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1. Introduction 

 
Computer models are powerful tools that are often used to study scientific or 

social phenomena.  For example, various sophisticated models are applied to analyze the 
economic development of a country, to study the spread of a disease, to study the 
interaction among galaxies, to forecast tomorrow’s weather and next decade’s climate, 
and to predict the potential health effects due to the emission of toxic pollutants into the 
atmosphere.  It is important that these models be properly evaluated in order to 
demonstrate their fidelity in simulating the phenomena of interest. 

 
This report mainly describes the technical basis and user’s instructions for the 

BOOT statistical model evaluation package.  Although BOOT has been primarily used to 
evaluate the performance of air dispersion models, the same procedures and approaches 
implemented in BOOT also apply to other types of models. 

 
A model can be evaluated in at least three areas: statistical (e.g., Hanna et al. 

1993), scientific (e.g., Nappo et al. 1998), and operational (e.g., Chang et al. 1998).  
Statistical evaluation mainly involves comparing model predictions with observations.  It 
provides concise information on model performance, but caution must be exercised to 
avoid a possible situation where the model produces the right answers but for the wrong 
reasons (i.e., compensating errors).  Scientific evaluation examines model algorithms, 
physics, and assumptions in detail for their accuracy, efficiency, and sensitivity; and 
requires in-depth knowledge of the model’s scientific basis.  Operational evaluation 
mainly considers issues related to the user-friendliness of the model, such as the user’s 
guide, the user interface, error checking of input data, internal model diagnostics, output 
display, and consistency of application by multiple users.  BOOT is mainly for statistical 
evaluation.  However, as described later, some graphical techniques also allow for 
preliminary scientific evaluation. 

 
Statistical evaluation calls for the comparison of model predictions with certain 

reference states, which in most cases are simply “observations.”  Observations can be 
directly measured by instruments, or can be themselves products of other models or 
analysis procedures.  It is important to recognize that different degrees of uncertainty are 
associated with different types of observations.  Furthermore, it is important to clearly 
define how predictions are to be compared with observations.  For example, should 
observations and predictions be paired in time, in space, or in both time and space?  
Different pairing options may result in different conclusions. 

 
The BOOT statistical model evaluation software package is originally based on 

recommendations by Hanna (1989).  An earlier version (V1.0) of BOOT is described in 
Hanna et al. (1991).  The software has been extensively used by scientists in assessing 
model performance (e.g., Ichikawa and Sada 2002; Nappo and Essa 2001; Mosca et al. 
1998).  In the European Initiative on “Harmonisation within Atmospheric Dispersion 
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Modelling for Regulatory Purposes,” the software was also used as a common framework 
upon which the performance of many dispersion models was intercompared (Olesen 
2001).  The current version (V2.0) of BOOT incorporates some recent upgrades 
described in Chang (2002), and Chang and Hanna (2004).  These upgrades mainly 
include the consideration of additional performance measures, and the implementation of 
the ASTM (2000) model evaluation procedure. 

 
This report is more than just a “software user’s guide.”  It describes the life cycle 

of a comprehensive model evaluation exercise, including the definition of the evaluation 
objective (Section 2), exploratory data analysis (Section 3), and the methodology of 
statistical performance evaluation (Sections 4 and 5).  Section 6 gives the actual software 
user’s guide for BOOT.  Section 7 provides a demonstration of BOOT.  A summary is 
given in Section 8. 
 
2. Evaluation Objective 

 
An evaluation objective must first be clearly defined for any model evaluation 

study.  Similarly, when conducting a statistical significance test, a null hypothesis should 
also be clearly defined.  Depending on the study’s objective and emphasis, there are a 
number of potential outputs of dispersion modeling that could be evaluated, such as 

 

For a given averaging time: 

• The overall maximum concentration over the entire domain 
• The maximum concentration along a sampling line 
• The cross-line integrated concentration along a sampling line 
• The location and shape of a contour (i.e., cloud footprint) for a certain 

concentration threshold (e.g., toxicity limit or flammability limit) 
• The cloud width along a sampling line 
• The cloud height along a vertical tower 

For dosage (concentration integrated with time): 

• The maximum dosage along a sampling line 
• The cross-wind integrated dosage along a sampling line 

For cloud timing: 

• The cloud arrival and departure times, and the effective cloud speed 

 
For example, for regulatory applications with routine emissions the primary 

objective might be how well a model simulates the maximum hourly-averaged 
concentration anywhere on the sampling network, whereas for accidental releases of  
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flammable substances the instantaneous maximum is more important than the average 
concentration.  Selection of an appropriate averaging time is thus quite important.  While 
the location of the maximum impact may be of less importance for regulatory 
applications,  it is important for environmental justice applications to evaluate model 
predictions at specific locations such as densely-populated neighborhoods.  For military 
applications, the location and shape of the footprint of a chemical warfare agent cloud are 
important, since a military commander can use that information to decide whether to 
order troops to put on protective gears, or to order responsive troop maneuvers.  For a 
forensic study concerning whether individuals were impacted by a hazardous gas cloud, it 
might be of interest to correctly estimate the cloud arrival and departure times.  
Moreover, for any field experiment, there are usually practical constraints resulting in 
only a limited number of the above evaluation objectives that can actually be considered.  
In other words, a certain evaluation objective might be desirable but cannot be met due to 
lack of data.  All of these issues should be carefully considered so that a meaningful 
model evaluation objective can be defined. 
 
3. Exploratory Data Analysis 
  

Before calculating various statistical performance measures (or metrics), it is 
recommended that exploratory data analysis be first performed by simply plotting the 
data in different ways.  Human eyes can often glean much more inherent information 
from these plots than pure statistics.  These plots can also provide clues as to why a 
model performed in a certain way.  Some of the commonly-used plots are 
 

• Scatter plots (Fig. 1) 
• Quantile-quantile plots (Fig. 2) 
• Residual (box) plots (Figs. 3 and 4) 
• Conditional scatter plots (Fig. 5) 

 
Depending on such factors as the range and amount of data, and the information to be 
conveyed, a combination of plots is usually necessary. 
 

These plots are demonstrated below with a sample, artificial database listed in 
Table 1.  The sample database contains the maximum hourly observed concentrations 
anywhere on the monitoring network, and the predictions from three models.  The 
database also contains the corresponding values for time of day (hour), representative 
wind speed (m s-1), mixing height (m), and the Pasquill-Gifford stability class. 
 
3.1. Scatter Plot 
 

Figure 1 shows the scatter plots of observed versus predicted concentrations for 
the three models.  The scatter plots provide a first look of the overall model performance.  
Direct visual inspection shows that, as will also be verified by quantitative calculations in 
Section 7, Model-A appears to have the best performance.  The highest predictions given 
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by Model-A and Model-B also correspond to high observed values.  This merit may be of 
primary importance because of the obvious impacts on the public health due to high 
pollutant concentrations.  On the other hand, the ability of a model to correctly predict 
low concentrations may sometimes also be important for highly toxic chemicals such as 
chemical and biological warfare agents.  Model-C is seen to show almost no correlation 
between observations and predictions. 
 
3.2. Quantile-Quantile Plot 
 

Dispersion models are often used for air pollution regulatory purposes, which in 
the U.S. typically involve multiple-year simulations on an hourly basis for the entire time 
period.  The highest short-term (e.g., 1-hr and 8-hr) concentrations and the average long-
term (e.g., 1-yr) concentrations or dosages are then investigated for possible violation.  
Thus, it is also of interest to find out whether a model can generate a concentration 
distribution that is similar to the observed, especially at the range of high concentrations.  
To generate the quantile-quantile plots shown in Fig. 2, predicted and observed 
concentrations are separately ranked using the dataset in Fig. 1.  It can be seen that 
although Fig. 1 shows that Model-C has a poor performance in terms of correlation, the 
model’s ability to simulate the observed concentration distribution appears better in Fig. 
2.  For example, the highest observed concentrations and Model-C’s predicted 
concentrations have similar magnitude.  However, the model clearly overpredicts overall, 
and may be correctly predicting the values of the highest few observed concentrations but 
for the wrong reasons. 
 
3.3. Residual (Box) Plots 
 

Scatter plots and quantile-quantile plots often do not provide an adequate  
understanding of why a model performed in a certain way.  This question could be 
addressed by reviewing the model algorithms in great detail.  The question can also be 
addressed using residual analyses, which often employ box plots.  Figures 3 and 4 show 
the box plots of model residuals, defined as the ratio of predicted (Cp) to observed (Co) 
concentrations, for Model-A and Model-C, respectively, as functions of four of the model 
independent variables: time of day, ambient wind speed, mixing height, and atmospheric 
stability.  Again, these are the same sets of model predictions and observations presented 
in Figs. 1 and 2.  Residuals are binned according to different ranges of independent 
variables, and the distribution of all data points in each bin is represented by a box 
symbol.  The significant points for each box indicate the 2nd, 16th, 50th, 84th, and 98th 
percentiles of the cumulative distribution of the n points considered in the bin of data 
used in the box.  A good performing model should not show any trend with independent 
variables.  This ideal behavior is evident for Model-A by visual inspection of Fig. 3.  
However, visual inspection of Fig. 4 shows slight trends for Model-C with time of day 
and atmospheric stability.  Model-C generally overpredicts during nighttime hours when 
the atmosphere is stable.  As a consequence, the dispersion algorithms in Model-C under 
nighttime, stable conditions should be carefully reviewed to identify potential flaws. 
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3.4. Residual Scatter Plots 
 

Box plots are useful in summarizing the distribution of model residuals when the 
number of data points in each bin is large.  However, when the number is small, it makes 
more sense to simply plot all the data points without the use of box symbols.  Figure 5 is 
essentially the same as Fig. 3, except that all data points (model residuals) for Model-A 
are now represented on a scatter plot without any binning.  In order to convey additional 
information, different symbols are used to further represent different ranges of a second 
independent variable on each panel of Fig. 5.  Therefore, Fig. 5 can be considered a 
conditional residual plot, and is similar to a two-way contingency table.  The figure 
shows that most of the data points fall within the factor-of-two dashed lines.  The two 
hours where Model-A greatly underpredicts (by two orders of magnitude) can be easily 
identified to have the following characteristics: near midnight, under stable conditions, 
wind speed ~4 m s-1, and mixing height = 2000 and 0 m.  A review of the raw data in 
Table 1 further indicates that the two hours are consecutive. 

 
Model-A’s poor performance for these two hours can be attributed to inadequate 

model physics or to incorrect or unrepresentative input data.  Before one decides to 
“blame” the model physics for poor performance, model inputs should be carefully 
reviewed.  First of all, the mixing heights for the two consecutive hours are 2000 and 0 
m, indicating a sudden collapse of the atmospheric mixed layer.  This phenomenon 
should be confirmed by re-examining the original temperature profiles from which 
mixing heights were estimated.  Moreover, the two hours have a moderate wind speed of 
~4 m s-1 but are characterized as “very stable” (stability class = 6, see Table 1).  This is 
unusual, since very stable conditions are usually associated with lower wind speeds.  
Thus, it is likely that the model inputs for these two hours are incorrect, and that validated 
model inputs might lead to an improved model performance. 

 
In conclusion, it can be seen that exploratory data analysis, although qualitative in 

nature, can reveal much valuable information. 
 
4. Quantitative Performance Measures Implemented in BOOT Software 
 

Hanna (1989) and Hanna et al. (1991 and 1993) recommend a set of quantitative 
statistical performance measures for evaluating air dispersion models, and implement the 
procedures in a software package called BOOT.  These performance measures have been 
widely used in many studies (e.g., Ichikawa and Sada 2002; Nappo and Essa 2001; 
Mosca et al. 1998), and have been adopted as a common model evaluation framework for 
the European Initiative on “Harmonisation within Atmospheric Dispersion Modelling for 
Regulatory Purposes” (Olesen 2001). 

 
The quantitative performance measures considered in the BOOT software are 

described in this section, together with some recent enhancements mentioned in Chang 
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(2002), and Chang and Hanna (2004).  User’s instructions for the software are given in 
Section 6. 
 
4.1 Definitions of Performance Measures 

 
4.1.1 Original Performance Measures 
 

The original BOOT software (Hanna et al. 1991) incorporated some basic 
statistical performance measures, which at the time were being suggested by the U.S. 
Environmental Protection Agency (EPA; Cox and Tikvart 1990) as an basis for air 
quality model evaluation.  These performance measures include the fractional bias (FB), 
the geometric mean bias (MG), the normalized mean square error (NMSE), the geometric 
variance (VG), the correlation coefficient (R), and the fraction of predictions within a 
factor of two of observations (FAC2): 

 

( )
( )
o p

o p

C C
FB

0.5 C C

−
=

+
        (1) 

( )o pMG exp ln C ln C= −        (2) 

( )2

o p

o p

C C
NMSE

C C

−
=         (3) 

( )2

o pVG exp ln C ln C⎡ ⎤= −⎢ ⎥⎣ ⎦
      (4) 

( )( )
p o

o o p p

C C

C C C C
R

− −
=

σ σ
       (5) 

p

o

C
FAC2 fraction of data that satisfy 0.5 2.0

C
= ≤ ≤     (6) 

 
where Cp denotes model predictions, Co denotes observations, overbar ( C ) denotes the 
average over the dataset, and σc  denotes the standard deviation over the dataset.  o pC C−  

is used to define mean bias, rather than p oC C− , because that was the definition used by 
the U.S. EPA. 

 
A perfect model would have MG, VG, R, and FAC2 = 1.0; and FB and NMSE = 

0.0.  The properties of these measures are further described in Section 4.2.  The above six 
performance measures are by no means exhaustive.  Other measures can also be used if 
necessary for a specific application or concern. 
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In the above, we have simply assumed that the evaluation dataset contains pairs of  
Cp and Co, and that they represent averages over an averaging time, Ta.  The pairing is 
completely generic, and can be: 

 
• in time only, such as the time series of the maximum pollutant concentrations 

anywhere in the domain of interest (i.e., no penalty is given if the model predicts 
the maximum concentration at a wrong location); 

• in space only, such as the spatial distribution of the maximum pollutant 
concentrations over a time period (i.e., no penalty is given if the model predicts 
the maximum concentration at a wrong time); or 

• in both time and space. 
 

Pairing in both time and space is clearly most stringent.  Decisions concerning these 
pairing options are obviously part of the evaluation objective (see Section 2) that should 
be clearly defined for any evaluation exercise. 
 
4.1.2 New Performance Measures 
 

In addition to the six basic performance measures defined above, the new BOOT 
software also considers the following measures, which are all closely related to FB.  
Firstly, the new BOOT software considers the overpredicting (or false-positive) and 
underpredicting (or false-negative) components of FB.  To show this, Eq. (1) can be 
written as 

 

( )

( )

( )

( )

oi pi oi pi
i i

oi pi oi pi
i i

1 C C C C
NFB 1 1C C C C

2N 2

⋅ − −
= =

⋅ + ⋅ +

∑ ∑

∑ ∑
     (7) 

 
where Coi is the ith observed value, Cpi is the ith predicted value, and N is the total number 
of observation-prediction pairs.  The above equation can be rearranged as follows. 

 

( )

( )

( )

( )

oi pi oi pi oi pi pi oi
i i

oi pi oi pi
i i

FN FP

1 1C C C C C C C C
2 2FB 1 1C C C C

2 2
FB FB

⎡ ⎤ ⎡ ⎤− + − − + −⎣ ⎦ ⎣ ⎦
= −

⋅ + ⋅ +

= −

∑ ∑

∑ ∑   (8) 

 
where 
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( )

( )

oi pi oi pi
i

FN

oi pi
i

1 C C C C
2FB 1 C C

2

⎡ ⎤− + −⎣ ⎦
=

⋅ +

∑

∑
     (9) 

( )

( )

oi pi pi oi
i

FP

oi pi
i

1 C C C C
2FB 1 C C

2

⎡ ⎤− + −⎣ ⎦
=

⋅ +

∑

∑
      (10) 

 
FBFN can be considered as the underpredicting (false-negative) component of FB, i.e., 
only those (Co, Cp) pairs with Cp < Co are considered in the calculation.  Similarly, FBFP 
can be considered as the overpredicting (false-positive) component of FB, i.e., only those 
(Co, Cp) pairs with Cp > Co are considered in the calculation.  Equations (9) and (10) 
show that FBFN and FBFP are always non-negative.  Properties of FBFN and FBFP are 
further described in the next section. 
 
 As shown in Eq. (8), FB equals the difference between FBFN and FBFP.  The sum 
of FBFN and FBFP, on the other hand, is often called the absolute fractional bias, AFB, 
another commonly-used performance measure (e.g., ASTM 2000), where 
 

 
( )
o p

FN FP
o p

C C
AFB FB FB

0.5 C C

−
= + =

+
      (11) 

 
The numerator of Eq. (11), o pC C− , is often called the mean absolute error, MAE (e.g., 

Wilks 1995). 
 
 The underpredicting (false-negative) and overpredicting (false-positive) 
components of MG (i.e., MGFN and MGFP) can be similarly defined by considering only 
those (ln Co, ln Cp) pairs with ln Cp < ln Co and ln Cp > ln Co, respectively.  In other 
words, 
 

 ( )FN oi pi oi pi
i

1MG exp ln C ln C ln C ln C
2N
⎡ ⎤⎡ ⎤= − + −⎢ ⎥⎣ ⎦⎣ ⎦

∑    (12) 

 ( )FP oi pi pi oi
i

1MG exp ln C ln C ln C ln C
2N
⎡ ⎤⎡ ⎤= − + −⎢ ⎥⎣ ⎦⎣ ⎦

∑    (13) 

 
 FN FPMG MG MG=         (14) 
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Another way of evaluating model performance is to consider the so-called Figure 
of Merit in Space (FMS; e.g., Wilks 1995; Mesinger 1996; Mosca et al. 1998; Ebert 
2001), defined as 

 

 p o

p o

A A
FMS

A A
∩

=
∪

        (15) 

 
where Ap is the predicted contour area based on a certain threshold, and Ao is the 
observed contour area based on the same threshold (Fig. 6).  FMS is also often called the 
threat score (McNally and Tesche 1993).  The portion of Ap that is outside the 
intersection (Ap ∩ Ao) can be considered as the false-positive (or overpredicting) area, 
AFP, i.e., a hazard area predicted by the model but not observed.  The portion of Ao that is 
outside the intersection (Ap ∩ Ao) can be considered as the false-negative (or 
underpredicting) area, AFN, i.e., a hazard area observed but not predicted by the model. 
 

Warner et al. (2001) suggest a more general expression of FMS, or a two-
dimensional (2-D) Measure of Effectiveness (MOE), where two components are used to 
indicate model performance, 

 

 

( )FN FP

p o p o

o p

p o p o

p o FN p o FP

2 D MOE MOE , MOE

A A A A
,

A A

A A A A
,

A A A A A A

− =

⎛ ⎞∩ ∩
= ⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞∩ ∩

= ⎜ ⎟⎜ ⎟∩ + ∩ +⎝ ⎠

    (16) 

 
MOEFN measures a degree of underprediction (false-negative), whereas MOEFP measures 
a degree of overprediction (false-positive).  The two components, however, are 
normalized differently, i.e., MOEFN by Ao, and MOEFP by Ap.  On the other hand, FBFN 
and FBFP are normalized by the same quantity (Eqs. (9) and (10)). 
 
 It is not always straightforward to define a contour area for a field experiment due 
to reasons such as limited samplers and limited measuring arcs.  One possible surrogate 
for the area estimate is data summation (Warner et al. 2001, Chang 2002).  In this case, 
AFN is given by the sum of the difference between Co and Cp for those (Co, Cp) pairs with 
Cp < Co  (i.e., false negative), 
 

 ( )FN oi pi oi pi
i

1A C C C C
2

⎡ ⎤= − + −⎣ ⎦∑       (17) 
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AFP is given by the sum of the difference between Co and Cp for those (Co, Cp) pairs with 
Cp > Co (i.e., false positive), 
 

( )FP oi pi pi oi
i

1A C C C C
2

⎡ ⎤= − + −⎣ ⎦∑       (18) 

 
 
Ap ∩ Ao is given by the difference between the smaller of (Co, Cp) and a threshold, Ct, for 
all data pairs, 
 

( )

( )

p o oi pi t
i

oi pi oi pi t
i

1A A min C ,C C
2
1 C C C C C
2

⎡ ⎤∩ = −⎣ ⎦

⎡ ⎤= + − − −⎣ ⎦

∑

∑
    (19) 

 
Substituting Eqs. (17) through (19) into Eqs. (8) through (10), while assuming Ct 

= 0, would yield alternative expressions of FB, FBFN, and FBFP in terms of area estimates, 
i.e., 
 

 
( )

FN FP
FN FP

p o FN FP

A AFB FB FB 1A A A A
2

−
= − =

∩ + ⋅ +
    (20) 

( )
FN

FN

p o FN FP

AFB 1A A A A
2

=
∩ + ⋅ +

      (21) 

 
( )

FP
FP

p o FN FP

AFB 1A A A A
2

=
∩ + ⋅ +

      (22) 

 
Comparison of Eq. (16) with Eqs. (21) and (22) suggests similarity between 

(MOEFN, MOEFP) and (FBFN and FBFP).  Chang (2002) shows that the two pairs of 
performance measures are indeed related, as given by the following formulas where FBFN 
and FBFP are expressed as a function of MOEFN and MOEFP: 
 

 ( )FP FN
FN

FN FP

2 MOE 1 MOE
FB

MOE MOE
⋅ ⋅ −

=
+

      (23) 

 ( )FN FP
FP

FN FP

2 MOE 1 MOE
FB

MOE MOE
⋅ ⋅ −

=
+

      (24) 

 ( )FN FP
FN FP

FN FP

2 MOE MOE
FB FB FB

MOE MOE
− ⋅ −

= − =
+

    (25) 
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Equations (23) and (24) can also be inverted to express MOEFN and MOEFP as a function 
of FBFN and FBFP: 
 

 
FN FP

FN FP
FN

FN FP

FB FB1 2 FB FB2 2MOE FB FB 2 FB1
2 2

− − − −
= =

++ −
    (26) 

 
FN FP

FN FP
FP

FN FP

FB FB1 2 FB FB2 2MOE FB FB 2 FB1
2 2

− − − −
= =

−− +
    (27) 

 
 In summary, the new BOOT software calculates the following performance 
measures: FB, MG, NMSE, VG, R, FAC2, FBFN, FBFP, MGFN, MGFP, MOEFN, and 
MOEFP (Eqs. (1) through (6), (9), (10), (12), (13), and (16), respectively).  It has also 
been shown that FBFN, FBFP, MOEFN, and MOEFP are closely related to one another (Eqs. 
(23), (24), (26), and (27)) and to FB.  AFB is not directly calculated by BOOT since it is 
readily given by the sum of FBFN and FBFP (Eq. (11)). 
 
4.2. Properties of Performance Measures 

 
It is necessary to consider multiple performance measures, as each measure has 

advantages and disadvantages and there is not a single measure that is universally 
applicable to all conditions.  The relative advantages of each performance measure are 
partly determined by the distribution of the variable of interest.  The distribution 
resembles a log-normal distribution for atmospheric pollutant concentrations.  In this 
case, linear measures FB and NMSE are strongly influenced by infrequently occurring 
high observed and predicted concentrations, whereas logarithmic measures MG and VG 
provide a more balanced treatment of extremely high and low values.  Therefore, for a 
dataset where both predicted and observed concentrations vary by many orders of 
magnitude, MG and VG would probably be more appropriate.  FAC2, on the other hand, 
is the most robust measure, because it is not overly influenced by high and low outliers. 

 
However, MG and VG are also known to be strongly influenced by extremely low 

values (e.g., Hanna and Chang 2001, Chang et al. 2001), and are undefined for zero 
values.  These low and zero values are not uncommon in dispersion modeling, where a 
low concentration value might be at a receptor that the plume has missed.  Therefore, 
when calculating MG and VG, it is useful to impose a minimum threshold for data 
values.  It is recommended that an instrument threshold, such as the limit of detection 
(LOD), be used as the lower bound for both Cp and Co.  In this case, whenever Cp is 
lower than the threshold, it is set to the LOD; and whenever Co is lower than the 
threshold, it is also set to the LOD. 
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FB and MG are measures of mean bias and indicate only systematic errors, 

whereas NMSE and VG are measures of scatter and reflect both systematic and 
unsystematic (random) errors.  For FB, which is based on a linear scale, the systematic 
bias refers to the arithmetic difference between Cp and Co.  For MG, which is based on a 
logarithmic scale, the systematic bias refers to the ratio of Cp to Co.  Because FB is based 
on the mean bias, it is possible for a model whose predictions are completely out of phase 
with observations to still have an FB = 0.  A solution to the problem is to consider a 
modified version of FB where the two error components (i.e., overprediction and 
underprediction) are separately considered (see Eq. (8)). 

 
The correlation coefficient, R, reflects the linear relationship between two 

variables and is thus insensitive to either an additive or a multiplicative factor.  That is, if 
Cp = α + βCo, where α and β (>0) are arbitrary constants, R will always equal 1.0 
between Cp and Co.  Therefore, a perfect correlation coefficient is only a necessary, but 
not sufficient, condition for a perfect model.  Also, R is sensitive to a few aberrant data 
pairs (e.g., Isaaks and Srivastava 1989).  For example, a scatter plot might show generally 
poor agreement; however, the presence of a good match for a few extreme pairs will 
greatly improve R.  As a result, Willmott (1982) discourages the use of R, because it does 
not consistently relate to the accuracy of predictions. 

 
Moreover, it is typical for short-range dispersion field experiments to have 

concentration data measured along concentric arcs, and it is also customary to evaluate 
model performance based on the maximum concentration or the cross-line integrated 
concentration along each sampling arc.  In this case, the value of R can be deceivingly 
high, mainly reflecting the fact that concentration decreases with downwind distance, 
which any reasonable dispersion model is capable of simulating.  Therefore, R is less 
useful in a typical evaluation exercise for dispersion models when data are arranged in 
arcs.  On the other hand, it might be more useful when gridded fields are involved (e.g., 
McNally and Tesche 1993). 

 
It is sometimes suggested that the more robust ranked correlation, Rrank (or often 

called the Spearman correlation coefficient), be considered, where the ranks of Cp and Co 
are correlated instead of their values (Conover 1980; EPA 1997).  Rrank is a more robust 
measure than R.  Large differences between R and Rrank are usually due to the locations 
of extreme data pairs on the scatter plot.  A high value of Rrank and a low value of R may 
indicate that there are a few erratic pairs in an otherwise good correlation.  A low value of 
Rrank and a high value of R may be a result of a few extreme pairs close to the diagonal 
line on a scatter plot. 

 
It is also sometimes useful to consider the “real” correlation between two 

variables after the influence of a third variable is removed.  In this case, the partial 
correlation coefficient between variables X1 and X2, while holding the third variable X3 
constant, is (Panofsky and Brier 1958): 
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12 13 23

12,3 2 2
13 23

R R RR
1 R 1 R

−
=

− −
       (28) 

 
where R12, R13, and R23 are the correlation coefficients between X1 and X2, between X1 
and X3, and between X2 and X3, respectively. 

 
As mentioned above, both NMSE and VG account for systematic and random 

errors.  It can be shown that the minimum NMSE, i.e., without any random errors, for a 
certain value of FB is given by the following expression (Hanna et al. 1991, Chang 
2002): 
 

 
2

min 2

4FBNMSE
4 FB

=
−

       (29) 

 
Similarly, the minimum possible VG, i.e., without any random errors, for a certain value 
of MG is given by the following expression (Hanna et al. 1991, Chang 2002): 
 
 ( )( )2

minVG exp ln MG=        (30) 

 
 Equation (8) suggests that the traditional FB can be partitioned into two 

orthogonal components, FBFN and FBFP, where the difference between the two gives the 
original FB.  Thus, a model’s performance can be indicated in a two-dimensional 
diagram with the coordinates given by FBFN and FBFP (Fig. 7), where the x-axis (FBFN) 
denotes the degree of false negative, and the y-axis (FBFP) denotes the degree of false 
positive.  All points along a line whose slope is 1.0 will have the same value of the one-
dimensional FB (i.e., FBFN − FBFP = FB = constant).  Figure 7 shows three lines (dashed) 
that correspond to FB = 0, FB = 2/3, and FB = −2/3.  Therefore, the diagonal shaded band 
can be considered as the “factor-of-two” region in the 2-D FB diagram, where any model 
that is located inside the band will have a one-dimensional FB that is between ±2/3, i.e., 
with a mean bias within a factor of two of the observed (see also Eq. (31) below). 

 
Chang (2002) describes other features of the 2-D FB diagram: 
 

• The diagram covers a triangular area, because FBFN + FBFP must be ≤ 2 (see Eqs. 
(21) and (22)). 

• A perfect model would be located at the origin of the diagram, i.e., (FBFN, FBFP) = 
(0, 0). 

• Compensating errors can be easily identified in the diagram.  Even though a 
model whose predictions are completely out of phase with observations (i.e., AFN 
= AFP, and Ap ∩ Ao = 0) will lead to FB = 0, the model will be located at (FBFN, 
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FBFP) = (1, 1), clearly distinguishable from the perfect-agreement location, i.e., 
(FBFN, FBFP) = (0, 0). 

• The hypotenuse of the triangle indicates that there is no overlap between 
predictions and observations, i.e., predictions are zero whenever observations are 
finite, and vice versa. 

• The x-axis of the diagram means that predictions are systematically lower than 
observations (i.e., systematic underprediction, or no false positive). 

• The y-axis of the diagram means that predictions are systematically higher than 
observations (i.e., systematic overprediction, or no false negative). 

• The point of (FBFN, FBFP) = (2, 0) means that predictions are zero everywhere but 
all observations are finite. 

• The point of (FBFN, FBFP) = (0, 2) means that observations are zero everywhere 
but all predictions are finite. 

 
 Likewise, a similar diagram in the 2-D MOE space can also be used to indicate 
model performance (Warner et al. 2001). 
 
 Equations (26) and (27) describe the relationship between (FBFN, FBFP) and 
(MOEFN, MOEFP).  Figure 8 depicts this relationship, which graphically shows that once 
FBFN and FBFP are known, MOEFN and MOEFP are also known.  The figure also shows 
that MOEFN = 1 is asymptotic to FPFN = 0, and that MOEFP = 1 is asymptotic to FPFP = 0. 
 
4.3. Interpretations of FB, MG, NMSE, and VG 

 
The FB, MG, NMSE, and VG defined in Eqs. (1) through (4) quantitatively 

define model performance.  However, direct quotation of their values are often not that 
informative.  For example, it will be difficult for a user to discern what NMSE = 9 and 
VG = 13 mean.  As a result, it is recommended that the values of FB, NMSE, MG, and 
VG be further interpreted in terms of a measure that is more easily comprehended, such 
as the equivalent ratio of Cp to Co.  These interpretations are briefly described below, 
where Chang (2002) provides more details. 

 
First of all, Eq. (1) can be easily rearranged and becomes 
 

 p

o

11 FBC 2
1C 1 FB
2

−
=

+
        (31) 

 
Therefore, for example, FB = 2/3 would correspond to a factor of two underprediction, 
and FB = −2/3 would correspond to a factor of two overprediction. 
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To interpret NMSE, assume Cp and Co are constant, then pC = Cp, oC = Co, and 

( )2

o pC C− in Eq. (3) equals ( )2

o pC C− .  Equation (3) can then be expressed as 

 

( )2
p

o

2 NMSE 2 NMSE 4C
2C

+ ± + −
=      (32) 

 
In this case, for example, NMSE = 0.5 would correspond to an equivalent factor of two 
mean bias.  Since NMSE involves the square of the difference between Cp and Co, it does 
not differentiate whether the factor of two mean bias is underprediction or overprediction. 

 
Equation (2) can be shown to be equivalent to 

 

 p

o

C 1
C MG

=          (33) 

 
where oC  and pC  are geometric means of Co and Cp.  As a result, for example, a 
factor of two mean bias would mean MG = 0.5 or 2.0, and MG = 3.0 would mean a factor 
of three underprediction. 

 
One way to relate the value of VG to a more easily understood quantity is to 

assume that the ratio of Cp/Co equals a constant, A, which amounts to ignoring the 
random scatter between Cp and Co.  In this case, Cp/Co = A = p oC C , where  
again represents the geometric mean.  Then it can be shown that  

 

 p

o

C
exp ln VG

C
⎡ ⎤= ±⎣ ⎦        (34) 

 
In other words, for example, a factor of two mean bias (i.e., p oC C = 2.0 or 0.5) 
would mean VG = 1.6, and VG = 12 would indicate a random scatter that is equivalent to 
roughly a factor of five mean bias (i.e., p oC C = 4.84, or o pC C = 4.84). 
 

Figure 9 depicts the relationships between the equivalent ratio of Cp to Co and FB, 
NMSE, MG, and VG, as described in Eqs. (31) through (34).  Note that Eqs. (32) and 
(34) are not exact since some assumptions were involved.  These assumptions mainly 
provide a means to more easily interpret NMSE and VG.  Equations (31) and (33), on the 
other hand, are exact relationships.  In a BOOT demonstration to be described in Section 
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7, Eqs. (31) through (34) will be used to help interpret the model evaluation results, rather 
than simply quoting the values of FB, NMSE, MG, and VG. 

 
In summary, FB = ±2/3, MG = 0.5 or 2.0, NMSE = 0.5, and VG = 1.6 would 

correspond to an equivalent factor-of-two mean bias.  FB = ±4/3, MG = 0.2 or 5.0, 
NMSE = 3.2, and VG = 13.33 would correspond to an equivalent factor-of-five mean 
bias.  Finally, due to the nature of VG, it tends to have a large value when compared to 
NMSE for a large discrepancy between Cp and Co.  For example, Eqs. (32) and (34) and 
Fig. 9 show that NMSE = 8 and VG = 200 would both indicate an equivalent factor-of-
ten mean bias. 
 
4.4. Model Acceptance Criteria 
 

One inevitable question for model performance evaluation is “how good is good 
enough?”  Typical magnitudes of the above performance measures and estimates of 
model acceptance criteria have been summarized by Chang and Hanna (2004) based on 
extensive experience with evaluating many models with many field data sets.  It was 
concluded that, for comparisons of maximum concentrations on arcs (i.e., unpaired in 
space) and for research-grade field experiments, “acceptable” performing models have 
the following typical performance measures: 

 
• The fraction of predictions within a factor of two of observations is about 50% or 

greater (i.e., FAC2 > 0.5). 
• The mean bias is within ± 30% of the mean (i.e., roughly ⎪FB⎪ < 0.3 or 0.7 < MG 

< 1.3). 
• The random scatter is about a factor of two to three of the mean (i.e., roughly 

NMSE < 1.5 or VG < 4). 
 
However, these are not firm guidelines and it is necessary to consider all 

performance measures in making a decision concerning model acceptance.  Since most of 
these criteria are based on research grade field experiments, model performance would be 
expected to deteriorate as the quality of the inputs decreases, or as more stringent data 
pairing options (e.g., paired in space and time) are used. 

 
The criterion of ⎪FB⎪ < 0.3 is readily shown in Fig. 8 as the shaded area.  This 

shaded area is essentially ⎪FBFN – FBFP⎪ < 0.3.  The figure also shows a cross hatched 
area that corresponds to AFB < 0.3, or FBFN + FBFP < 0.3.  It is clear that this is a much 
more stringent performance criterion for a model to satisfy.   
 
4.5. Confidence Limits Estimated by Bootstrap Resampling 
 

A model might appear to have skills based on, for example, a small normalized 
mean square error (NMSE).  A model might also appear to have a better performance 
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than other models based on, for example, a smaller fractional bias (FB).  Hence, there are 
two hypotheses that could be tested: 

 
• When compared to observations, are a model’s performance measures 

significantly different from zero at the 95% confidence level?  (For geometric 
measures VG and MG, it is necessary to consider their logarithmic values instead, 
since by definition VG and MG will always be positive.) 

• When comparing the performance of two models, are the differences in 
performance measures for the two models (e.g., FB for Model-A minus FB for 
Model-B) significantly different from zero at the 95% confidence level? 
 
The bootstrap resampling (Efron 1987, Efron and Tibshirani 1993) is used to 

estimate the confidence limits of a performance measure.  Two types of confidence 
limits, Student’s t and percentile, can be given by the bootstrap resampling (Efron and 
Tibshirani 1993).   
 
Student’s t confidence limits 
 

 With, say, 1000, bootstrap resamples, there will be 1000 estimates for a 
performance measure.  These 1000 estimates are used to estimate the mean, µ, and the 
standard deviation, σ, for the performance measure.  The 95% Student’s t confidence 
limits are then given by the following standard formula:  

 
1

2

95%
Nt

N 1
⎛ ⎞µ ± σ⎜ ⎟−⎝ ⎠

        (35) 

 
where N is the number of observation-prediction pairs, t95% is the Student’s t value at the 
95% confidence level with N − 1 degrees of freedom. 
 
Percentile confidence limits 
 

Alternatively, the 2.5th and 97.5th percentiles of the cumulative distribution 
function of the 1000 estimates also provide another estimate of the 95% confidence 
limits.  According to Efron and Tibshirani (1993), the percentile confidence limits are 
more robust than the Student’s t confidence limits.  The BOOT software calculates both 
types of confidence limits, but mainly uses the percentile confidence limits for the 
significance tests. 

 
For geometric measures VG and MG, the Student’s t confidence limits are first 

calculated with the µ and σ that are based on the logarithms of VG and MG.  These 
confidence limits are used in significance tests.  The exponentiation of these confidence 
limits is then used for reporting.  Such transformation is unnecessary for the percentile 
confidence limits. 
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Below are some practical considerations concerning the bootstrap resampling: 
 

• The dataset may appear in blocks, with each block corresponding to, for example 
the data from one field program or the data for one value of an independent 
variable such as wind speed, stability class, or downwind distance.  In this case, 
resampling should be restricted to within each block to avoid introducing block-
to-block variance. 

• Resampling should also be done with replacement.  That is, once a sample is 
drawn, it is allowed to be drawn again. 

• Observed and predicted values should be sampled concurrently in order to 
maintain the relationship between them. 
 
It is helpful to illustrate the above considerations.  Suppose there are seven 

experiments (numbered 1 through 7), with seven corresponding pairs of observations (Co) 
and model predictions (Cp), 

 
Original Version of Data 

 
Co1 Cp1 
Co2 Cp2 
Co3 Cp3 

Block 1 

Co4 Cp4 
Co5 Cp5 
Co6 Cp6 
Co7 Cp7 

Block 2 

 
Experiments 1 through 3 belong to Block 1, and Experiments 4 through 7 belong to 
Block 2.  Then one possible bootstrap sample of the original series is  
 

One Possible Resampled Version of Data 
 

Co2 Cp2 
Co2 Cp2 
Co1 Cp1 

Block 1 

Co7 Cp7 
Co5 Cp5 
Co4 Cp4 
Co4 Cp4 

Block 2 

 
The above resampled series shows that: 
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• Resampling was restricted to within each block.  In other words, the first three 
data pairs (Block 1) of the new series were drawn from Experiments 1 through 3, 
and the last four data pairs (Block 2) of the new series were drawn from 
Experiments 4 through 7. 

• Some experiments (2 and 4 in this case) were drawn more than once (twice in this 
case), while some experiments (3 and 6 in this case) were not drawn at all. 

• Observed and predicted values were drawn concurrently.  For example, Co4 and 
Cp4 were always drawn together. 

 
On the other hand, the following series would not be created based on the resampling 

procedure prescribed above. 
 

A Version of Data That Will Not be Resampled 
 

Co7 Cp7 
Co2 Cp2 
Co1 Cp1 

Block 1 

Co7 Cp7 
Co5 Cp5 
Co4 Cp1 
Co4 Cp4 

Block 2 

 
This is because: 
 

• Resampling must be restricted to within each block, but this procedure was not 
followed in the above example.  For instance, the first three data pairs (Block 1) 
include Experiment 7, which in fact belongs to Block 2. 

• The observed and predicted values must be drawn concurrently.  For example, the 
sixth data pair consists of Co4 and Cp1, i.e., Experiment 4’s observation was 
matched with Experiment 1’s prediction, thus violating the concurrent resampling 
rule. 

 
5. ASTM Procedure 
 
5.1. Framework 
 
 The qualitative and quantitative procedures mentioned in Sections 3 and 4, 
respectively, typically involve direct comparisons of model predictions with field 
observations.  However, many studies (e.g., Fox 1984; Venkatram 1984 and 1988; Weil 
et al. 1992) suggest that there is a fundamental question in that most dispersion models 
generate ensemble-mean predictions (either explicitly or implicitly), whereas 
observations correspond to realizations of ensembles.  Here, an ensemble is defined as “a 
set of experiments corresponding to fixed external conditions” (Lumley and Panofsky 
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1964).  Therefore, some researchers have been advocating new frameworks upon which 
atmospheric dispersion model predictions and field observations could be properly 
compared, including some of the effects of uncertainties.  One such framework was 
proposed as a standard guide by the American Society for Testing and Materials (ASTM 
2000), whose primary author was John Irwin of the U.S. EPA. 
 
 The basic assumption of the ASTM procedure is that a realization of the observed 
concentration, Co, can be expressed as: 
 
 o o o oC C C C′ ′= + ∆ +         (36) 
 
where oC is the ensemble average that a dispersion model is supposed to predict ideally, 
∆Co′ represents measurement errors due to calibration or unrepresentative instrument 
siting, and Co′ represents stochastic fluctuations due to turbulence. 

 
The predicted concentration, Cp, can be considered to have the following three 

components:  
 

 p p p pC C ( ) C ( ) C ( )′ ′= α + ∆ α + α       (37) 
 
where α represents the set of model input parameters, pC ( )α  is the ensemble average 
given by the model, ∆Cp′(α) represents the effects due to model input uncertainty, and 
Cp′(α) represents errors due to factors such as incorrect model physics, 
unrepresentativeness (such as comparing grid-volume averages with point 
measurements), and parameters (other than α) not accounted for by the model. 

 
Direct comparison of observations (which are realizations of ensembles) with 

model predictions (which are ensemble averages) amounts to comparing Co with pC ( )α .  
The ASTM (2000) procedure suggests that if the effects of ∆Co′, Co′, ∆Cp′(α), and Cp′(α) 
all somehow average to zero, then it is more appropriate to first separately average 
observations and model predictions over a number of regimes (or ensembles of similar 
conditions), which can be defined by independent variables such as downwind distance 
and stability parameter, and then do the comparison.  Averaging observed values over 
each of these regimes may provide an estimate that is closer to what most dispersion 
models attempt to predict, oC .  These regime averages of observations and predictions 
can then be paired to calculate, for example, the performance measures defined in Section 
4.  Like the BOOT software, the ASTM procedure uses the bootstrap resampling 
technique to calculate the confidence limits of performance measures, where resampling 
is done within each regime, and where the observed and predicted values for the same 
experiment are sampled concurrently. 
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Strictly speaking, an ensemble would require many experiments conducted under 

identical conditions.  This objective, however, is impossible to achieve in a field 
program.  Therefore, regime average represents a surrogate for a true ensemble average, 
because each regime consists of experiments conducted under similar conditions. 
 
5.2. A Sample Implementation of the ASTM Procedure for Short-Range 
Dispersion Experiments 
 
 The ASTM (2000) procedure was initially developed with short-range dispersion 
field experiments in mind, but can be extended to other types of experiments with 
appropriate considerations.  Traditionally, short-range dispersion experiments have 
receptors arranged in concentric arcs to maximize the possibility of plume capture.  
Moreover, previous researchers have often used the centerline concentration to assess 
model performance.  (This was partly motivated by regulatory requirements.)  In addition 
to providing the rationale for the need to combine data within a regime for analysis, the 
ASTM procedure also recognizes that because of wind shifts and concentration 
fluctuations, the cross-wind concentration distribution along an sampling arc is unlikely 
to be perfectly Gaussian, a lateral distribution assumed by most air dispersion models.  
These departures from an ideal Gaussian shape lead to uncertainty in defining the plume 
centerline position.  As a result, the ASTM procedure further recommends treating all 
“near-centerline” observed concentrations to be representative of the plume centerline 
concentration for these short-range dispersion experiments. 

 
ASTM (2000) suggests one way to define near-centerline concentrations.  First of 

all, it is required that the plume must have been well captured by the sampling arc.  This 
usually involves plotting all observations along the arc and carefully inspecting these 
plots.  Once the data are quality assured, then consider all those measurements that are 
within a certain range of the plume center-of-mass (or centroid) location.  In practice, this 
can be done by first calculating the first moment of the cross-wind distribution, which 
gives the centroid location, yc, 

 

c

Cydy
y

Cdy
= ∫
∫

         (38) 

 
where C is the concentration along the arc, and y is the cross-wind coordinate measured 
in, for example, distance or azimuth angle.  The spread, or the second moment, of the 
cross-wind distribution, σy, is then given by 
 

 
2

c
y

C(y y ) dy

Cdy

−
σ = ∫

∫
       (39) 



 

BOOT Tech & User Guide V2.01 22

 
To account for uncertainty in the plume centerline position, the ASTM procedure 
suggests that the concentration at any receptor that is located within 0.67 σy from yc is a 
representative sample of the plume centerline concentration (Fig. 10).  For a Gaussian 
distribution, the concentration at a lateral distance of 0.67 σy from the centerline would 
equal 80% of the centerline, maximum value. 
 

With the consideration of a finite region (± 0.67 σy from the centroid), it is likely 
that an experiment will have multiple near-centerline observed values, even though there 
is just one predicted centerline value.  This is illustrated by an example in Fig. 11, where 
it is assumed that there are ten experiments that can be grouped into three regimes.  Black 
solid circles indicate the ten centerline predictions for the ten experiments.  Red open and 
red solid circles indicate near-centerline observations that are considered to be 
representative of the centerline concentrations for the ten experiments.  Red solid circles 
further indicate the maximum among these near-centerline values.  Traditional model 
evaluation compares black solid with red solid circles.  The ASTM procedure compares 
black solid with red solid and red open circles. 
 
5.3. Extension of BOOT Software to Include ASTM Procedure 
 
 It is apparent that there are many similarities between the ASTM (2000) 
procedure and the BOOT software described in Section 4.  These similarities include 
 

• the calculation of various statistical performance measures, 
• the use of the bootstrap resampling to estimate the confidence level, 
• the paired sampling between observed and predicted values, and 
• the grouping of the data in blocks in BOOT versus in regimes in ASTM. 
 

However, the ASTM procedure proceeds further by 
 

• calculating performance measures based on regime averages (i.e., averaging over 
all experiments within a regime), rather than based on the values of individual 
experiments, and  

• if the variable to be evaluated is the centerline concentration, considering near-
centerline observations to be representative samples of the centerline value. 

 
This section mainly describes the necessary steps to extend the BOOT software in 

order to incorporate the new ASTM procedure. 
 
Figure 11 can be used to further demonstrate the difference between the BOOT 

and ASTM methodologies.  There are ten experiments that are grouped into three regimes 
or blocks in Fig. 11.  Regimes 1, 2, and 3 have four, three, and three experiments, 
respectively.  There are ten predicted centerline values (black solid circles) for the ten 
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experiments.  However, because of the consideration of near-centerline values for 
observations, there are a total of 33 observed values (red solid and open circles) for the 
ten experiments, where red solid circles indicate the maximum observed values for each 
experiment.  The BOOT methodology calculates statistical performance measures, such 
as the fractional bias (FB) and the normalized mean square error (NMSE), using the ten 
pairs of predicted and maximum observed values (black solid and red solid circles, 
respectively).  The ASTM procedure first calculates the average of the four predicted 
values in Regime 1, p,R1C , and the average of the 13 near-centerline observed values in 

Regime 1, o,R1C .  Averages for other two regimes are similarly calculated.  The ASTM 

procedure then uses the three pairs of regime averages, ( p,R1C , o,R1C ), ( p,R 2C , o,R 2C ), 

and ( p,R3C , o,R3C ), to calculate performance measures. 
 
As mentioned before, both BOOT and ASTM involve the bootstrap resampling 

where resampling is done within each regime or block.  The resampling in BOOT is 
straightforward, because the numbers of observed and predicted values are the same.  The 
ASTM procedure, however, requires special considerations, because the numbers of 
observed and predicted values can be different (33 vs. 10 in Fig. 11).  The table below 
lists all the data points for Regime 1 in Fig. 11, where there are four experiments 
(numbered 1 through 4) with four predicted values (right column) and 13 observed values 
(left column). 

 
Original Version of Data for Regime 1 

 
Observed Predicted 
Co1,1, Co1,2, Co1,3, Co1,4 Cp1 
Co2,1, Co2,2, Co2,3 Cp2 
Co3,1, Co3,2 Cp3 
Co4,1, Co4,2, Co4,3, Co4,4 Cp4 

 
Since all of the near-centerline measurements for each experiment are adjacent, 

one approach would be to sample a pair of neighboring observed values each time in 
order to preserve the correlation of these observed values.  This approach is found to be 
more robust than sampling one observed value each time (Irwin and Rosu 1998).  As a 
result, assuming there are N observed values in a regime, the ASTM procedure suggests 
that INT(N/2) pairs of adjacent samples be drawn, where INT(N/2) is the truncated 
integer result of dividing N by 2.  For the example above, since N = 13, INT(13/2) = 6.  
Hence, for each bootstrap sample of Regime 1, six experiments will be randomly selected 
from the four experiments in that regime, where for each experiment a pair of adjacent 
observed values will be drawn.  Since there is only a single predicted value for each 
experiment, that value will be drawn twice in order to maintain concurrent sampling of 
observed and predicted values.  Assume the six randomly selected experiments are 3, 3, 
2, 4, 1, 2, then a possible sample of Regime 1 following the above procedures would be 
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One Possible Resampled Version of Data for Regime 1 

 
Observed Predicted 
Co3,1, Co3,2 Cp3, Cp3 
Co3,1, Co3,2 Cp3, Cp3 
Co2,2, Co2,3 Cp2, Cp2 
Co4,3, Co4,4 Cp4, Cp4 
Co1,1, Co1,2 Cp1, Cp1 
Co2,1, Co2,2 Cp2, Cp2 

 
It can be seen that the sampled observed values are always adjacent, that each 

predicted value is always sampled twice, and that the resampling is done with 
replacement.  There are some noticeable differences between this resampled version and 
the original version of the data: 

 
• The original version of the data has four experiments in Regime 1, but the 

resampled version has six (= INT(13/2)) experiments instead. 
• The original version has four predicted values and 13 observed values in Regime 

1.  The average of the four predicted values gives the nominal (median) value of 

p,R1C , and the average of the 13 predicted values gives the nominal (median) 

value of  o,R1C .  The resampled version has 12 predicted and 12 observed values.  

These values are then averaged to give a new estimate of regime averages p,R1C  

and o,R1C . 
 
As previously mentioned, one way for the BOOT procedure to estimate 

confidence limits is to use Eq. (35), where t95% is the Student’s t value at the 95% 
confidence level with N − 1 degrees of freedom, and N is the number of observation-
prediction pairs (or experiments).  In implementing the ASTM procedure, the degrees of 
freedom should be N − NR − 1, where NR is the number of regimes.  The reason why the 
degrees of freedom are reduced by NR is because NR regime averages will first have to 
be calculated.  No special treatment is necessary for the percentile confidence limits. 

 
Based on the above discussions, the following are additional optional procedures 

that have been implemented in the new BOOT software in order to incorporate the 
ASTM methodology: 

 
• Allow multiple observed values for each experiment. 
• Calculate the average for each regime.  Then, calculate all performance measures 

based on these averages, rather than based on original individual values. 
• Sample two adjacent observed values each time during resampling. 
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• Reduce the degrees of freedom by the number of regimes when calculating the 
Student’s t confidence limits. 

 
Therefore, it can be concluded that the main extensions associated with the 

ASTM procedure are the treatment of regime averages, and the generation of bootstrap 
resamples for regime averages.  The procedures by which statistical performance 
measures are calculated essentially remain the same. 
 
6. User’s Instructions for the BOOT Software 
 

Section 4 described the quantitative performance measures (FB, MG, NMSE, VG, 
R, FAC2, FBFN, FBFP, MGFN, MGFP, MOEFN, and MOEFP) that the new BOOT software 
calculates.  Section 5 describes the additional procedures that have been added in BOOT 
in order to implement the ASTM procedure.  This section provides the user’s instructions 
for the BOOT software. 
  
6.1. Run-Time Environment 
 
 The BOOT software has been primarily applied in a Microsoft Windows 
environment.  However, as described later, the program can be easily ported to other 
computer platforms because of the standard programming language used.  The only 
installation requirement is to place the BOOT program and all the associated input and 
output files in the same directory folder. 
 

In order to run BOOT, the user will need to respond to a number of prompts at the 
command line (see Section 6.2), and prepare a mandatory input file (see Section 6.3).  
The program in turn generates one mandatory output file and two optional output files 
(see Section 6.3).  It is assumed that the BOOT program and all the associated data files 
reside in the same folder. 

 
Follow these steps to launch BOOT: 
 

• Click on Start / Run… 
• Hit the Browse button to navigate to the folder where BOOT and the associated 

data files reside. 
• Hit the OK button to launch the program. 

 
Alternatively, BOOT can also be launched by these steps: 
 

• Open a Command Prompt window. 
• Change to the folder where BOOT and the associated data files reside using the 

CD command. 
• Type BOOT to launch the program. 
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Because of its simple I/O requirements, the BOOT program can be easily run in 

batch mode by redirecting command-line inputs to an external file. 
 
6.2. Command-Line Prompts 
 
 Once BOOT is launched, the user will be prompted with the following questions 
(each enclosed by a rectangle) at the command line.  Some questions are conditional. 
 
Name of input file: 
 
 The name of the mandatory input data file.  There is no default for this prompt.  
See Section 6.3 for file format. 
 
Name of output file: 
 

The name of the mandatory output data file.  There is no default for this prompt.  
See Section 6.3 for file format. 
 
Select one from the following options: 
(1) straight Co and Cp comparison 
(4) consider ln(Co) and ln(Cp) 
 
 Select the option (IMENU) of comparing Co and Cp directly, or comparing the 
logarithms of Co and Cp.  IMENU must equal 1 or 4, and there is no default value assumed.  
When IMENU = 1, NMSE and all measures related to FB (i.e., FBFN, FBFP, MOEFN, and 
MOEFP) will be calculated, but not VG and all measures related to MG (i.e., MGFN and 
MGFP).  When IMENU = 4, VG and all measures related to MG will be calculated, but not 
NMSE and all measures related to FB.  R is based on Co and Cp when IMENU = 1, and is 
based on ln(Co) and ln(Cp) when IMENU = 4.  FAC2 is always based on  Co and Cp 
regardless of the value of IMENU.  Note that Co and Cp must be positive when IMENU = 4.  
(Co and Cp are always non-negative by definition for physical plume quantities such as 
concentration, dosage, and cloud width.) 
 
Use ASTM procedure? (y/<N>) 
 
 Decide whether (option IASTM) to consider the ASTM procedure (see Section 5).  
Enter Y or N (case-insensitive), or simply hit the Enter key.  Hitting the Enter key 
amounts to selecting the default option, N, i.e., not using the ASTM procedure. 
 
Print out original data? (y/<N>) 
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Decide whether to echo the original data in the mandatory output file.  Enter Y or 
N (case-insensitive), or simply hit the Enter key.  Hitting the Enter key amounts to 
selecting the default option, N, i.e., not printing the original data. 
 
Use E- or F-format for mean, sigma, and bias? (<F>/e) 
 
 Decide whether to use the F (floating point without exponentiation) or E (explicit 
exponential notation) format for the mean, standard deviation, and bias (difference in the 
means).  Enter F or E (case-insensitive), or simply hit the Enter key.  Hitting the Enter 
key amounts to selecting the default option, F, i.e., using the floating point format 
without exponentiation. 
 
Calculate partial correlation? (y/<N>) 
That is, the influence from a certain model is removed. 
 

Decide whether (option IPART) to calculate the partial correlation coefficient 
(Panofsky and Brier 1958; see Eq. (28)) between observations and a model’s predictions 
after the influence of another model’s predictions is removed.  Enter Y or N (case-
insensitive), or simply hit the Enter key.  Hitting the Enter key amounts to selecting 
the default option, N, i.e., not considering partial correlation. 
 
The influence of which model, Cp(i), do you want to remove? 
Note that i corresponds to the i+1 th model in the input file. 
Enter i now: 
 
 The prompt will appear only if IPART equals Y.   
 
 Decide which model whose influence is to be removed.  Since the mandatory 
input file (Section 6.3) consider the “first model” as observations, the predictions for 
model i actually correspond to the i+1th “model” in the file. 
 
Do the bootstrap resampling? (<Y>/n) 
 

Decide whether (option IBOOT) to do the bootstrap resampling.  Enter Y or N 
(case-insensitive), or simply hit the Enter key.  Hitting the Enter key amounts to 
selecting the default option, Y, i.e., conducting the bootstrap resampling. 
 
Print out detailed information on confidence limits? (y/<N>) 
 
 The prompt will appear only if IBOOT equals Y. 
 
 Decide whether to print out detailed quantitative information on confidence limits 
resulting from the bootstrap resampling.  Enter Y or N (case-insensitive), or simply hit the 
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Enter key.  Hitting the Enter key amounts to selecting the default option, N, i.e., not 
printing out the detailed quantitative information on confidence limits. 
 
Create files containing FB (with its 95% confidence limits) and 
NMSE that can later be plotted? (<Y>/n) 
 
 The prompt will appear only if IBOOT equals Y. 
 
 Decide whether (option INN) to create two optional files containing the 
information on the confidence limits for FB and NMSE if IMENU = 1, or for MG and VG 
if IMENU = 4, that can later be plotted (see Fig. 12 for an example).  Enter Y or N (case-
insensitive), or simply hit the Enter key.  Hitting the Enter key amounts to selecting 
the default option, Y, i.e., creating optional files.  See Section 6.3 for file format. 
 

The information contained in these two optional files in fact will also be included 
in the mandatory output file if the user chooses to print out detailed quantitative 
information on confidence limits, but is separately reproduced here to facilitate plotting. 
 
Additional two files will be opened: 
If IMENU = 1, then 

Enter name of file 1 that contains FB and NMSE info. 
Enter name of file 2 that contains d(FB) and d(NMSE) info. 

If IMENU = 4, then 
Enter name of file 1 that contains MG and VG info. 
Enter name of file 2 that contains d(MG) and d(VG) info. 

 
The prompt will appear only if both IBOOT and INN equal Y. 
 
If IMENU = 1, the first file contains the information on FB, together with 

confidence limits, and NMSE for each model.  The second file contains the information 
on the difference in FB, together with confidence limits, and the difference in NMSE for 
all model pairs.  There are no default file names assumed. 

 
If IMENU = 4, the first file contains the information on MG, together with 

confidence limits, and VG for each model.  The second file contains the information on 
the difference in MG, together with confidence limits, and the difference in VG for all 
model pairs.  There are no default file names assumed. 
 
Make another run? (y/<N>) 
 
 Decide whether to make another run.  Enter Y or N (case-insensitive), or simply 
hit the Enter key.  Hitting the Enter key amounts to selecting the default option, N, i.e., 
not making another run.  If Y is entered, the whole command-prompt sequence will repeat 
without exiting the program. 
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6.3. Input and Output File Formats 
 
 All input and output files of BOOT are in ASCII (i.e., plain text).  Formats of 
these files are described below. 
 

The mandatory input data file consists of four header records, followed by 
numerical data.  All records are free format with space delimiters.  Table 2 shows the 
input file structure in detail, and a sample mandatory input data file is shown in Table 3.  
The data in Table 3 are also consistent with the sample database in Table 1. 

 
Table 4 shows a sample BOOT mandatory output file, which is based on use of 

the sample input file in Table 3.  The mandatory output file consists of a number of 
segments, with some segments appearing only if certain options have been selected at the 
command line (see Section 6.2).  Table 4’s caption provides a detailed description of each 
segment.  Note that no information on MG and VG is listed in Table 4 because IMENU = 
1.  Set IMENU = 4 to obtain the information on MG and VG. 

 
Table 5 shows a sample BOOT optional output file that corresponds to the sample 

input file in Table 3.  The file displays for each model the FB (together with the 95% 
confidence limits) and NMSE if IMENU = 1, or the MG (together with the 95% 
confidence limits) and VG if IMENU = 4.  The information displayed in this file can also 
be found in the mandatory output file with appropriate command-line options.  The 
percentile confidence limits are used in the table. 

 
Table 6 shows an additional sample BOOT optional output file that corresponds 

to the sample input file in Table 3.  The file displays for each model pair the difference in 
FB (together with the 95% confidence limits) and the difference in NMSE if IMENU = 1, 
or the difference in MG (together with the 95% confidence limits) and the difference in 
VG if IMENU = 4.  The information displayed in this file can also be found in the 
mandatory output file with appropriate command-line options.  The percentile confidence 
limits are used in the table. 
 
6.4. Programming Notes 
 
 The BOOT software was developed using the FORTRAN 95 programming 
language.  Since the program allocates memory dynamically, there is no need to 
recompile the code for a problem with more data points, more models, or more data 
blocks (regimes).  Moreover, because of the standard programming language used, 
BOOT can be easily ported to other computer platforms such as UNIX and LINUX. 
 
 BOOT is currently set to take 1,000 bootstrap resamples (MAXSS = 1000).  
Recompilation is necessary if a different number of bootstrap resamples is desired. 
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 The current version of BOOT uses the RAN3 random number generator routine 
described in Press et al. (1992) to generate a sequence of random numbers for the 
purpose resampling.  (The previous version of BOOT originally programmed by Hanna 
(1989) used a fixed set of random numbers from an external data file.) 
 
7. A Demonstration 
 

This section contains a further demonstration of the use of the BOOT software 
using the sample database listed in Table 3 (or Table 1).  The database includes 79 hours 
of observed pollutant concentrations and predicted concentrations from three dispersion 
models, Model-A, Model-B, and Model-C.  These are the same data used in earlier 
figures and tables (Figs. 1 through 5 and Tables 1 through 6).  Some corresponding 
independent variables used by the models to carry out calculations are also listed in Table 
1, including time of day, ambient wind speed, mixing height, and atmospheric stability 
class.  The first 40 records of the database are from one field program, and the remaining 
39 records are from a second field program.  Performance measures for the three models 
are summarized in Table 7, where the information is retrieved from the sample BOOT 
mandatory output file in Table 4. 

 
It can be seen that all three models correctly predict the highest and second 

highest observed values within about 10%.  The values of FB suggest (see Eq. (31)) that 
the mean bias on a linear scale is ~0, 6% underprediction, and 40% overprediction for 
Model-A, B, and C, respectively.  The relatively small bias for Model-A and Model-B is 
also evident from that fact that FBFN nearly cancels out FBFP for the two models.  For 
Model-A, even though the mean bias is almost zero, the underpredicting and 
overpredicting errors are both about 20% of the mean. 

 
The values of MG suggest (see Eq. (33)) that the mean bias on a logarithmic scale 

is about 20% underprediction, 25% underprediction, and 50% overprediction for Model-
A, B, and C, respectively.  The values of NMSE suggest (see Eq. (32)) that the random 
scatter on a linear scale for the three models is about a factor of 1.5 to 2 of the mean.  The 
values of VG suggest (see Eq. (34)) that the random scatter on a logarithmic scale is 
about a factor of 2.5 to 3.5 of the mean.  The R for Model-C is almost zero, also evident 
from the scatter plot in Fig. 1.  Model-A has about 80% of predictions within a factor of 2 
of observations, and Model-B and C have about 60% of predictions within a factor of 2 
of observations. 

 
Based on the above, it appears that Model-A has the best performance, and 

Model-C is the worst performer. 
 
Table 8 summarizes the results of significance tests based on the bootstrap 

resampling, where a mark “×” indicates significantly different from zero at the 95% 
confidence level, and ∆ means the difference between two models.  The information in 
Table 8 was presented in Tables 5 and 6, which are listings of two optional BOOT output 
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files.  Significance tests were not conducted for each model’s NMSE and ln(VG), 
because they are always greater than zero by definition.  It can be seen that although 
Model-A has the lowest FB (= 0.001) and an MG (= 1.22) that is closest to 1.0 in Table 7, 
these values are not significantly different from the FB (= 0.057) and MG (= 1.34) for 
Model-B.  This shows the importance of conducting significance tests, or incorrect 
conclusions might be reached. 

 
Figure 12 shows the MG and VG for the three models.  The 95% confidence 

limits for MG based on the bootstrap resampling (the percentile confidence limits) are 
also shown as horizontal bars.  The figure is a useful way of summarizing the MG and 
VG statistics in a single diagram, where the parabola indicates the minimum VG defined 
by Eq. (30).  In other words, no points should be located below the parabola.  Dashed 
lines represent a factor-of-two mean bias.  A perfect model would have VG = MG = 1.0, 
and is located at the bottom center of the diagram.  It can be seen that Model-A has an 
MG that is closest to 1.0.  Model-C has the smallest VG (= 2.28).  Perhaps in the future 
Fig. 12 should be improved to include the 95% confidence limits for ln(VG) as well, so 
that the performance information will not be misinterpreted. 
 
8. Summary 
 

A general methodology for evaluating atmospheric dispersion model performance 
has been discussed.  It is recommended that any model evaluation exercise should start 
with clear definitions of the evaluation goal and the variables to be evaluated, followed 
by exploratory data analysis, and then statistical performance evaluation.  In addition to 
statistical performance evaluation, a model can also be evaluated scientifically and 
operationally.  Exploratory data analysis involves the use of various types of plots, 
including scatter plots (Fig. 1), quantile-quantile plots (Fig. 2), box-residual plots (Figs. 3 
and 4), and scatter-residual plots (Fig. 5).  Here residual refers to the ratio of the 
predicted to observed values.  The first two types of plots give an overall assessment of 
model performance.  The last two types of plots are useful in identifying potential flaws 
in model physics, as indicated by any trends of model residuals with independent 
variables. 

 
The methodology for statistical performance evaluation has been implemented in 

the BOOT software package.  Hanna (1989) and Hanna et al. (1991) describe the first 
version of BOOT.  This report describes Version 2.0 of the software.  The original BOOT 
calculates a set of performance measures (or metrics), including the fractional bias (FB), 
the geometric mean (MG), the normalized mean square error (NMSE), the geometric 
variance (VG), the correlation coefficient (R), and the fraction of data where predictions 
are within a factor of two of observations (FAC2) (Eqs. (1) through (6), respectively).  
FB and MG measure systematic bias, whereas NMSE and VG measure systematic bias 
and random scatter. 
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There is not a single performance measure that is universally applicable to all 
situations, and a balanced approach is usually required to consider a number of 
performance measures.  For dispersion modeling where concentrations can easily vary by 
several orders of magnitude, MG and VG are probably preferred over FB and NMSE.  
However, MG and VG can be strongly influenced by very low values, and are undefined 
for zero values.  It is recommended that the instrument threshold, such as the limit of 
detection (LOD), be used as a lower threshold in calculating MG and VG.  R is generally 
not a very robust measure because it is sensitive to a few aberrant data pairs.  
Furthermore, measurements are commonly available in concentric arcs for short-range 
dispersion field experiments.  As a result, there is already a pattern in the dataset, i.e., 
concentration decreasing with downwind distance.  Since any reasonable dispersion 
model would be able to reproduce this pattern, R often mainly reflects this agreement, 
and is thus not that informative.  FAC2 is probably the most robust performance measure, 
because it is not overly influenced by either low or high outliers. 

 
It is also shown how FB, NMSE, MG, and VG can be further interpreted by 

translating them into a quantity (e.g., the equivalent factor-of-N-difference between 
predictions and observations) that is more easily understood.  See Fig. 9 and Eqs. (31) 
through (34) for examples of this interpretation. 

 
The bootstrap resampling can be used to estimate the confidence limits of 

performance measures, in order to address questions such as (1) whether the FB for 
Model-A is significantly different from zero, and (2) whether the FB for Model-A and the 
FB for Model-B are significantly different.  Figure 12 shows a way of presenting both 
MG and VG in a single diagram, where MG’s confidence limits and the minimum VG for 
a given MG (Eq. (30)) are also plotted.  Similar diagram for FB and NMSE can also be 
constructed. 

 
To address the fact that FB and MG measure only systematic bias, the new BOOT 

software further separates FB and MG into underpredicting (false-negative) and 
overpredicting (false-positive) components.  In addition, the new BOOT software also 
calculates the two-dimensional measure of effectiveness (MOE) recommended by 
Warner et al. (2001).  It is shown that MOE is closely related to FB, and in fact one can 
be expressed as a function of the other. 

 
Many researchers have pointed out the inadequacy of a deterministic model 

evaluation framework, because observations are realizations of ensembles and model 
predictions often represent ensemble averages.  The American Society for Testing and 
Materials (ASTM 2000) approach suggests (1) grouping experiments under similar 
conditions (regimes), (2) averaging predictions and observations over each regime, and 
(3) calculating performance measures based on these regime averages.  The new BOOT 
software has been extended to include the ASTM procedure as an option. 
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Finally, this report provides detailed user’s instructions for BOOT, together with a 
demonstration of the use of the software package. 
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Tables and Figures 
 
Table 1. A sample model evaluation database that contains observed concentrations 
(ppm); predictions (ppm) by Model-A, Model-B, and Model-C; and the corresponding 
values for time of day (hour, local standard time or LST), wind speed (m s-1), mixing 
height (m), and Pasquill-Gifford stability class (1 = very unstable, 2 = unstable, 3 = 
moderately unstable, 4 = neutral, 5 = moderately stable, 6 = very stable).  (It is also 
common to use A through F, instead of 1 through 6, to indicate stability class.)  There are 
79 records in the database.  The first 40 records correspond to one field program, and the 
remaining 39 records (shaded) correspond to another field program. 
 
Observed 

(ppm) 
Model-A 

(ppm) 
Model-B 

(ppm) 
Model-C 

(ppm) 
Hour 
(LST) 

Wind speed 
(m s-1) 

Mixing 
height (m) 

PG stability 
class 

616.0 708.7 594.7 516.5 11 3.0 800 2 
604.1 689.2 585.8 496.7 12 3.4 1000 2 
868.0 674.8 580.3 516.8 13 3.5 1100 2 
498.6 668.8 652.1 548.3 14 3.8 1200 2 
393.1 560.2 704.7 581.9 15 4.7 1300 2 
409.0 740.9 570.1 621.4 16 5.2 1000 3 
640.2 249.6 510.1 553.5 17 5.4 1100 3 
265.3 259.6 463.4 446.0 18 4.9 1100 4 
192.7 91.6 131.0 485.0 19 4.2 1100 5 
1149.1 1217.5 1116.1 520.6 10 2.6 1600 2 
972.8 1275.8 1175.1 536.9 11 3.2 1900 2 
1137.5 1225.7 1081.7 617.4 12 3.8 1600 2 
669.5 1052.8 905.1 637.3 13 4.5 1600 2 
595.5 862.0 862.0 664.1 14 5.0 1500 2 
741.2 589.5 767.0 665.3 15 5.1 1500 2 
612.6 602.4 728.2 672.4 16 5.0 1500 3 
312.0 398.9 657.5 659.5 17 5.2 1500 3 
400.2 340.2 412.3 586.0 18 5.1 1500 4 
264.7 612.1 774.2 705.9 16 5.7 1400 3 
290.0 428.4 757.3 708.8 17 5.1 1800 3 
459.5 355.0 512.3 602.4 18 5.1 2000 4 
444.0 216.0 441.4 681.1 19 4.4 2000 5 
175.1 216.6 456.1 825.4 20 4.6 2000 6 
102.3 126.1 255.6 522.9 21 4.9 2000 6 
128.8 16.5 0.5 834.9 22 4.6 0 6 
200.2 301.9 208.9 728.0 23 5.4 0 6 
358.3 481.8 354.0 742.4 24 5.4 0 6 
611.1 1010.2 987.1 679.0 14 4.4 1500 2 
499.3 752.5 921.6 725.7 15 5.0 1500 2 
537.8 724.0 826.8 675.9 16 4.7 1500 3 
220.0 523.3 908.2 640.8 17 3.9 1800 3 
479.2 357.5 788.6 544.7 18 4.2 2000 4 
133.2 195.3 383.1 738.5 19 3.1 1800 5 
98.2 167.3 213.5 1064.9 20 3.2 1500 6 
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92.5 104.6 142.2 741.2 21 3.1 1200 6 
21.0 127.4 176.3 805.2 22 3.3 1200 6 

353.0 307.8 167.1 576.9 20 3.8 2000 5 
358.0 280.9 188.4 225.3 21 2.3 2000 4 
233.3 355.3 234.9 719.1 22 2.4 2000 5 
198.3 12.7 184.0 745.2 23 3.6 2000 6 
507.2 3.0 126.3 664.9 24 3.5 2000 6 
313.7 0.2 30.0 667.1 1 4.2 0 6 
165.1 16.5 4.0 703.9 2 3.6 0 6 
295.6 329.9 454.6 695.3 4 5.2 0 6 
527.7 308.0 295.9 775.0 5 4.7 0 6 
454.1 301.0 1.0 995.6 6 2.9 0 6 
240.3 417.5 361.1 933.8 7 3.4 0 6 
590.8 579.3 144.2 666.5 8 3.1 1500 5 
638.3 756.6 608.9 400.1 9 3.4 1500 4 
949.8 1004.2 805.4 528.9 10 3.4 1500 3 
886.8 855.6 706.2 517.4 11 3.0 1300 2 
635.5 761.0 670.9 596.6 12 4.5 1200 2 
359.3 412.6 232.5 937.6 1 2.3 1200 6 
484.7 360.7 226.8 979.0 2 2.5 1200 6 
529.7 332.0 202.5 980.0 3 2.4 1200 6 
585.8 291.4 186.1 1100.1 4 2.1 1200 6 
367.7 368.0 260.2 1005.6 5 2.1 1200 6 
324.7 270.9 72.7 1058.6 6 2.0 1200 6 
489.0 274.6 208.5 942.2 7 2.6 1200 6 
570.8 337.1 218.0 646.5 8 2.8 1200 5 
419.7 254.4 206.1 344.0 9 4.3 1200 4 
532.8 414.2 197.9 477.0 9 4.8 1800 3 
425.2 365.7 198.7 469.5 10 7.1 1700 4 
467.5 411.5 228.5 455.3 11 7.5 2000 4 
362.2 306.4 147.6 405.2 12 5.1 2000 4 
429.2 287.4 139.2 450.6 13 5.4 2000 4 
446.0 338.1 169.5 461.2 14 5.7 2000 4 
192.9 253.8 145.6 460.7 15 5.8 2400 4 
630.3 322.5 257.2 460.5 16 7.3 2700 4 
364.9 326.7 251.1 510.6 17 7.8 3000 4 
111.4 196.4 248.5 314.4 23 1.9 250 4 
89.8 146.5 254.9 123.2 24 1.9 250 4 
82.5 248.0 160.9 80.9 1 2.9 250 4 

296.5 253.2 193.2 230.4 2 2.8 250 4 
215.4 299.7 165.0 339.5 3 2.9 250 4 
454.5 274.2 154.0 120.4 4 3.5 250 4 
384.7 324.6 163.2 251.7 5 3.5 250 4 
253.2 488.3 175.6 122.4 6 3.5 250 4 
289.5 304.1 193.1 153.8 7 3.1 250 4 
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Table 2. Format of the mandatory input data file for BOOT.  The file contains four 
header records, followed by nn (see below) numerical records.  All records are free 
format with space delimiters.  See Table 3 for a sample input file. 
 

Record No. Descriptions 

1 Contains three variables: nn, mm, kk 
 
All three variables are integers, where nn is the number of experiments in 
total, mm is the number of “models” where the first “model” is assumed to 
be observations, and kk is the number of blocks (or regimes).  Since 
observed values are counted as one “model,” the actual number of models 
is in fact mm – 1. 

2 Contains kk variables: nkk(i), i = 1, kk 
 
All variables are integers, where nkk is the umber of experiments in each 
block (regime).  The sum of nkk over all blocks must equal nn. 

3 Contains mm variables: modnam(i), i = 1, mm 
 
All variables are characters (maximum length 8 bytes) enclosed by single 
quotation marks, where modnam is the name of each model.  Note that 
quotation marks are not part of modnam, and thus not counted as part of the 
8-byte limit. 

4 Contains kk variables: blknam(i), i = 1, kk 
 
All variables are characters (maximum length 30 bytes) enclosed by single 
quotation marks, where blknam is the name of each block (regime).  Note 
that quotation marks are not part of blknam, and thus not counted as part 
of the 30-byte limit. 

Next 
nkk(1) 
records 

Each record contains nnobs + mm variables: nnobs, (co(i), i = 
1, nnobs), (cp(i), i = 1, mm - 1), corresponding to one of the 
nkk(1) experiments in block 1. 
 
The first variable is integer and the rest of variables are real numbers, 
where nnobs is the number of observed values (co) for the experiment, 
and cp is the predictions for the mm – 1 models.  Note that nnobs = 1 if 
the ASTM procedure is not used, and that nnobs ≥ 1 if the ASTM 
procedure is used.  Since mm includes observations as one “model,” there 
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are in fact mm – 1 models.  It can be seen that in order to implement the 
ASTM algorithm, the current input file structure allows multiple observed 
values for each experiment, but only one predicted value for each model. 

Next 
nkk(2) 
records 

Each record contains nnobs + mm variables: nnobs, (co(i), i = 
1, nnobs), (cp(i), i = 1, mm - 1), corresponding to one of the 
nkk(2) experiments in block 2. 

… … 

Next 
nkk(kk) 
records 

Each record contains nnobs + mm variables: nnobs, (co(i), i = 
1, nnobs), (cp(i), i = 1, mm - 1), corresponding to one of the 
nkk(kk) experiments in block kk. 

 



 

BOOT Tech & User Guide V2.01 42

Table 3. Sample mandatory input file for BOOT.  See Table 2 for file format.  This 
sample input file is not for the ASTM procedure because there is always a single 
observed value for each experiment, as indicated by the “1” leading all numerical records 
(i.e., nnobs in Table 2 always equals 1).  The numerical data (i.e., observed and 
predicted concentrations) are the same as those shown in Table 1. 
 
   79    4  2 
   39 40 
'OBS.' 'MODEL-A' 'MODEL-B' 'MODEL-C' 
'Urban data set' 'Rural data set' 
1  616.0  708.7  594.7  516.5 
1  604.1  689.2  585.8  496.7 
1  868.0  674.8  580.3  516.8 
1  498.6  668.8  652.1  548.3 
1  393.1  560.2  704.7  581.9 
1  409.0  740.9  570.1  621.4 
1  640.2  249.6  510.1  553.5 
1  265.3  259.6  463.4  446.0 
1  192.7   91.6  131.0  485.0 
1 1149.1 1217.5 1116.1  520.6 
1  972.8 1275.8 1175.1  536.9 
1 1137.5 1225.7 1081.7  617.4 
1  669.5 1052.8  905.1  637.3 
1  595.5  862.0  862.0  664.1 
1  741.2  589.5  767.0  665.3 
1  612.6  602.4  728.2  672.4 
1  312.0  398.9  657.5  659.5 
1  400.2  340.2  412.3  586.0 
1  264.7  612.1  774.2  705.9 
1  290.0  428.4  757.3  708.8 
1  459.5  355.0  512.3  602.4 
1  444.0  216.0  441.4  681.1 
1  175.1  216.6  456.1  825.4 
1  102.3  126.1  255.6  522.9 
1  128.8   16.5    0.5  834.9 
1  200.2  301.9  208.9  728.0 
1  358.3  481.8  354.0  742.4 
1  611.1 1010.2  987.1  679.0 
1  499.3  752.5  921.6  725.7 
1  537.8  724.0  826.8  675.9 
1  220.0  523.3  908.2  640.8 
1  479.2  357.5  788.6  544.7 
1  133.2  195.3  383.1  738.5 
1   98.2  167.3  213.5 1064.9 
1   92.5  104.6  142.2  741.2 
1   21.0  127.4  176.3  805.2 
1  353.0  307.8  167.1  576.9 
1  358.0  280.9  188.4  225.3 
1  233.3  355.3  234.9  719.1 
1  198.3   12.7  184.0  745.2 
1  507.2    3.0  126.3  664.9 
1  313.7    0.2   30.0  667.1 
1  165.1   16.5    4.0  703.9 
1  295.6  329.9  454.6  695.3 
1  527.7  308.0  295.9  775.0 
1  454.1  301.0    1.0  995.6 
1  240.3  417.5  361.1  933.8 
1  590.8  579.3  144.2  666.5 
1  638.3  756.6  608.9  400.1 
1  949.8 1004.2  805.4  528.9 
1  886.8  855.6  706.2  517.4 
1  635.5  761.0  670.9  596.6 
1  359.3  412.6  232.5  937.6 
1  484.7  360.7  226.8  979.0 
1  529.7  332.0  202.5  980.0 
1  585.8  291.4  186.1 1100.1 
1  367.7  368.0  260.2 1005.6 
1  324.7  270.9   72.7 1058.6 
1  489.0  274.6  208.5  942.2 
1  570.8  337.1  218.0  646.5 
1  419.7  254.4  206.1  344.0 
1  532.8  414.2  197.9  477.0 
1  425.2  365.7  198.7  469.5 
1  467.5  411.5  228.5  455.3 
1  362.2  306.4  147.6  405.2 
1  429.2  287.4  139.2  450.6 
1  446.0  338.1  169.5  461.2 
1  192.9  253.8  145.6  460.7 
1  630.3  322.5  257.2  460.5 
1  364.9  326.7  251.1  510.6 
1  111.4  196.4  248.5  314.4 
1   89.8  146.5  254.9  123.2 
1   82.5  248.0  160.9   80.9 
1  296.5  253.2  193.2  230.4 
1  215.4  299.7  165.0  339.5 
1  454.5  274.2  154.0  120.4 
1  384.7  324.6  163.2  251.7 
1  253.2  488.3  175.6  122.4 
1  289.5  304.1  193.1  153.8 
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Table 4. Sample BOOT mandatory output file based on the sample input file shown 
in Table 3.  The output is divided into the following segments, delineated by artificial 
blue lines for clarity.  Segment 1: overall summary of the input data and the processing 
option chosen by the user.  Segment 2 (optional): Echo of the original dataset, where the 
block (regime) number has been added to the first column.  Segment 3: Median (nominal) 
values of performance measures for the complete dataset as a whole, and for each block.  
In addition to the performance measures defined in Section 4, the highest and second 
highest values of the dataset are also listed.  Segment 4 (optional):  Detailed 
(quantitative) information on confidence limits.  Note that the Student’s t confidence 
limits are given by Eq. (35), whereas the percentile confidence limits are given by the 
2.5th and 97.5th percentiles of the cumulative distribution function for the resamples.  
Segment 5: Summary of the results of significance tests; e.g., whether the difference in 
NMSE between Model-A and Model-C is significantly different from zero, and whether 
the FB for Model-B is significantly different from zero at the 95% confidence level.  The 
results are based on the percentile confidence limits.  There is no information on MG and 
VG listed because the option of using straight Co and Cp for evaluation has been selected 
for this run (see Segment 1).  Choose the option of using ln(Co) and ln(Cp) for evaluation 
to obtain the information on MG and VG. 
 
  OUTPUT OF THE BOOT PROGRAM, LEVEL 10/15/2004 
 
 
  No. of experiments                     =   79 
  No. of models                          =    4 
  (with the observed data counted as one) 
  No. of observations                    =   79 
  (there might be multiple observations in each experiment, if the ASTM option is chosen) 
  (there is only one prediction in each experiment) 
  No. of observations available for 
  paried sampling                        =   78 
  (there might be odd number of observations in each block) 
  No. of blocks (regimes)                =    2 
  No. of experiments in each block (regime) 
    39  40 
 
 
  Out of the following options: 
  (1) straight Co and Cp comparison 
  (4) consider ln(Co) and ln(Cp) 
   1 was selected 
 
 
  Input data:  Co, Cp1, Cp2 ... 
 
   1   1  616.0      708.7      594.7      516.5     
   1   1  604.1      689.2      585.8      496.7     
   1   1  868.0      674.8      580.3      516.8     
   1   1  498.6      668.8      652.1      548.3     
   1   1  393.1      560.2      704.7      581.9     
   1   1  409.0      740.9      570.1      621.4     
   1   1  640.2      249.6      510.1      553.5     
   1   1  265.3      259.6      463.4      446.0     
   1   1  192.7      91.60      131.0      485.0     
   1   1  1149.      1218.      1116.      520.6     
   1   1  972.8      1276.      1175.      536.9     
   1   1  1138.      1226.      1082.      617.4     
   1   1  669.5      1053.      905.1      637.3     
   1   1  595.5      862.0      862.0      664.1     
   1   1  741.2      589.5      767.0      665.3     
   1   1  612.6      602.4      728.2      672.4     
   1   1  312.0      398.9      657.5      659.5     
   1   1  400.2      340.2      412.3      586.0     
   1   1  264.7      612.1      774.2      705.9     
   1   1  290.0      428.4      757.3      708.8     
   1   1  459.5      355.0      512.3      602.4     
   1   1  444.0      216.0      441.4      681.1     
   1   1  175.1      216.6      456.1      825.4     
   1   1  102.3      126.1      255.6      522.9     
   1   1  128.8      16.50     0.5000      834.9     
   1   1  200.2      301.9      208.9      728.0     
   1   1  358.3      481.8      354.0      742.4     
   1   1  611.1      1010.      987.1      679.0     
   1   1  499.3      752.5      921.6      725.7     
   1   1  537.8      724.0      826.8      675.9     
   1   1  220.0      523.3      908.2      640.8     
   1   1  479.2      357.5      788.6      544.7     

Segment 1 

Segment 2 
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   1   1  133.2      195.3      383.1      738.5     
   1   1  98.20      167.3      213.5      1065.     
   1   1  92.50      104.6      142.2      741.2     
   1   1  21.00      127.4      176.3      805.2     
   1   1  353.0      307.8      167.1      576.9     
   1   1  358.0      280.9      188.4      225.3     
   1   1  233.3      355.3      234.9      719.1     
   2   1  198.3      12.70      184.0      745.2     
   2   1  507.2      3.000      126.3      664.9     
   2   1  313.7     0.2000      30.00      667.1     
   2   1  165.1      16.50      4.000      703.9     
   2   1  295.6      329.9      454.6      695.3     
   2   1  527.7      308.0      295.9      775.0     
   2   1  454.1      301.0      1.000      995.6     
   2   1  240.3      417.5      361.1      933.8     
   2   1  590.8      579.3      144.2      666.5     
   2   1  638.3      756.6      608.9      400.1     
   2   1  949.8      1004.      805.4      528.9     
   2   1  886.8      855.6      706.2      517.4     
   2   1  635.5      761.0      670.9      596.6     
   2   1  359.3      412.6      232.5      937.6     
   2   1  484.7      360.7      226.8      979.0     
   2   1  529.7      332.0      202.5      980.0     
   2   1  585.8      291.4      186.1      1100.     
   2   1  367.7      368.0      260.2      1006.     
   2   1  324.7      270.9      72.70      1059.     
   2   1  489.0      274.6      208.5      942.2     
   2   1  570.8      337.1      218.0      646.5     
   2   1  419.7      254.4      206.1      344.0     
   2   1  532.8      414.2      197.9      477.0     
   2   1  425.2      365.7      198.7      469.5     
   2   1  467.5      411.5      228.5      455.3     
   2   1  362.2      306.4      147.6      405.2     
   2   1  429.2      287.4      139.2      450.6     
   2   1  446.0      338.1      169.5      461.2     
   2   1  192.9      253.8      145.6      460.7     
   2   1  630.3      322.5      257.2      460.5     
   2   1  364.9      326.7      251.1      510.6     
   2   1  111.4      196.4      248.5      314.4     
   2   1  89.80      146.5      254.9      123.2     
   2   1  82.50      248.0      160.9      80.90     
   2   1  296.5      253.2      193.2      230.4     
   2   1  215.4      299.7      165.0      339.5     
   2   1  454.5      274.2      154.0      120.4     
   2   1  384.7      324.6      163.2      251.7     
   2   1  253.2      488.3      175.6      122.4     
   2   1  289.5      304.1      193.1      153.8     
 
 
  Regime averaged data:  Co, Cp1, Cp2 ... 
 
  439.4      509.5      569.1      636.3     
  414.1      345.2      241.2      569.3     
 
 
 
 
 
  Nominal (median) results           (No. of regimes =    2) 
  MODEL      MEAN      SIGMA       BIAS       NMSE   CORR   FA2     FB      HIGH   2nd HIGH   PCOR 
  OBS.       427.     235.39       0.00       0.00  1.000  1.000  0.000     1149.     1138.    n/a 
                          (FBfn=  0.000, FBfp=  0.000, MOEfn=  1.000, MOEfp=  1.000, FB=FBfn-FBfp) 
  
  MODEL-A    426.     286.37       0.29       0.17  0.784  0.835  0.001     1276.     1226.    n/a 
                          (FBfn=  0.167, FBfp=  0.166, MOEfn=  0.833, MOEfp=  0.834, FB=FBfn-FBfp) 
  
  MODEL-B    403.     296.46      23.48       0.34  0.612  0.570  0.057     1175.     1116.    n/a 
                          (FBfn=  0.266, FBfp=  0.209, MOEfn=  0.742, MOEfp=  0.785, FB=FBfn-FBfp) 
  
  MODEL-C    602.     228.27    -175.77       0.54  0.001  0.620 -0.342     1100.     1065.    n/a 
                          (FBfn=  0.114, FBfp=  0.456, MOEfn=  0.862, MOEfp=  0.610, FB=FBfn-FBfp) 
  
 
  Block   1: Urban data set                 (N=   39) 
  MODEL      MEAN      SIGMA       BIAS       NMSE   CORR   FA2     FB      HIGH   2nd HIGH   PCOR 
  OBS.       439.     273.79       0.00       0.00  1.000  1.000  0.000     1149.     1138.    n/a 
                          (FBfn=  0.000, FBfp=  0.000, MOEfn=  1.000, MOEfp=  1.000, FB=FBfn-FBfp) 
  
  MODEL-A    509.     329.36     -70.05       0.16  0.847  0.821 -0.148     1276.     1226.    n/a 
                          (FBfn=  0.087, FBfp=  0.234, MOEfn=  0.907, MOEfp=  0.782, FB=FBfn-FBfp) 
  
  MODEL-B    569.     304.22    -129.70       0.24  0.747  0.718 -0.257     1175.     1116.    n/a 
                          (FBfn=  0.056, FBfp=  0.313, MOEfn=  0.936, MOEfp=  0.723, FB=FBfn-FBfp) 
  
  MODEL-C    636.     134.77    -196.86       0.57 -0.384  0.590 -0.366     1065.      835.    n/a 
                          (FBfn=  0.118, FBfp=  0.484, MOEfn=  0.856, MOEfp=  0.591, FB=FBfn-FBfp) 
  
 
  Block   2: Rural data set                 (N=   40) 
  MODEL      MEAN      SIGMA       BIAS       NMSE   CORR   FA2     FB      HIGH   2nd HIGH   PCOR 
  OBS.       414.     189.82       0.00       0.00  1.000  1.000  0.000      950.      887.    n/a 
                          (FBfn=  0.000, FBfp=  0.000, MOEfn=  1.000, MOEfp=  1.000, FB=FBfn-FBfp) 
  
  MODEL-A    345.     207.08      68.87       0.20  0.709  0.850  0.181     1004.      856.    n/a 
                          (FBfn=  0.265, FBfp=  0.083, MOEfn=  0.757, MOEfp=  0.908, FB=FBfn-FBfp) 
  
  MODEL-B    241.     173.99     172.84       0.57  0.593  0.425  0.527      805.      706.    n/a 
                          (FBfn=  0.581, FBfp=  0.053, MOEfn=  0.541, MOEfp=  0.928, FB=FBfn-FBfp) 
  
  MODEL-C    569.     288.07    -155.20       0.50  0.239  0.650 -0.316     1100.     1059.    n/a 
                          (FBfn=  0.111, FBfp=  0.427, MOEfn=  0.868, MOEfp=  0.632, FB=FBfn-FBfp) 

Segment 3 
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Note: The Percentile 95% Confidence Limits are based on the 2.5th and 97.5th percentiles 
      of the cumulative distribution function. 
      The Student's t 95% Confidence Limits are based on calculated mean and standard deviation. 
 
 
 
                                 Student's t                             Percentile 
                                     95%       Student                       95% 
  Model(s)                       Conf. limits     t      Mean   S.D.    Conf. limits 
------------------------------------------------------------------------------------- 
  OBS.                   MEAN 373.007 476.322  16.366 424.665  25.949 371.310 473.776 
  MODEL-A                NMSE   0.109   0.243   5.222   0.176   0.034   0.120   0.252 
                           FB  -0.084   0.085   0.007   0.000   0.043  -0.082   0.084 
                         FBfn   0.109   0.225   5.701   0.167   0.029   0.113   0.231 
                         FBfp   0.119   0.214   6.991   0.167   0.024   0.122   0.215 
                         CORR   0.670   0.886  14.360   0.778   0.054   0.653   0.864 
  MODEL-B                NMSE   0.224   0.466   5.688   0.345   0.061   0.240   0.470 
                           FB  -0.046   0.160   1.098   0.057   0.052  -0.047   0.161 
                         FBfn   0.200   0.334   7.951   0.267   0.034   0.206   0.332 
                         FBfp   0.140   0.281   5.941   0.210   0.035   0.145   0.283 
                         CORR   0.442   0.764   7.449   0.603   0.081   0.422   0.736 
  MODEL-C                NMSE   0.380   0.709   6.581   0.544   0.083   0.396   0.730 
                           FB  -0.484  -0.207  -4.971  -0.345   0.069  -0.481  -0.207 
                         FBfn   0.060   0.166   4.242   0.113   0.027   0.065   0.166 
                         FBfp   0.353   0.565   8.626   0.459   0.053   0.354   0.566 
                         CORR  -0.189   0.184  -0.029  -0.003   0.094  -0.200   0.176 
 
                                 Student's t                             Percentile 
                                     95%       Student                       95% 
  Model(s)                       Conf. limits     t      Mean   S.D.    Conf. limits 
------------------------------------------------------------------------------------- 
  MODEL-A - MODEL-B      NMSE  -0.269  -0.070  -3.396  -0.169   0.050  -0.279  -0.081 
                           FB  -0.132   0.019  -1.493  -0.057   0.038  -0.135   0.018 
                         FBfn  -0.155  -0.046  -3.647  -0.100   0.027  -0.156  -0.048 
                         FBfp  -0.096   0.009  -1.637  -0.043   0.027  -0.097   0.006 
                         CORR   0.072   0.278   3.380   0.175   0.052   0.082   0.289 
  MODEL-A - MODEL-C      NMSE  -0.536  -0.202  -4.392  -0.369   0.084  -0.549  -0.224 
                           FB   0.183   0.509   4.224   0.346   0.082   0.186   0.509 
                         FBfn  -0.037   0.144   1.182   0.054   0.045  -0.037   0.143 
                         FBfp  -0.397  -0.187  -5.549  -0.292   0.053  -0.396  -0.195 
                         CORR   0.551   1.011   6.761   0.781   0.115   0.543   1.000 
  MODEL-B - MODEL-C      NMSE  -0.369  -0.029  -2.336  -0.199   0.085  -0.379  -0.044 
                           FB   0.243   0.562   5.033   0.403   0.080   0.254   0.554 
                         FBfn   0.059   0.249   3.221   0.154   0.048   0.060   0.248 
                         FBfp  -0.350  -0.147  -4.877  -0.249   0.051  -0.355  -0.153 
                         CORR   0.350   0.861   4.712   0.606   0.129   0.357   0.843 
 
 
 
 
 SUMMARY OF CONFIDENCE LIMITS ANALYSES BASED ON PERCENTILE CONFIDENCE LIMITS 
 --------------------------------------------------------------------------- 
 
 
   D(NMSE) among models: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
  MODEL-A |       X   X 
  MODEL-B |           X 
 
 
   D(FB) among models: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
  MODEL-A |           X 
  MODEL-B |           X 
 
 
   D(FBfn) among models: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
  MODEL-A |       X     
  MODEL-B |           X 
 
 
   D(FBfp) among models: an 'X' indicates significantly different from zero at 95% confidence limits 
 

Segment 4 

Segment 5 
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              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
  MODEL-A |           X 
  MODEL-B |           X 
 
 
   D(CORR) among models: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
  MODEL-A |       X   X 
  MODEL-B |           X 
 
 
   FB for each model: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
                      X 
 
 
   FBfn for each model: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
              X   X   X 
 
 
   FBfp for each model: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
              X   X   X 
 
 
   CORR for each model: an 'X' indicates significantly different from zero at 95% confidence limits 
 
              M   M   M 
              O   O   O 
              D   D   D 
              E   E   E 
              L   L   L 
              -   -   - 
              A   B   C 
             ------------ 
              X   X     
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Table 5. Sample optional output file generated by BOOT, based on the sample 
input file shown in Table 3, that shows the FB (together with the 95% confidence limits) 
and NMSE for each model.  The first four lines are specific to an in-house plotting 
package, and are mainly for the x and y labels of the graph, and the number (3 in this 
case) of data objects to display.  The remaining lines have five values each, including the 
median (nominal) value of NMSE, the lower confidence limit of FB, the median 
(nominal) value of FB, the upper confidence limit of FB, and the model name.  The same 
information is also listed in the mandatory output file given appropriate command-line 
options.  (See Segment 3 of Table 4 for the information on median values, and Segment 4 
of Table 4 for the information on confidence limits.)  For example, the sample below (the 
fifth line) shows that for Model-A the median NMSE is 0.174, the median FB is 
0.000677, and the 95% confidence interval for FB is (-0.0822, 0.0838). 
 
 0 
 FB (with 95% conf. int.) 
 NMSE 
 3  1 
 0.174467146 -8.22452828E-02 6.76780124E-04 8.38098750E-02  'MODEL-A' 
 0.339648187 -4.73854281E-02 5.66054508E-02 0.161254287  'MODEL-B' 
 0.538153350 -0.481164068 -0.341653824 -0.206860647  'MODEL-C' 

 



 

BOOT Tech & User Guide V2.01 48

Table 6. Sample optional output file generated by BOOT, based on the sample 
input file shown in Table 3, that shows the difference in FB (d(FB), together with the 
95% confidence limits) and the difference in NMSE (d(NMSE)) for each model pair.  
The first four lines are specific to an in-house plotting package, and are mainly for the x 
and y labels of the graph, and the number (3 in this case) of data objects to display.  The 
remaining lines have five values each, including the median (nominal) value of 
d(NMSE), the lower confidence limit of d(FB), the median (nominal) value of d(FB), the 
upper confidence limit of d(FB), and the name of the model pair.  The same information 
is also listed in the mandatory output file given appropriate command-line options.  (See 
Segment 3 of Table 4 for the information on median values, and Segment 4 of Table 4 for 
the information on confidence limits.)  For example, the sample below (the fifth line) 
shows that for the pair of Model-A and Model-B, the median d(NMSE) is –0.165, the 
median d(FB) is –0.0559, and the 95% confidence interval for d(FB) is (-0.135, 0.0183). 
 
 0 
 d(FB) (with 95% conf. int.) 
 d(NMSE) 
 3  1 
 -0.165181041 -0.135485172 -5.59286699E-02 1.82778761E-02  'MODEL-A-MODEL-B' 
 -0.363686204 0.186301097 0.342330605 0.508606791  'MODEL-A-MODEL-C' 
 -0.198505163 0.254026473 0.398259282 0.554421723  'MODEL-B-MODEL-C' 
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Table 7. Summary of performance measures, including FB, MG, NMSE, VG, R, 
FAC2, the average, the standard deviation (σ), the highest, the second highest, FBFN, 
FBFP, MOEFN, and MOEFP for the sample database shown in Table 3 (or Table 1).  The 
information is retrieved from the sample BOOT mandatory output file in Table 4. 

 

 Observed Model-A Model-B Model-C 

FB (Eq. (1)) n/a 0.001 0.057 -0.342 
MG (Eq. (2)) n/a 1.22 1.34 0.65 

NMSE (Eq. (3)) n/a 0.17 0.34 0.54 
VG (Eq. (4)) n/a 4.20 4.99 2.28 
R (Eq. (5)) n/a 0.784 0.612 0.001 

FAC2 (Eq. (6)) n/a 0.84 0.57 0.62 
Average 427 426 403 602 

σ 235 286 296 228 
Highest 1149 1276 1175 1100 

2nd Highest 1138 1226 1116 1065 
FBFN (Eq. (9)) n/a 0.167 0.266 0.114 
FBFP (Eq. (10)) n/a 0.166 0.209 0.456 

MOEFN (Eq. (12)) n/a 0.833 0.742 0.862 
MOEFP (Eq. (13)) n/a 0.834 0.785 0.610 



 

BOOT Tech & User Guide V2.01 50

Table 8. Summary of significance tests for the FB, R, and ln(MG) for each model 
(rows 2 through 4); and for the differences (∆) in NMSE, FB, R, ln(VG), and ln(MG) for 
each model pair (rows 5 through 7) for the sample database shown in Table 3 (or Table 
1).  Tables 5 and 6 listed optional BOOT output files for these same parameters.  A mark 
“×” means that the parameter is significantly different from zero at the 95% confidence 
level based on the percentile confidence limits.  For example, the table shows that the FB 
for Model-A is not significantly different from zero, and that the difference in the FB’s 
for Model-A and Model-C is significantly different from zero.  Note that, by definition, 
NMSE and ln(VG) for each model is always greater than zero, thus “n/a” in the 
corresponding cells. 

 

 NMSE FB R ln(VG) ln(MG) 

Model-A n/a  × n/a  
Model-B n/a  × n/a × 
Model-C n/a ×  n/a × 

∆(Model-A, Model-B) ×  ×   
∆(Model-A, Model-C) × × ×  × 
∆(Model-B, Model-C) × × ×  × 
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Figure 1. Scatter plots of observed versus predicted concentrations for the three  
models listed in Table 1.  (a) Model-A, (b) Model-B, and (c) Model-C. 

(a) 

(b) (c) 
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Figure 2. Quantile-quantile plots of observed versus predicted concentrations for 
the three models listed in Table 1, where predicted and observed concentrations are 
separately ranked.  (a) Model-A, (b) Model-B, and (c) Model-C. 

(a) 

(b) (c) 
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Figure 3. Box plots of model residuals (ratios of predicted to observed 
concentrations) for Model-A as functions of (a) time of day (local hour), (b) ambient 
wind speed (m s-1), (c) mixing height (m), and (d) atmospheric stability, where 
“unstable”, “neutral”, and “stable” refer to stability classes 1 through 3, 4, and 5 
through 6, respectively.  The significant points for each box indicate the 2nd, 16th, 50th, 
84th, and 98th percentiles of the cumulative distribution of the n points considered in 
the bin of data used in the box.  Dashed lines indicate factor-of-two scatter.  See Table 
1 for a listing of the data used. 

(a) (b) 

(c) (d) 
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Figure 4. Box plots of model residuals (ratios of predicted to observed 
concentrations) for Model-C as functions of (a) time of day (local hour), (b) ambient 
wind speed (m s-1), (c) mixing height (m), and (d) atmospheric stability, where 
“unstable”, “neutral”, and “stable” refer to stability classes 1 through 3, 4, and 5 through 
6, respectively.  The significant points for each box indicate the 2nd, 16th, 50th, 84th, and 
98th percentiles of the cumulative distribution of the n points in the bin of data used in 
the box.  Dashed lines indicate factor-of-two scatter.  Notice the slight trends with time 
of day and atmospheric stability.  See Table 1 for a listing of data used. 

(a) (b) 

(c) (d) 
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Figure 5. Conditional scatter plots of model residuals (ratios of predicted to 
observed concentrations) for Model-A as functions of (a) time of day (local hour), (b) 
ambient wind speed (m s-1), (c) mixing height (m), and (d) stability class, where 
different symbols are used to indicate different ranges of a second independent 
variable.  Dashed lines indicate factor-of-two scatter.  See Table 1 for a listing of the 
data used. 

(a) (b) 

(c) (d) 
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Ao ∩ Ap 

Ao 

Ap 

Figure 6. Schematic diagram illustrating the areas used to calculate the Figure of 
Merit in Space (FMS), Ap ∩ Ao / Ap ∪ Ao, where Ap (area enclosed by thick dotted line) 
is the predicted contour area, and Ao (area enclosed by thick solid line) is the observed 
contour area.  The contour can be defined, for example, by a concentration threshold for 
the released chemical for dispersion modeling, or by areas of precipitation for weather 
forecast.  The orange area is the intersection area (Ap ∩ Ao), the red area is the false-
negative (or underpredicting) area, and the yellow area is the false-positive (or 
overpredicting) area. 
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Figure 7. Two-dimensional fractional bias (FB) diagram, with the x- and y-
coordinates (FBFN and FBFP) defined in Eqs. (9) and (10), or Eqs. (21) and (22).  A 
perfect model would be located at FBFN = FBFP = 0.  The x-axis indicates systematic 
underprediction (i.e., no false positive), the y-axis indicates systematic overprediction 
(i.e., no false negative), and the hypotenuse of the larger triangle indicates no overlap 
between predictions and observations (i.e., predictions are zero whenever observations 
are finite, and vice versa).  The three dashed lines correspond to FB (Eq. (8)) = 0, 2/3, 
and -2/3; and the shaded area represents ⎪FB⎪ < 2/3, or a mean bias that is less than a 
factor of two. 

Perfect model Systematic 
underprediction 
(Ap completely 
enclosed by Ao) 

Ap

Ao

Systematic 
overprediction 
(Ao completely 
enclosed by Ap) 

Ao

Ap

No overlap 

Ap Ao

FB = 0 

FB = 2/3 

FB = –2/3 



 

BOOT Tech & User Guide V2.01 58

0.1
0.3

0.5

0.7
0.9

0.1
0.3

0.5 

0.7 
0.9 

Figure 8. Contour lines of the two-dimensional Measure of Effectiveness 
(MOEFN in red and MOEFP in blue) as a function of the false-negative 
(underpredicting) and false-positive (overpredicting) components of the Fractional 
Bias (FB) based on Eqs. (26) and (27).  For example, (FBFN, FBFP) = (0.4, 0.2) 
would correspond to (MOEFN, MOEFP) = (0.64, 0.78).  The shaded area 
corresponds to ⎪FB⎪ < 0.3, i.e., ⎪FBFN – FBFP⎪ < 0.3.  The solid line in the middle 
of the shaded area corresponds to FB = 0, i.e., FBFN = FBFP and MOEFN = MOEFP.  
The cross hatched area corresponds to ⎪AFB⎪ < 0.3, i.e., FBFN + FBFP < 0.3, where 
AFB is the Absolute Fractional Bias (Eq. 11). 
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Figure 9. Relationships between p oC C and (a) FB (Eq. (31)) and (b) NMSE (Eq. 

(32)), and between p oC C  and (c) MG (Eq. (33)) and (d) VG (Eq. (34)), where Cp is 
the model prediction, Co is the observation, the overbar represents the linear average, 
and the angle brackets represent the geometric average.  The relationships in (a) and (c) 
are exact, whereas the relationships in (b) and (d) are based on assumptions that ignore 
the random scatter between Cp and Co.  The relationships in (b) and (d) can also be 
interpreted as the reciprocal of p oC C  and p oC C , respectively, because NMSE 
and VG involve the square of errors.  From Chang (2002). 
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Cross-wind 
direction (y)

Concentration 

Center of mass, 
or centroid (yc) 

0.67 σy

Near-centerline region 

Cross-wind distribution with
a center of mass (yc) and a 
spread (σy) 

Figure 10. Schematic diagram illustrating the definition of a near-centerline region 
used by the ASTM procedure.  A sample cross-wind concentration distribution is 
shown.  The first moment of the distribution defines the center-of-mass (or centroid) 
location, yc.  The second moment defines the spread, σy, of the distribution.  The 
region, marked by dotted lines, that is within 0.67 σy from the centroid location is the 
near-centerline region. 
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Figure 11. Schematic for the ASTM model evaluation procedure.  The 
example has ten experiments that are further grouped into three regimes.  Black 
solid circles represent the ten centerline predictions for the ten experiments.  Red 
open and solid circles represent near-centerline observations that are considered 
representative of centerline concentrations.  Red solid circles represent the 
maximum observed concentrations for each experiment.  Traditional model 
evaluation compares black solid with red solid circles.  The ASTM procedure 
compares black solid with red solid and open circles.  See text and Fig. 10 for the 
definition of the near-centerline region. 

Regime 

Regime 

Regime 
3

Observations Predictions
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Model-B

Model-A

Model-C

Figure 12. The MG (Eq. (2)) and VG (Eq. (4)) for the sample dataset and the three 
models listed in Table 3.  The 95% confidence limits for MG based on the bootstrap 
resampling (the percentile confidence limits) are also indicated by thin horizontal bars.  
The solid parabola represents the minimum VG for a given value of MG, assuming all 
scatter is due solely to the mean bias (see Eq. (30)).  Dotted lines represent a plus and 
minus factor-of-two mean bias for predictions.  A perfect model would have MG = VG = 
1.0, i.e., located at the bottom center of the diagram. 


