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1. Title Slide: 
 
I was invited to “talk about anything I wished to talk about”, so those of you who have 
not left, or do not leave during my talk, unfortunately will have to endure my topic for 
discussion and strange sense of humor.  
 
For over twenty years I have endured model evaluations that I personally would never 
present or commit to publication. Today is my day to vent! But besides venting, I hope to 
provide a solution – or at least a path to enlightenment.  
 
2.  Project Prairie Grass: 
 
Conducted in the summer of 1956, this is one of the classic non-buoyant dispersion field 
experiments. The location is near O’Neil Nebraska which is near the northern border of 
central Nebraska.   
 
There were 90 receptors on the first three arcs, and 180 receptors on the last (800m) arc. 
That makes a grand total of 540 receptors, on 5 arcs extending from 50 m to 800 m 
downwind. 
 
There were 68 experiments with a near-surface release (approximately 0.5m release 
height for all but the last four (4) experiments), sampled with receptors at 1.5m above the 
nearly uniform ground cover (mowed wild hay) with a surface roughness of just less than 
1cm. The averaging time of the concentration measurements was 10 minutes. 
 
I have shown two cases, one for stable nighttime (left) and one for unstable daytime 
(right). The red dots are the maximum concentrations seen along each arc (more will be 
said of these values later). 
 
If you study the two plots, you can see that the right-hand plot (stable nighttime) is only 
about 20o wide, while the left-hand plot (daytime unstable) is about 40o wide. This is 
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typical for near-surface releases; all factors being equal, the highest concentrations occur 
during stable nighttime conditions. 
 
Barad, M.L. (Editor) (1958): Project Prairie Grass, A Field Program In Diffusion. 
Geophysical Research Paper, No. 59, Vol I , Report AFCRC-TR-58-235(I), Air Force 
Cambridge Research Center, 299 pp. 
  
Barad, M.L. (Editor) (1958): Project Prairie Grass, A Field Program In Diffusion. 
Geophysical Research Paper, No. 59, Vol I I, Report AFCRC-TR-58-235(II), Air Force 
Cambridge Research Center, 218 pp. 
 
Haugen, D.A. (Editor) (1959): Project Prairie Grass, A Field Program In Diffusion, 
Geophysical Research Papers, No. 59, Vol III, AFCRC-TR-58-235(III), Air Force 
Cambridge Research Center, 686 pp. 
 
3. Electric Power Research Institute (EPRI) Kincaid: 
 
Conducted in the summer of 1980 and spring of 1981, this is an extensive dispersion field 
experiment involving a buoyant release from a power plant stack. The stack was 187 m in 
height with a plume rise of about the same magnitude.  
 
The location is 15 miles Southeast of Springfield IL on the southwest extent of the 
Sangchris Lake State Park. The lake was created in 1950 to provide cooling water for the 
Kincaid power plant, which was then under construction. The land is fairly flat and 
homogeneous with a surface roughness of 7cm to 15cm depending on wind direction. 
 
There were concentrations collected on 29 days in 1980 (197 hours) and 21 days in 1981 
(175 hours) for a total 2,808 arcs for analysis, extending from 0.5km to 50km downwind, 
with most of the useable data in the 3km to 20km range.  
 
The experimental procedure was to inject SF6 tracer directly into the stack for a period of 
4 to 7 hours, and to activate about 200 samplers in the anticipated downwind direction. 
The receptors were about 1.5 m above ground and collected 1-hour samples. 
 
I have combined the developmental and evaluation data sets (Hanna and Paine, 1989); 
sorted the data using objective criteria to 12 arcs, and assigned objective quality codes to 
the results:  
3 = 5 or more nonzero values, with the maximum within the middle 1/3;  
2 = 5 or more nonzero receptors, with the maximum outside of the middle 1/3, and  
1 = the rest. 
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In the comparisons to be shown, I have used quality 3 data, of which there are 546 arc-
hours of data. I limited my analyses to the 447 arc-hours of data from the 3km – 20km 
arcs: 
 3km =  56 hours 
 5km =  88 hours 
 7km = 100 hours 
10km = 78 hours 
15km = 74 hours 
20km = 51 hours 
We lose 16 arc-hours because AERMET has no hourly surface data for 7 days and 
Kincaid OBS data are available. Of the remaining 530 arc-hours, ISCST3 computed zero 
concentrations for 83 arc-hours (plume rise goes above Zi), so I have 447 arc-hours 
where I have estimates from both ISCST3 and AERMOD. 
 
Hanna, S.A., and R.J. Paine (1989): Hybrid plume dispersion model (HPDM) 
development and evaluation. J. of Applied Meteorology. (29):206-224. 
 
4. Scatter and Cumulative Frequency Plots of Model Estimates of 
Maximum Concentration Versus Observed Arc-Maximum 
Concentration Values: 
 
In the upper scatter plots, the model estimates are along the x-axis and the observations 
are along the y-axis.  
 
The common assumption in least-square fits for scatter plots is that all of the uncertainty 
is in the y-axis values. Since model estimates are deterministic (same value is estimated 
for a given circumstance, and different values are observed for a given circumstance), I 
have placed the model estimates in all plots on the x-axis. 
 
I could have separated the ISCST3 (Version 02035) and AERMOD (Version 12345) to 
separate plots, but you can quickly get the impression (which is confirmed in the 
cumulative frequency plots) that ISCST3 typically has higher maximum concentrations 
than AERMOD (see shift to the right in blue ISCST3 values in comparison to red 
AERMOD values). 
 
In the cumulative frequency plots, it is easily seen that ISCST3 (blue) is in closer 
agreement with the larger observed arc-maxima concentration values, while AERMOD 
seems to be consistently under-estimating the larger observed arc-maxima concentration 
values. 
 
Plots and evaluation statistics involving comparisons of observed arc-maxima with model 
estimates are common in the journal and symposium literature.  
 
Question: Is it valid to compare model estimates with arc-maxima values? 
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Slide 5. What do air dispersion models use to estimate concentration 
values? What do dispersion models estimate (or characterize)? 
 
To estimate concentration values, the air dispersion model must estimate the lateral 
(horizontal) extent of the dispersing plume (top-left figure); the vertical extent of the 
dispersing plume (bottom-left figure), and the buoyant plume rise (right-side figure). 
 
Lateral and Vertical Dispersion 
Shown in left-side figures is a comparison of model estimates (horizontal x-axis) versus 
observations (vertical y-axis). The model is a version of Roland Draxler’s model (1976) 
that I recommended in Irwin (1983). It performs quite well, with correlation coefficients 
above 70%, and most of the estimates within a factor of two of the observations.  
 
For those of you not familiar with air dispersion modeling, these comparisons are 
unbelievably good! Yet there is unresolved scatter, and the scatter in the observations is 
easily estimated to be about a factor of 2. 
 
Draxler, R. R., 1976: Determination of atmospheric diffusion parameters. Atmos. 
Environ., (10):99-105. 
 
Irwin JS and Hanna SR. Characterizing uncertainty in plume dispersion models (2004): 
Proceedings of the 9th International Conference on Harmonisation within Atmospheric 
Dispersion Modelling for Regulatory Purposes held in Garmisch-Partenkirchen, June 
2004, pages 287-292. 
 
Irwin, J. S., 1983: Estimating plume dispersion-A comparison of several sigma schemes. 
J. Climate Appl. Meteor., (22):92-114. 
 
Plume Rise 
The stringy lines in the plume rise figure are the observations, and the dotted line is the 
model estimate. The uncertainty in the final plume height is seen to be on the order of the 
plume rise, which implies a factor of 1.3 uncertainty in plume rise estimates. 
 
Briggs, G.A. (1969): Plume Rise. U.S. Atomic Energy Commission, Office of 
Information Services. Available as TID-25075 from NTIS, U.S. Department of 
Commerce, Springfield, VA 22151 82 pages. 
 
Ensemble Averages 
So our dispersion models provide very good estimates of the lateral dispersion, vertical 
dispersion and plume rise – ON AVERAGE. Stated another way, the dispersion model 
provide an ensemble average of the concentrations to be seen.  
 
An ensemble average is not one 10-minute (or one 1-hour) concentration average; it is 
determined through the analysis of a collection of 10-minute (or 1-hour) concentration 
values all have very similar dispersive conditions. 
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Venkatram, A. (1979): The expected deviation of observed concentrations from predicted 
ensemble means. Atmos. Environ. (11):1547-1549. 
 
“…we expect the 1-h averaged concentration to deviate from the ensemble mean by more 
than 100%. …This analysis shows that under unstable conditions, poor comparison of 
observations with predictions should be expected. …Our discussion brings up the 
question of model validation. It is clear that the expected deviation can be reduced by 
averaging several observations under similar conditions. Then, for adequate validation, 
the predicted concentration should be compared against an average derived from an 
ensemble of measured concentrations….” 
 
Fox, D.G. (1984): Uncertainty in air quality modeling. Bull. Amer. Meteoro. Soc. 
(65):27-36. 
 
“…There is agreement in the meteorological community that air quality modeling results 
contain various types of uncertainty (although not state explicitly) such that they 
represent no more than an estimate within the distribution of possible values. Generally, 
turbulence must be averaged in time, space, or over a number of realizations of the flow 
pattern, in order to elicit meaningful information. In doing this, parameters such as the 
dispersion coefficients are defined by their mean or average values without consideration 
of the variation around that mean.  … The details of atmospheric motion fields are not 
predictable without uncertainty, nor is the concentration of a pollutant released into any 
turbulent fluid predictable without uncertainty. In studies of turbulence, it is convenient 
to introduce the notion of an ensemble, namely a number of repeats of the same 
‘experiment,’ holding external conditions (boundary and initial conditions) fixed….” 
 
Weil, J.C., R.I. Sykes, and A. Venkatram (1992): Evaluating air-quality models: review 
and outlook. Journal of Applied Meteoro. ((31):1121-1145. 
 
“…Air-quality models predict the mean concentration for a given set of conditions (i.e., 
an ensemble), whereas observations are individual realizations drawn from the ensemble. 
The natural variability: is the random concentration fluctuation about the mean and is 
large (of the order of the mean; section 2). The steering committee considered the natural 
variability to be very significant in hampering the performance evaluation. …The natural 
variability, also called the inherent uncertainty (Fox 1984; Venkatram 1982), is caused by 
PBL turbulence. It arises because the details of the velocity field are not the same in each 
realization of a turbulent flow….” 
 
Slide 6. A look at some pseudo-ensembles. 
 
The top two figures were formed by combining concentrations from six (6) Project 
Prairie Grass 10-minute experiments (top-left is near-neutral daytime and top-right is 
near-neutral nighttime). These results are for concentrations measured along an arc 400-
m downwind from the release. 
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The bottom figures were formed by combining concentrations from six (6) EPRI Kincaid 
1-hr experiments (bottom left is near-neutral and bottom-right is verging on stable). 
These results are for concentrations measured along an arc 5km downwind from the 
release. 
 
Typical of other results I have seen, the ensembles formed using EPRI Kincaid data 
exhibit more raggedness than those developed using Project Prairie Grass data. This 
likely is traceable to the effects of buoyant plume rise and the transport of the dispersing 
plume by turbulent eddies to the surface. 
 
The solid black lines are Gaussian fits to the combined data, and represents what a very 
good dispersion model might provide as an ensemble estimate. The little red dots are the 
arc-maxima from the individual releases.  
 
As indicated in the inset table, arc-maxima are on average 43% larger than the Gaussian 
fit Cmax to their respective concentration profiles for Project Prairie Grass, and are on 
average 2 times larger than the Gaussian fit Cmax to their respective concentration 
profiles for EPRI Kincaid. 
 
So, if arc-maxima differ so greatly from the ensemble maxima, why are we 
comparing arc-maxima with dispersion model ensemble-average maxima to assess 
model performance? 
 
Excuse #1: It is an easy-to-compute estimate of the observed ensemble maximum 
concentration.  
Answer: Not likely a good or reasonable estimate seeing the results displayed in this 
slide. 
 
Excuse #2: EPA uses dispersion models to estimate maximum concentrations, so we are 
providing air quality managers an assessment of how good the estimates are. 
Answer: This tells managers how well the model performs when misused, but says 
nothing about the true performance of the dispersion model. 
 
MY VENT:  
You can use a shoe to pound nails into a board. You can even decide which shoes to buy 
based on their ability to pound nails into a board. But shoes were never made to pound 
nails, and their ability to pound nails into a board makes for terrible selection criteria as 
to which shoes to buy!  
 
Dispersion models were never constructed to estimate short-term maxima. You can 
misconstrue what dispersion models do and say they estimate individual realization 
maxima; you can even try to assess dispersion model performance by comparing model 
estimates with individual realization maxima. 
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It makes no sense to select shoes on their ability to pound nails, nor does it make sense to 
assess dispersion model performance through comparisons of modeling results with 
short-term arc-maxima. 
 
For nearly 20 years, I have observed presentations and read papers whose sole basis for 
assessing dispersion model performance was comparisons of observed individual maxima 
(arc-maxima) with model ensemble-average maxima, and I have held my tongue and 
cringed. No longer will I do so. As of this day, I am speaking out, and hope as a result, to 
put to an end a practice that has absolutely no science basis.  
 
Dispersion models provide ensemble average estimates of the concentration values; 
observed concentration averages are individual realizations from some ensembles. Their 
direct comparison with model estimates has no basis in science or statistics – these 
comparisons have nothing to do with ‘model evaluation.’ 
 
Slide 7. What can we do that that makes sense, makes good use of 
available data, and obeys our understanding of science? 
 
Turner (1970) provides the definition of the cross-wind concentration (Cy), and it is seen 
to be essentially a function of the vertical dispersion and plume rise (UCy/Q). If we 
substitute Cy into our equations for dispersion, we can derive the last equations (in the 
red box) for the centerline concentration (Cmax) being equal to Cy divided by the lateral 

dispersion (Sy) and divided by 2 .   
 
To save breath, I will not continuously state the obvious that Cmax, Cy and Sy are all 
ensemble averages. 
 
This expression for Cmax shows that in order to obtain the correct value for Cmax, we 
must get the correct value for Cy and Sy. Anyone disagree? 
 
I disagree! Because, you can overestimate Cy and overestimate Sy and yet get the correct 
value for Cmax. Anyone disagree? 
 
I disagree! Because, you can underestimate Cy and underestimate Sy and yet get the 
correct value for Cmax. 
 
So why do we spend so much effort assessing the ability of models to estimate centerline 
concentration values? There are three ways to get good agreement, and only one is 
correct. Worse yet, you have no idea if you get good agreement, whether it is for the 
correct estimation jointly of Cy and Sy. 
 
Seems to me that we should ignore Cmax, and focus on comparing observed and 
estimated group averages of Cy and Sy. 
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Slide 8. Is this difficult to do? 
 
Shown in these three figures are the crosswind integrated concentration values (Cy) 
observed and estimated by ISCST3 and AERMOD at 100m downwind from the release. 
 
Shown are all 68 experiments. The three shown in red occurred during such low-wind 
and stable conditions, that the SO2 gas behaved as a dense gas, and pooled on the ground 
following the gentle drainage channels in the nearly flat terrain. 
 
You will see people who have ‘selected’ 43 of the Project Prairie Grass experiments for 
use in a model evaluation exercise. I typed in all of the concentration values into a file for 
use; double-checked the values; plotted the results in various ways, I know these data.. I 
am the one who provided people with my files.  
 
There are three (3) experiments to omit from use (experiments 4, 13 and 14), all the rest 
are valid and should be used. I know that some do not fit a preconceived notion of a 
lateral Gaussian cross-section. So! Who says they have to ‘look’ a certain way before you 
can use them in a model evaluation exercise? If you only challenge a model to do well on 
the ‘nice and pretty’ cases, how do you think it will perform on the more typical nasty 
cases? 
 
I did not make a direct comparison of the Cy values, because we need to create group 
averages (pseudo-ensembles). I took a direct and simple route, I averaged the 10 most 
unstable cases, then the next 10, and so forth. 
 
Problem: When I plugged in my average Cy and average Sy into our formula for Cmax, 
the result did not agree with the 10-value average I computed for Cmax. Then I 
remembered all the papers I have written, describing the distribution of raw centerline 
concentrations as having what looks like a log-normal distribution, with a geometric 
standard deviation of order 1.5 to 2.0.  
 
So I recomputed my group averages as geometric averages. When I plugged these 10-
value geometric averaged Cy and Sy values into the formula for Cmax, the result was 
nearly identical to what I computed directly for the geometric mean of the 10 Cmax 
values. 
 
This is a handy result, because it says our group geometric means of Cy, Sy and Cmax all 
obey our relationship for how Cmax is related to Cy and Sy (in a Gaussian dispersion 
model). It also means that if you are provided with the observed Cy, Sy and Cmax values, 
you can vary the grouping criteria, and you do not have to recompute the observed Cy, Sy 
and Cmax values for the individual experiments. They can be computed once, and used in 
various ways. 
 
We now have a methodology for performing an assessment of dispersion model 
performance that makes sense, makes good use of available data, and obeys our 
understanding of science. 
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1.  We focus on comparisons of group geometric mean values of observed and modeled 
Cy and Sy. The emphasis is on Cy and Sy, not Cmax. 
 
2.  Once we understand whatever biases the models have for Cy and Sy, we can look at 
the Cmax results, and likely will understand why the results are as they are. 
 
Slide 9. Project Prairie Grass – ISCST3. 
 
1. I am using log scales on both the x- and y-axis so we can see what is happening with 
the small values, as well as the large values. 
 
2. The blue line is an ordinary least-square fit forcing the intercept to be zero. This 
provides a quick overall average assessment of bias, but as you will see, it is not always 
useful.  
 
3.  As I mentioned before, modeled values are on the x-axis since in ordinary least-
squares fits, all the uncertainty is assumed to be in the y-axis values, which in our case 
are the observations, which we know should have larger variances than the deterministic 
model values due to unresolved stochastic processes. 
 
4. You will see little labels on the plot symbols. 1, 2, 3, …5 to denote which arc: 1 = 50m 
and 5 = 800m. The decimals denote stability, so 1.1 is the 50m arc and the most unstable 
group, and 4.6 is the 800m arc and the most stable group. To further help, I have used 
solid black symbols for the most stable two groups on each arc. 
 
The use of geometric means insures a science basis in the relationship between Cy, Sy 
and Cmax. You should not deviate on this. The use of log scales on x- and y-axis; least-
square fits forcing the intercept to be zero, and labeling the symbols are what I call 
‘good-practices’ developed from experience; trial and error. They are worth using, unless 
you think you can do better. 
 
ISCST3 is doing very well both in estimating Cy and Sy. The slight underestimation of 
Cy is offset by the slight over-estimate of Sy, such that Cmax is well characterized. 
 
Slide 10. Project Prairie Grass – AERMOD 
 
Here we see that AERMOD is consistently under-estimating Cy and over-estimating Sy. 
This obviously leads to under-estimating Cmax. 
 
If you study the plots some, you will see that Cy is under-estimated for the most stable 
cases, and Sy is over-estimated for stable cases, which means the cases for a surface 
release when we should have our maximum Cmax concentrations is consistently under-
estimated. 
 
Ths bias is so obvious, it likely is easily corrected. 
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Slide 11. EPRI Kincaid – ISCST3 
 
Here we see what I had hoped to show.  
 
Note, the thin black line in the Sy plot is the 1:1 line. 
 
1.  ISCST3 grossly under-estimates Cy for near-stable conditions, but these do not result 
in high surface concentrations. ISCST3 significantly under-estimates Sy for the near-
stable cases. 
 
2. ISCST3 has a tendency to over-estimate only a few of the Cy values for arcs 1-3 (3-, 5- 
and 7-km) where the highest observed concentrations occur. ISCST3 significantly under-
estimates Sy for the unstable cases. 
 
3. The biases in Cy and Sy compensate for one another, such that ISCST3 overestimates 
Cmax during unstable conditions (when the highest observed concentration occur).  
 
A clear explanation of why ISCST3 correlates so well with arc-max concentrations! 
 
Slide 12. EPRI Kincaid – AERMOD 
 
1. Study of the plots shows that AERMOD is over-estimating Cy for near-stable 
conditions, and under-estimating Sy for these near-stable cases. This leads to over-
estimates of Cmax for near-stable cases. 
 
2. AERMOD over- and under-estimates Cy for the unstable conditions. The same 
happens for Sy with over- and under-estimates of Sy.  
 
3. If you flip back and forth, comparing ISCST3 and AERMOD on the EPRI Kincaid 
data, you may see what I see, there seems to be some structure in the model’s behavior.  
 a. This is what I call ‘good behavior,’ as it suggests that a minor adjustment in the 
algorithms for the dispersion parameters and/or plume rise, might well resolve the biases  
seen. 
 b. However, I would make adjustments following a logical sequence:  
  (1) We have intensive field experiments where the releases are non-
buoyant: Project Prairie Grass, Round Hill, Copenhagen and Cabauw. The first two 
involve 10-minute average concentrations. Copenhagen has two consecutive 15-minute 
averages, and Cabauw has two consecutive 30-minute averages. Using these data, we can 
attempt to see what needs to be improved in the characterizations of the lateral and 
vertical dispersion, without plume rise complicating the picture. 
  (2) Round Hill has a unique set of 10 experiments having joint 
measurements of 0.5-min, 3-min and 10-min concentrations along arcs. Combined with 
the data just mentioned, we have an interesting set of data to teach AERMOD how to 
adjust the dispersion as a function of averaging time. 
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  (3) EPRI Kincaid and EPRI Bull Run are similar in that they involve tall 
stacks with buoyant plume rise and 1-hr SF6 sampling. Once you have adjusted the 
vertical and lateral dispersion in AERMOD using (1) and (2) above, you can then look to 
see if the plume rise needs to be adjusted, and/or the interaction of the buoyant plume 
with the convective mixed layer height. 
 
Slide 13. Summary of lessons learned (I hope): 
 
1.  All air-quality models (ISCST3, AERMOD, ADMS, CMAQ, CAMx, etc.) provide 
estimates of the ensemble average concentration. Direct comparisons of short-term (1-
hour or less) observations with modeling results is highly questionable. There are large 
stochastic fluctuations affecting short-term concentration values, which prohibit 
meaningful comparison between modeled ensemble averages with short-term 
concentration values. 
 
2. I am recommending comparisons of group geometric mean values of observed and 
estimated Cy and Sy values. Once you understand what is happening with Cy and Sy, 
you can look at Cmax. We place too much emphasis on the importance of Cmax in our 
model evaluations; Cmax is dependent upon Cy and Sy (not the other way around). 
 a. I suggest using log scales on both the x- and y-axis so we can see what is 
happening with the small values, as well as the large values. 
 
 b. I suggest using an ordinary least-square fit forcing the intercept to be zero, to 
provide a quick overall average assessment of bias, but as you will see, it is not always 
useful.  
 
 c. I suggest placing the modeled values on the x-axis since ordinary least-square 
fits assume the uncertainty to be in the y-axis values, which in our case are the 
observations, which we know should have larger variances than the deterministic model 
values due to unresolved stochastic processes. 
 
 c.  I suggest you use labels on the plot symbols. 1, 2, 3, …5 to denote which arc: 1 
= 50m and 5 = 800m. The decimals denote stability, so 1.1 is the 50m arc and the most 
unstable group, and 4.6 is the 800m arc and the most stable group. To further help, I have 
used solid black symbols for the most stable two groups on each arc. 
 
The use of geometric means insures a science basis in the relationship between Cy, Sy 
and Cmax. You should not deviate on this. The use of log scales on x- and y-axis; least-
square fits forcing the intercept to be zero, and labeling the symbols are what I call 
‘good-practices’ developed from experience; trial and error. They are worth using 
initially until we devise something better. 
 
3. It is my contention that there is no science or statistical basis for assessing model 
performance using observed short-term arc-maxima values. You can pound nails with 
shoes to decide which shoes to buy and you can attempt to assess dispersion model 
performance through a comparison of model estimates with observed arc-maxima values.  
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Neither of these activities makes good sense!  
 
Selecting only the short-term arc-maxima from intensive field data sets for evaluation of 
dispersion model performance makes very poor use of available data and does a poor job 
of revealing the underlying model biases. 
 
Slide 14. AERMOD Biases 
 
Using ratios of Cy and Sy, we can look a bit further into where we might look in 
AERMOD to improve its performance. It is interesting to see that the bias in Cy varies 
mostly as a function of downwind distance, and the bias in Sy varies mostly as a function 
of stability. I will leave further detective work to those familiar with AERMOD’s and 
AERMET’s features and estimation procedures. Of course, we can not rule out that I may 
have not properly run AERMET or AERMOD, so I have tried to explain in the 
Appendices how I created my estimates. 
 
Slide 15. Research ideas 
 
1. Averaging Time. Since we have near-surface and elevated intensive field experiments 
with concentrations taken with various averaging times, we should be able to augment 
AERMET/AERMOD to provide ensemble average concentration values for 1-hr or less.  
 
2. Short-Term Concentration Fluctuations: Concentration values with averaging times of 
1-hr of less are heavily affected by stochastic effects. It is yet a question in my mind of 
whether we can characterize short-term concentration fluctuations through direct 
adjustments in AERMET/AERMOD or through post-processing 1-hr AERMOD 
estimates. 
a) Any short-term ambient air standard would require development of a capability to 
estimate the distribution of fluctuations about the ensemble-average concentration value. 
This also suggests to me that short-term ambient air quality standards would need to be 
probabilistic (e.g., probability of exceeding some maximum acceptable concentration). 
b) Given the capability to estimate the frequency distribution of concentration 
fluctuations for averaging times of 1-hr or less, opens up the possibility of estimating in a 
probabilistic sense potential for odor and flammability.  
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Appendix A: Analysis Steps 
 
1. Compute Cy, Sy and Cmax from observations 
a. While listing out the computed Cy, Sy and Cmax values, I converted the Project Prairie 
Grass concentrations from milligrams/m^3 to micrograms/m^3. 
b While listing out the computed Cy, Sy and Cmax values, I converted the  Kincaid 
concentrations from PPB to micrograms/m^3, and I listed to a separate file the Kincaid 
stack parameters in AERMOD’s format of hourly emission rates. Note, ISCST3 and 
AERMOD share the same hourly emission input file format. 
c. I wrote a program to read my master file of quality codes and from this I determined 
that there were six arcs where I likely had sufficient data to form and use group averages 
sorted by stability, namely: 3, 5, 7, 10, 15, and 20km. 
   
2. Define Dates –  
a. Since I am using all 68 experiments initially, I just listed to a side file the 68 dates and 
times. 
b. For EPRI Kinciad, I only need ISCST3 and AERMOD modeling results for those 
hours when I have valid observed values for Cy, Sy and Cmax. I created a program to 
read the Kincaid file of Cy, Sy and Cmax results computed in Step 1, which then listed 
out the hours for which I need modeling results. 
 
3. AERMET meteorology –Note I have fixed the wind direction to be coming from the 
west, as this simplifies Steps 5 and 6. More discussion in Appendix B. 
 
4. CutMet - Using the listing of dates defined in Step 2, I extracted from the AERMET 
surf and prof data files, those hours for which I needed modeling results. As I did this, I 
created the meteorology input file for ISCST3, which required me to convert the Monin-
Obukhov length to a Pasquill stability category. More discussion in Appendix B. 
 
5. Define Receptors – I created a program where you tell it the distances downwind in 
meters; the starting azimuth, the spacing between receptors in degrees, and the number of 
receptors on each arc. The program creates the receptors, one arc at a time, and lists the 
coordinates in a format that can be used directly in ISCST3 and AERMOD. For Project 
Prairie Grass, I created 120 receptors with 1-degree separation on 5 arcs (50, 100, 200, 
400, and 800m). For Kincaid, I created 300 receptors with 0.5-degree separation on 6 arcs 
(3, 5, 7, 10, 15, 20-km). I did not use actual ground elevations for the receptors, i.e. I 
assumed a flat world. 
 
6. Model runs – Since I am dividing all concentration by the emission rate, I set the 
emission rate to be 1000 g/s, to insure that I would have nonzero concentrations even out 
to 50km. The concentration listed in the plot files of AERMOD and ISCST3 are in 
micrograms/m^3. More discussion in Appendix C. 
 
7. Compute Cy, Sy and Cmax from modeling results – The format of the plot files created 
by ISCST3 and AERMOD are slightly different, but the first line of their respective files 
provides the model name and version number, so I can use one program to process the 
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modeling results from both models. I know from Step 5 how many receptors NUM are 
along each arc, so I read NUM concentrations in: compute Cy, Sy and Cmax, list out the 
results, and go to the next NUM of receptors to process. More discussion in Appendix D. 
 
8. Combine Results –  
a. For Project Prairie Grass, I computed observed values of Cy, Sy and Cmax for all 5 
arcs and all 68 experiments, and I computed Cy, Sy and Cmax for all 5 arcs and all 68 
experiments. I combined the observation results and modeling results in an Excel 
spreadsheet. I pulled the AERMET surf file into an Excel spreadsheet, and extracted 
AERMET’s Monin-Obukhov length, which I then copied and pasted into my file of 
combined results for Project Prairie Grass. 
b. For Kincaid, I computed Cy, Sy and Cmax from the observations results for all arcs 
having a Quality Code of 3, regardless of how far downwind the arc was. Since I have 
modeling results for 6 arcs, but may or may not have results for any or only some of the 
arcs, I wrote a program to combine the observed, ISCST3 and AERMOD Cy, Sy and 
Cmax values into one file. While doing this, I listed out AERMET’s Monin-Obukhov 
length for each combined listing. Once I had the combined listing, I pulled the results into 
an Excel spreadsheet. 
 
9. Form Groups – I use Golden Software Grapher, which allows me to create all my plots 
using data stored in Excel spreadsheets. 
a. I started with Project Prairie Grass, doing a combined sort first on distance and then on 
1/OBK. I then inserted columns where needed and created 10-value averages of observed 
and modeled Cy, Sy and Cmax. I had 65 values with which to work, but only used the 
first 60, which left out the 5 most stable values.  
b. I then sorted the Kincaid combined data, and computed 10-value averages, leaving out 
a few of the most stable values, as in processing the Project Prairie Grass data into group 
averages. 
c. While looking at the results, I decided to add the least square fits forced to have a zero 
intercept. I could not see what was happening for the low values, so I changed all the 
plots from linear to log axes. Then I added the labels to the symbols, to see whether I 
could see any trends. It was after all of the above, that I saw that the arithmetic 10-value 
averages were not obeying the relationship between Cmax, Cy and Sy. I tried geometric 
10-value averages, and I found that the relationship between Cmax, Cy and Sy was 
preserved.  This is a brief summary of the redoes I went through to come to a final set of 
plots and analyses.   
 
 
 
 


