON	1983-2012 2012	10.1/26.1/ 43.5/ 20.3 2.5/37.5/ 37.5/22.5	11.7/26.2/ 35.8/ 26.3 15.2/20.3/ 43.0/21.5	25.9/28.5/ 23.5/22.0 56.3/43.8/ 0.0/ 0.0	49.8/19.9/ 4.4/25.9 56.9/21.5/ 6.2/15.4	26.0/28.7/ 10.4/35.0 5.3/21.3/ 29.3/44.0	54.3/16.4/ 1.9/27.4 50.0/5.9/ 5.9/38.2
Mean / Max persistence (days)	1983-2012 2012	2.9723 3.6710	2.9 / 22 2.6 / 8	3.8 / 19 4.6 /18	2.7727 3.8/15	3.0 / 17 3.0 /10	2.9 / 19 3.5 / 10
Transitions	1983-2012 2012	CT2 CT2/CT5	CT1 CT1/CT5	CT2 CT4	CT6 CT2	CT1 CT1/CT2	CT4 CT5

Representative days

Daily score minimizes the differences between the daily grid and the average grid of a given CT.

$$DS_t = \sum_{i=1}^n |v_{t,i} - \overline{v_i}|$$

For each day (t) within a given CT, the Day Score (*DS*) is calculated as the sum of the absolute value of the differences between the daily value and the average value of the meteorological variable of the CT for each cell (i) of the grid.

n is the number of cells of the grid; and vi is the arithmetic mean of the input variable on each i cell of the domain for all days belonging to the CT.

Representative Day Score (*RDS*) minimizes the value of the DS identifying the representative day for each CT.

CT1

NW

advection

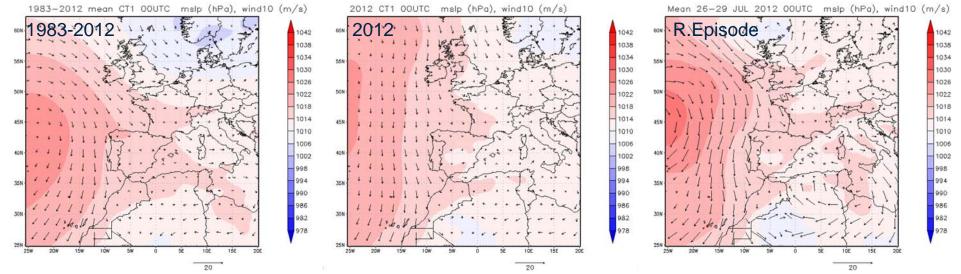
CT2 Summer reduced

surface

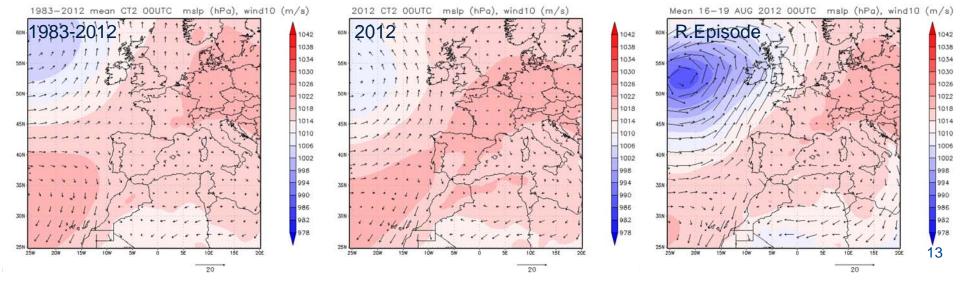
pressure

gradient

 $RDS = \min(DS_t)$

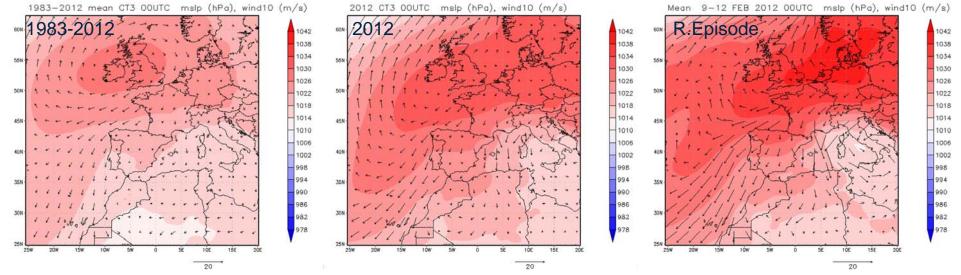


Calendario 2012																						
CT6enero fe								fet	febrero m					ma	narzo							
31	2 3		5	6		28	29	30	31	1	2	3	2	5 2	6 :	27	28	29	1	2		
78	9 10	+	12	13		4	5	6	7	8	9	10	з	4		5	6	7	8	9		
CT414 15	16 17	-	19			-14	12	-	14	15			10		-	12		14	15	16		
21 22		25	26	27 3		18		20		22	23	24	13		-	19	20		22	23	ст	6
28 29 4 5	30 31 6 7	8	2	3 10		25 3	26	27	28	29	1	2	24			2 6 2	27 3	28	29	30		Č
s d	l m		i	v		s	d	I	m	m	i	v	s			I		m	i	v		
0 0	abr		1	·		Č.	т ₂		ay		1		Ĭ				inio		,	÷		
31 1	2 3		5	6		28	29	30	1	2	3	4	2	3 2	7 :	ے۔ 28	29	30	31	1	СТ	5
7 8	9 10	11	12	13		5	6	7	8	9	10	11	2	: 3	8	4	5	6	7	8		
14 15	16 17	18	19	20		12	13	14	15	16	17	18	9	1	0 1	11	12	13	14	15		
	23 24		26			19	20	21	22	23	24	25	10			18	19	20	21	22		
28 29 5 6	30 1 7 8	2	3 10	4		26 2	27 3	28	29 5	30	31 7	1 8	23			2 5 2	26 3	27	28 5	29 6	СТ	4
								*								2 						
CT1	l m		j	V	CI	s 72	d		m OS	m	j	V	s					m nbr	j	v		
30 1	2 3		5	6		28	29	ay 30	31	1	2	3	2		6 :		28	29	е 30	31	ст	3
7 8	9 10		12			4	5	6	7	8	9	10	1			3	4	5	6	7		Ū
14 15	16 17	18	19	20		11	12	13	14	15	16	17	8	5) 1	10	11	12	13	14		
	23 24	25	26	27		15	19	20	21	22	23	24	1	5 1	6 1	17	18	19	20	21		
28 29	30 31		2	3			26		28	29	30	31	2			24	25			28	СТ	2
4 5	6 7	8	9	10		1	2	3	4	5	6	7	25		-	1	2	3	4	5		
s d	l m		j	۷		s	d	1	m	m	j	v	s	c		۱	m		j	۷		
CT5	octuł 1 2	ore 3	4	5		27	28	29	em 30	DIE 31) 1	2	2	4 2	-	_	27	bre 28	29	30	_	
6 7	1 Z 8 9		4 11	5 12		3	4	5	6	7	1	29	1			3	4	20 5	6	7	СТ	1
	15 16		18	19		10	11	12	13	14	15	16	8			10	11	12	13	14		
20 21	22 23	24	25	26		17	18	19	20	21	22	23	1	5 1	6 1	17	18	19	20	21		
27 28	29 30	31	1	2		24	25	26	27	28	29	30	2	2 2	3 2	24	25	26	27	28		
3 4	5 6	7	8	9		1	2	3	4	5	6	7	2	9 3	0 3	31	1	2	3	4		
s d	l m	m	j	۷		s	d	I	m	m	j	v	s	¢			m	m	j	۷	_	
CT3 CT			Γ4	ŀ					С	T5	5					0	21	6				
E/NE advection		Atlantic high with polar					W/NW advection				Western Atlantic zonal											
		maritime advection							advection													

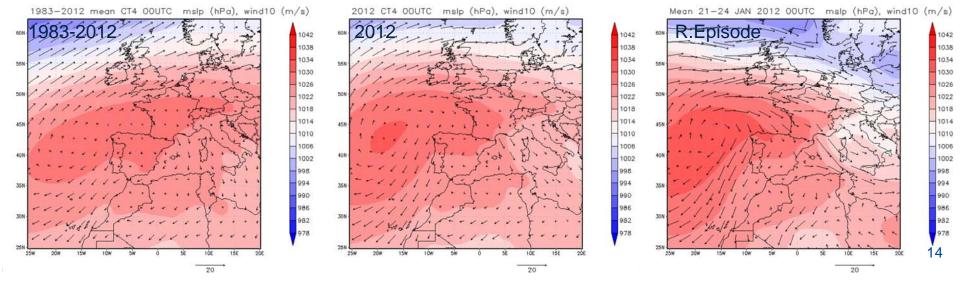

12

Confirmation: 1983-2012 vs 2012 vs mean episode

CT1 – NW advection

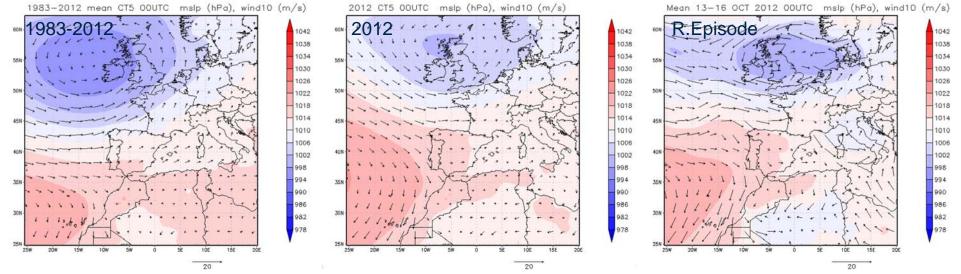


CT2 – Summer reduced surface pressure gradient

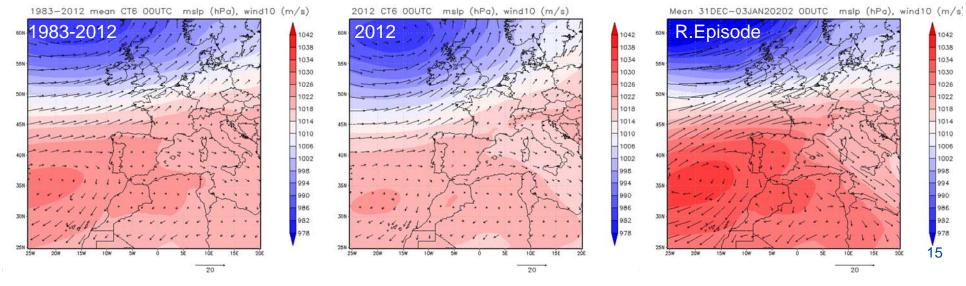


Confirmation: 1983-2012 vs 2012 vs mean episode

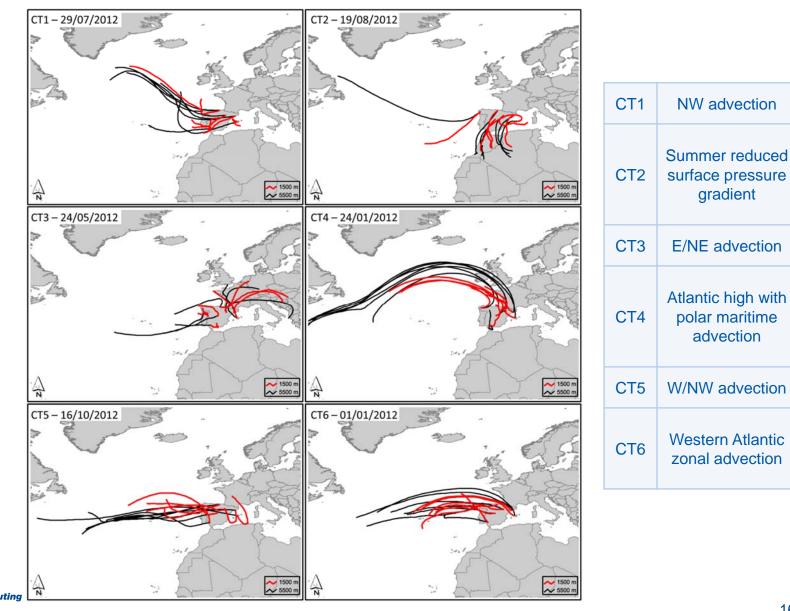
CT3 – E/NE advection



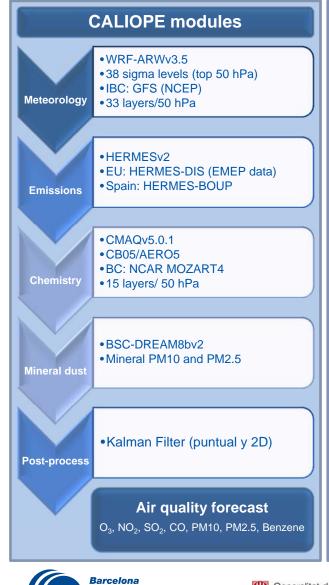
CT4 – Atlantic high with polar maritime advection

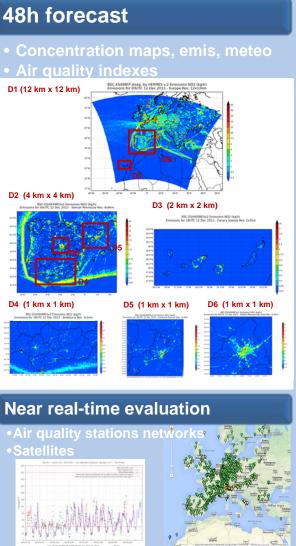


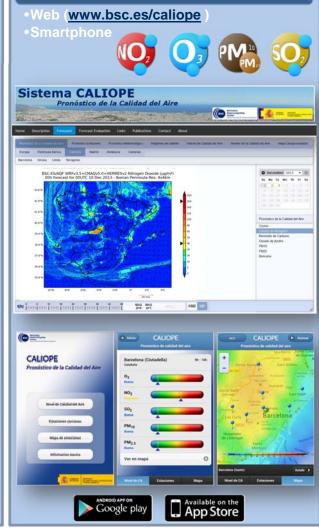
Confirmation: 1983-2012 vs 2012 vs mean episode


CT5 – W/NW advection

CT6 – Western Atlantic zonal advection




Confirmation: Back trajectories



CALIOPE: Air Quality Forecasting System

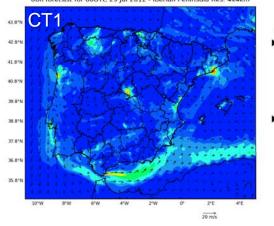
Diffusion

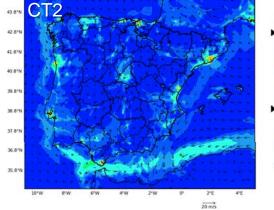
BSC

Center

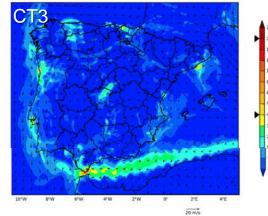
Generalitat de Catalunya Departament de Territori i Sostenibilitat

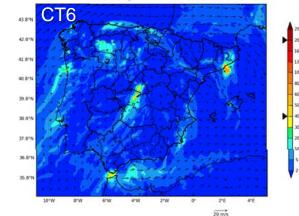
GOBIERNO DE ESPANA DE AGRICULTURA, AL

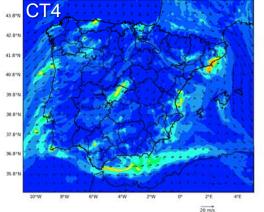



17

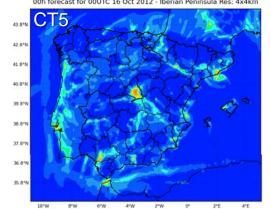
NO₂ dynamics on the RD of each CT


BSC-ES/AQF ARWv3+CMAQv4.5+HERMES Nitrogen Dioxide (µg/m³) 00h forecast for 00UTC 29 Jul 2012 - Iberian Peninsula Res: 4x4km


BSC-ES/AQF ARWv3+CMAQv4.5+HERMES Nitrogen Dioxide (µg/m³) 00h forecast for 00UTC 19 Aug 2012 - Iberian Peninsula Res: 4x4km

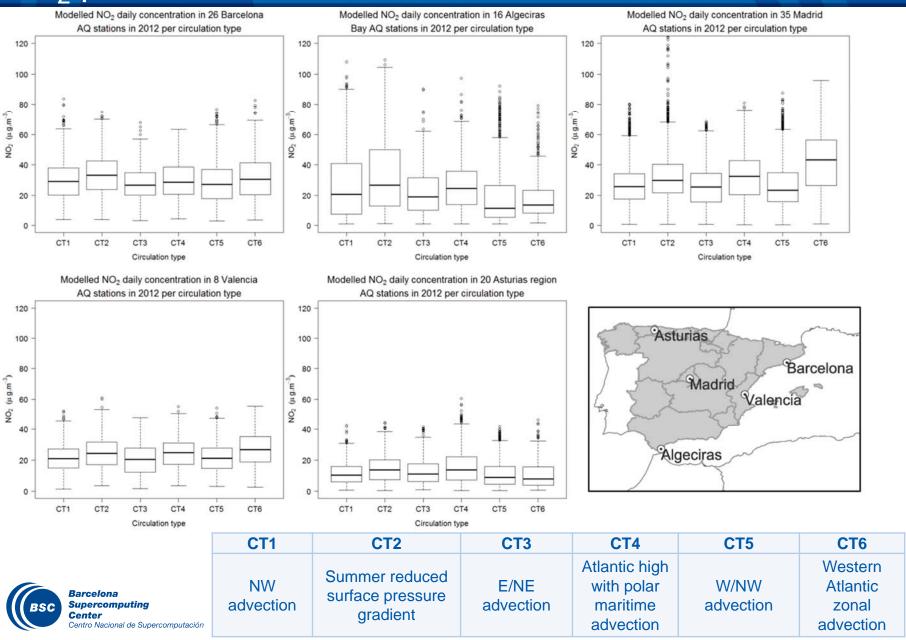

BSC-ES/AQF ARWv3+CMAQv4.5+HERMES Nitrogen Dioxide (µg/m³) 00h forecast for 00UTC 24 May 2012 - Iberian Peninsula Res: 4x4km

BSC-ES/AQF ARWv3+CMAQv4.5+HERMES Nitrogen Dioxide (µg/m³) 00h forecast for 00UTC 01 Jan 2012 - Iberian Peninsula Res: 4x4km



Barcelona

Center


BSC

CT1 CT2 CT4 СТ6 CT3 CT5 Atlantic high Western Summer reduced E/NE with polar NW W/NW Atlantic surface pressure advection advection maritime advection zonal Supercomputing gradient 18 advection advection Centro Nacional de Supercomputación

BSC-ES/AQF WRFv3.5+CMAQv5.0+HERMESv2 Nitrogen Dioxide (µg/m³) 00h forecast for 00UTC 16 Oct 2012 - Iberian Peninsula Res: 4x4km

NO₂ per CT

19

NO₂ dynamic results

- (In central, northern, and southern IP: synoptic control of NO₂ concentration in urban and industrial/energy generation areas. In <u>Madrid</u>: synoptic circulation and topography modulate the distance and direction of the urban plume:
 - Central System is a topographic constraint preventing NW winds (CT1) & Reduced surface pressure gradient (CT2) → stagnant conditions, urban plume remains over metropolitan area.
 - Urban plume transported to the SW through the Tajo valley CT3 (~100 km) & CT4 (~250 km).
 - Urban plume transported to the NNE CT5 (~250 km) & NE CT6 (~200 km).
- (In Mediterranean coastal areas, synoptic circulation with Atlantic dominance (4 CTs accounting for 69% of climatic frequency) is weakened by topographic barriers (Iberic and Baetic System) and mesoscale meteorology regulates NO₂ dynamics. In <u>Barcelona</u> and <u>Valencia</u>:
 - Land-sea and mountain-valley breezes transport urban plume inland/outland and parallel to the coast on a daily cycle CT1, CT2, CT4 & CT6 (20-30 km)
 - Synoptic forcing controls NO₂ transport along Mediterranean coastal areas under CT3 (anticyclonic circulation establishes transport of the urban plume to the E/NE ~40-50 km) and CT6 (zonal winds transport urban plume to the W ~80 km).

Conclusions

- (An objective and automatic methodology to classify synoptic circulation is developed.
- (The synoptic classification is applied to study air quality patterns over the Iberian Peninsula.
- (The three most common CTs account for 67.6% of climatic frequency (CT1, CT2, and CT3) and mainly occur in summertime, replacing one another.
 - CT1 (23.9%) is a NW advective pattern characterized by the arrival of polar maritime air masses towards the IP
 - CT2 (22.4%) depicts a reduced pressure surface gradient, enabling the development of the Iberian thermal low with net advection of North African air masses at 500 hPa geopotential height.
 - CT3 (21%) is especially frequent in spring and summer as a result of a blocking anticyclone over central Europe that leads to E-NE advection towards the IP.

In winter two CTs are especially frequent, CT4 and CT6.

- CT4 (12%) is an anticyclonic situation that enables the arrival of Atlantic air masses towards the IP
- CT6 (10%) is characterised by zonal Atlantic maritime advection.

CT5 is typical of transitional seasons

- CT5 (10%) presents unstable conditions over the IP with W-NW winds and precipitation.
- (Together with topographic features, synoptic circulation is found to be a key driver of NO₂ urban and industrial/energy-generation-areas plumes in northern, central and southern areas of Spain whereas in Mediterranean coastal areas, mesoscale phenomena dominates NO₂ transport dynamics.

www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you for your attention

victor.valverde@bsc.es

Evaluation of the CALIOPE-AQFS for NO₂ in 2013

Annual NO₂ evaluation in 2013 CALIOPE-Air quality forecasting system against observations from the Spanish AQ network

Type of station	# stations	OBS (µg.m⁻³)	MOD (µg.m⁻³)	Bias (µg.m⁻³)	r	RMSE (µg.m ⁻³)
All	358	18.9	18.3	- 0.65	0.48	13.9
Urban	167	25.8	24.8	- 1.05	0.55	17.6
Suburban	108	17.3	17.0	- 0.29	0.46	13.8
Rural	83	7.3	7.0	- 0.32	0.37	6.7
Emission	# stations	OBS (µg.m ⁻³)	MOD (µg.m ⁻³)	Bias (µg.m ⁻³)	r	RMSE (µg.m ⁻³)
Traffic	73	31.6	29.9	- 1.68	0.54	19.4
Industrial	96	15.7	14.8	- 0.83	0.45	12.3
Background	189	15.7	15.5	- 0.16	0.47	12.7

Evaluation of the CALIOPE-AQFS for NO₂ in 2013

		Bias	r	RMSE
		(μg/m ³)	-	(μg/m ³)
		MB = 0*	r = 1*	RMSE = 0*
NO2	Muy Bueno (MB)	MB < 5	r > 0.60	RMSE < 5
	Bueno (B)	5 ≤ MB < 10	0.40 < r ≤ 0.60	$5 \le RMSE < 15$
	Aceptable (A)	10 ≤ MB < 20	0.20 < r ≤ 0.40	15 ≤ RMSE < 25
	Malo (M)	20 ≤ MB < 30	0. 1 0 < r ≤ 0.20	25 ≤ RMSE < 35
	Muy Malo (MM)	MB ≥30	r ≤ 0.10	RMSE ≥ 35

Mean Bias

r

