UNCLASSIFIED

AD NUMBER

AD152573

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Jul 1958. Other requests shall be referred to Director, Air Force Cambridge Research Center, Bedford, MA.

AUTHORITY

AFCRC Notice, 26 Sep 1985

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED AD_/32373

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawing: epecie fications or other data are used for any process other than in connection with a definitely selated government procurement operation, the U.S Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or it may way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. $\langle \cdot \rangle$

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

AFCRC-TR-58-235(II) ASTIA Document No. AD 152573

GEOPHYSICAL RESEARCH PAPERS

Nc. 59

PROJECT PRAIRIE GRASS, A FIELD PROGRAM IN DIFFUSION

Volume II

Udited by MORION L. BARAD

July 1958

Project 7657

Atmospheric Analysis Laboratory GEOPHYSICS RESEARCH DIRECTORATE AIR FORCE CAMBPIDGE RESEARCH CENTER AIR RESEARCH AND DEVELOPMENT COMMAND UNITED STATES AIR FORCE Bedford, Mass.

ABSTRACT

Project Prairie Grass was a field program designed to provide experimental data on the diffusion of a tracer gas over a range of 800 meteors. In each of 70 experiments the gas was released continuously for 10 minutes at a source located near ground level. The gas releases were made over a flat prairie in Nebraska under a variety of meteorological conditions during July and August of 1956.

This paper, published in two volumes, includes a brief history of the project and detailed descriptions of the tracer technique and the meteorological equipment employed in the field program. Tabulations of the diffusion data and the meteorological data collected during the gas releases are also presented. In addition, this paper contains data on the heat budget at the air-earth interface during other selected periods during the Summer of 1956.

CONTENTS

VOLUME II

Chapter		Page
7.	Instrumentation Used by the Texas A&M Group	1
8,	Micrometcorological Data Collected by Texas A&M	53
9.	Evaluation of the Fluxes of Sensible and Latent Heat from Measurements of Wind, Temperature, and Dew Point Profiles	97
10.	Heat Budget Determinations Made by the University of Wisconsin Group	124
11.	Optical Measurements of Lapse Rate	128
12.	Rawinsonde Data	139
13.	Airplane Observation Data	174

v

4

į

ILLUSTRATIONS

Figure		Page
7.1	Topography of Field Site and Layout of Equipment	2
7.2	The Micrometeorological Station (Texas A&M)	3
7.3	Vertical Distribution of the Sensing Elements	5
7.4	Instrument Trailer Interior	6
7.5	Instrument Trailer Interior	7
7.6	Calibrated D-C Voltage Source	9
7.7	Temperature Measuring System	9
7.8	Shielded Thermocouple Assembly	11
7.9	Soil Temperature Thermocouple Elements	13
7.10	Installation of Soil Temperature Elements	15
7.11	Thermocouple Amplifier	17
7.12	Reference Temperature Compensator	19
7.13	Thermocouple Wire Calibrating Circuit	19
7.14	Calibrating Circuit	21
7.15	Amplifier Calibrating Circuit	2 1
7.16	Twenty - Minute Profiles of Temperature and Po- tential Temperature for Conditions of Nearly Adiabatic Stratification, 6 August 1956, 1805 CST	25
7.17	Twenty-Minute Profiles of Temperature and Potential Temperature for Conditions of Nearly Adiabatic Stratification, 7 August 1956, 0305 CST	26
7.18	Twenty-Minute Profiles of Temperature and Potential Temperature for Conditions of Nearly Adiabatic Stratification, 8 August 1956, 0205 CST	27
7.19	Twenty-Minute Profiles of Temperature and Potential Temperature for Conditions of Nearly Adiabatic Stratification, 8 August 1956, 0805 CST	28
7.20	Twenty-Minute Profiles of Temperature and Potential Temperature for Conditions of Nearly Adiabatic Stratification, 8 August 1956, 1905 CST	29

vii

â

ILLUSTRATIONS (Continued)

Figure		Page
7,21	Twenty-Minute Profiles of Temperature and Potential Temperature for Conditions of Nearly Adiabatic Stratification, 9 August 1956, 1705 CST	30
7.22	Temperature Profile, 6 August 1956, 1805 CST	33
7.23	Temperature Profile, 8 August 1956, 0205 CST	33
7.24	Mean Temperature Plus or Minus Its Standard Error, 8 August 1956, 1505 CST	35
7.25	Air Sampling System	38
7 .2 6	Dew Point Hygrometer	39
7.27	Air Saturating Chamber	42
7.28	Counting Circuit	46
7.29	View of Rikoken Anemometers Installed at Heights of 25, 50, and 100 cm.	49
7.30	Anemometer Calibration Curve	51
9.1	Distorted Area Pattern	100
9.2	Wind Profile Grid for Steady Flow of Air at Constant Temperature over Aerodynamically Smooth Surfaces	104
9,3	Net Radiation vs. Summation of Heat Fluxes, O'Neill, Nebraska, Summer of 1956. $K_{M} = K_{H} - K_{W}$	117
9.4	Net Radiation vs. Summation of Heat Fluxes, O'Neill, Nebraska, Summer of 1956.	
	$\mathbf{K}_{\mathbf{M}} = \mathbf{K}_{\mathbf{H}} = \mathbf{K}_{\mathbf{W}}$	119
11.1	Light Paths and Related Geometry	135
11.2	Optical Observation of $\Delta (\partial T/\partial z)$, O'Neill, Nebraska, 10-12 July 1956	136
11.3	Optical Temperature Profiles, O'Neill, Nebraska, 10-12 July 1956	137
11.4	Time Series of $\Delta (\partial T/\partial z)$ at a Height of 12 cm, O'Neill, Nebraska, 2 August 1956	138

¢

TABLES

Number		Page
7.1	Values of Standard Error of Mean Potential Temperature	31
7.2	Statistical Measures of Temperature	34
8.1	Micrometeorological Data for Gas Release Times	54
8. 2	Micrometeorological Data at Times other than Gas Release Time	66
8.3	Soil Moisture and Soil Density, O'Neill, Nebraska, 1956	96
9.1	Heat Budget Data Collected by the Texas A&M Research Foundation (kilocalories/cm ² sec)	114
9.2	Heat Budget Data Collected by the Texas A&M Research Foundation (calories/cm ² min)	115
9.3	Percentage of Double-Level Values within 10 Percent of Profile Values	122
9.4	Statistical Analysis of Heat Budget Balance	122
10.1	Heat Budget Data Collected by the University of Wisconsin	126
11,1	Values of Δ ($\partial T/\partial z$) Found by Optical Methods (10-12 July)	132
11.2	Values of Δ (∂ T/ ∂ z) Found by Optical Methods (21,23,31 July)	133
11.3	Time Series of $\Delta (\partial T/\partial z)$ at Height of 12 cm	134
12.1	Rawinsonde Data	140
13,1	Aircraft Observations	177

ix

CHAPTER 7

INSTRUMENTATION USED BY THE TEXAS A&M GROUP

R.L. Richman* and W. Covey Texas A&M Research Foundation

7.1 The Mobile Micrometeorological Station

The mobile micrometeorological station of the Texas A&M group was installed at the extreme west end of the observation line (Figure. 7.1). Figure 7.2 shows the relative locations of the component elements of the station. The station consisted of (a) a slender aluminum pipe mast supporting six anemometers at heights of 8, 4, 2, 1, 0.5, and 0.25 meters, (b) a similar mast supporting seven temperature measuring. radiation shielded, copper-constantan thermocouple junctions at heights of 8, 4, 2, 1, 0.5, 0.25, and 0.125 meters. (c) a similar mast supporting seven polyethylene air sampling tubes at heights of 8, 4, 1, 0.5, 0.25, and 0.125 meters, (d) a triangular section, tubular steel, fold-over type tower supporting at a height of 16 meters an air sampling tube, an anemometer, a shielded thermocouple, a wind vane and a radioactive point collector. (e) a U. S. Signal Corps instrument shelter housing maximum and minimum thermometers and a thermograph, (f) an 8-inch rain gauge and a weighing type recording rain gauge, (g) a wind vanc supported at a height of 1 meter by an iron pipe stake, (h) a Gier and Dunkle net exchange radiometer supported at a height of 1 meter, (i) an inverted Eppley thermoelectrical pyrheliometer supported by an iron pipe standard at a height of 2 meters to receive reflected short-wave radiation, (i) an instrument trailer which housed indicating and recording apparatus, (k) an Eppley pyrheliometer mounted on the roof of the trailer, (1) two differentially connected shielded thermocouple measuring junctions supported by a pipe stake at heights of 1/2 and 1 meter, and (m) six copper-constantan temperature measuring junctions at depths of 3.125, 6.25, 12.5, 25, 50, and 100 cm in the

*Present affiliation: U. S. Navy Electronics Laboratory

Figure 7.1 Topography of field site and layout of equipment

JAMESWAY HUT Z ↑ O INVERTED PYRHELIOMETER SCALE 1:239 D PYRHELIOMETER O IS METER MAST TRAILER O SOIL TEMPERATURE ELEMENTS OAIR TEMPERATURE DIFFERENCE ELEMENTS O AIR TEMPERATURE MAST O INSTRUMENT SHELTER O AIR SAMPLING MAST O ANEMOMETER MAST O NET RADIOMETER O RAIN GAUGE O WIND VANE

1

t

......

3

Figure 7.2 The micrometeorological station (Texas A and M)

soil. Figure 7.3 illustrates the vertical distribution of the sensing elements.

The instrument trailer was a 15-foot,house trailer shell, the interior of which was designed to accommodate the recording and indicating equipment associated with the exposed sensing elements.⁵ Figures 7.4 and 7.5 illustrate the assignment of space in the trailer. The principal instruments were (a) a Thornthwaite dew-point hygrometer and associated air sampling apparatus, (b) a group of six recording milliammeters with modulatedcarrier-type d-c amplifiers for recording insolation, reflected short-wave radiation, net radiation, temperature differences, wind direction, and absolute temperatures, (c) a temperature indicating system with a switch for selecting thermocouple measuring junctions, and (d) a counting system for indicating the number of turns of the anemometers, that is, for recording wind profiles. These instruments will be discussed individually and described in detail. In addition, space was provided for computing and plotting data, storing spare parts, and storing the sensing elements and supporting structures during transit.

7.2 Observation Procedure

Most of the observations were made during periods which centered about five minutes after the hour Central Standard Time. The procedure during such observations is listed below. A similar procedure was followed for periods centered about other times.

1. Ten minutes before the hour: measurement of soil temperature at 6 depths.

2. Five minutes before the hour: start of the anemometer counting period; start of the air sampling period; start of the recording period for insolation, net radiation, reflected short-wave radiation, temperature difference, and wind direction; start of the air temperature measurements. (Eight measurements of air temperature, one at each height, were made each minute for a 20-minute period.)

3. Fifteen minutes after the hour: ending of observation period which was started at five minutes before the hour.

Figure 7.3 Vertical distribution of the sersing elements

4. Seventeen minutes after the hour: second measurement of soil temperatures.

5. Twenty minutes after the hour: measurement of the dew-points of the 8 air samples obtained during the air sampling period. (One sample was obtained for each height.)

All data reported are average values for the observation period. 7.3 Individual Elements

7.3.1 Insolation Incoming short-wave radiation was measured by an Eppley pyrheliometer (Weather Bureau 10-junction type). The output of the pyrheliometer was continuously recorded by a modulated-carrier-type d-c amplifier (Figure 7.11) and an Esterline-Angus graphic ammeter. The amplifier was equipped with a gain selector switch so that the recording sensitivity could be changed. Three recording scales were thus provided, 0 to 0.025 cal cm⁻² sec⁻¹, 0 to 0.01 cal cm⁻² sec⁻¹, and 0 to 0.0025 cal cm⁻² sec⁻¹.

The calibration factor for the pyrheliometer was determined by the manufacturer and assumed to be correct. The amplifier and recorder combined were calibrated by supplying an input voltage from a calibrated voltage source. The voltage source had been calibrated by a Leeds and Northrup potentiometer (Type K).

The calibrated voltage source (Figure 7.6) is extremely stable and was used in the field for periodic checks of the calibrations of the various amplifier-recorder systems.

7.3.2 Reflected Short-Wave Radiation Short-wave radiation reflected by the surface was measured and recorded by a system which was identical to that used for insolation measurements. In measuring reflected radiation, the Eppley pyrheliometer was mounted at a height of 2 meters and inverted so that this radiation was incident on the sensitive element.

The calibration of this system was determined in the same manner as that of the insolation system.

7.3.3 Net Radiation A Beckman and Whitley thermal radiometer, Model N188-1 (Gier and Dunkle net exchange radiometer), was used in measuring the net radiation.³ A continuous record of the net radiometer

Figure 7.6 Calibrated d-c voltage source

9

output was obtained by means of an amplifier and recorder similar to that used for insolation measurements. Two recording scales were provided; -0.00125 to +0.005 cal cm⁻²sec⁻¹, and -0.005 to +0.02 cal cm⁻²sec⁻¹.

The calibration of this system was determined in the same manner as that of the insolation system.

7.3.4 Air and Soil Temperature Profiles All temperature measurements were made by means of copper-constantan thermocouples. The temperature measuring system (Figure 7.7) consisted of (a) shielded air temperature measuring junctions, (b) soil temperature measuring junctions, (c) measuring junction selector switches, (d) a modulated-carriertype d-c amplifier, (e) a milliammeter, (f) a reference temperature compensator (calibrated microvolt source), (g) a constantan junction zone box, and (h) a reference junction.²

A radiation-shielded thermocouple assembly is shown in Figure 7.8. The shield consisted of four aluminum plates held together by small screws and plastic spacers. "Alzak" aluminum 0.032 inches thick was used for the shield plates because it is highly reflective in the portion of the spectrum between 0.4 and 7.5 microns. The thermocouple junction formed by No. 36 B&S gauge copper and constantan wire was positioned in the center space of the shield plate stack. The surfaces of the plates faced toward the junction were coated with flat black paint so that heat transfer by radiation would assist in keeping the shield stack at air temperature.

The lead wires were No. 16 B&S gauge rubber-covered copper and constantan in a twisted pair which was encased by a weather-proof neoprene covering.

Hollow brass tubes formed the supporting arms for the shield assembly. The lead wires entered the base fitting and the copper lead was threaded through one arm and the constantan through the other. As shown in Figure 7.8, the ends of the No. 36 B&S gauge copper and constantan wires which formed the junction were secured to the corresponding lead wires by means of firm-fitting plastic sleeves.

í

The thermocouple junctions were made by tinning the ends of No. 36 B&S gauge copper and constantan wires, bringing them into end-to-end contact with the aid of a glass capillary tube, and soldering them.⁸ Junctions formed in this manner are uniform and not significantly larger in diameter than the wires themselves. A thermocouple of this type has a low heat capacity and relatively low thermal conductivity.

A set of eight shielded thermocouple at semblies was used as shown in Figure 7.3. The supporting structures could be lowered to facilitate cleaning the shields and replacing the thermocouples.

The thermocouple measuring junctions used to obtain soil temperatures were of two types 4 as shown in Figure 7.9. The junctions which were placed at depths of 12.5, 25, 50, and 100 cm were formed by No. 16 B&S gauge copper and constantan lead wire. This type of junction was encased in a copper tube 6.5 inches long and 5/16-inch outside diameter. The copper tube was sealed at one end by a brass bullet-shaped cap. The junction was electrically insulated from the copper sheath by "Glyptal" lacquer and plastic tape. The junctions which were placed at depths of 3.125 and 6.25 cm were formed by No. 36 B&S gauge copper and constantan wires. The wires were insulated by means of thin glass capillary tubes and inserted in a brass sheath 6.5 inches long and 0.095 inches outside diameter. One end of the sheath was sealed by a pointed brass cap and the other end was connected to a 1.5-inch length of 5/16-inch outside diameter copper tubing which served as a housing for the splices of the No. 36 B&S gauge wires to No. 16 B&S gauge lead wires. The junction was electrically insulated from the sheath by "Glyptal" lacquer.

Care was taken during installation of the soil temperature elements to disturb as little as possible the soil which would surround the junctions. A triangular pit slightly more than one meter deep was excavated. The sod was cut and removed and successive layers of soil were removed and piled separately. In order to maintain accurate spacing between the junctions, a wooden template ($5 \text{ cm} \times 2 \text{ cm} \times 105 \text{ cm}$) in which appropriate holes had been drilled was used. The wooden support was accurately positioned vertically at the apex of the pit. Holes which were slightly

smaller in diameter than the temperature elements were drilled into the side of the pit at each level. The temperature elements were then inserted horizontally through the wooden support and into the holes in the soil. The layers of soil were replaced at their original depths as the pit was filled. To minimize the effect of thermal conduction along the lead wires, each lead was buried at the same depth as its corresponding element for a horizontal distance of approximately one meter from the element. Figure 7.10 illustrates the arrangement of the soil temperature measuring junctions.

All constantan leads from the measuring junctions were connected to the constantan lead to the reference junction at the constantan junction zone box. (See Figure 7.7.) The lead ends were held in contact with the common lead by means of plastic clamps. Each lead could be easily disconnected from the circuit for checking purposes.

The copper leads from the measuring junctions were connected to the individual positions of a two-gang rotary selector switch. A copper knife switch permitted selection of a gang. Since the rotary selector switch had silver contacts, it was mounted in a thermos flask which insured isothermal conditions and prevented the occurrence of spurious voltages due to the copper-silver junctions.

The reference junction was formed by No. 16 B&S gauge copper and constantan wires and tas electrically insulated and water-proofed by a thin coating of polyethelene. The reference junction was immersed in a pint thermos flask filled with a mixture of distilled water and crushed distilled water ice. To prevent conduction of heat to the junction by the lead wires, approximately one foot of the lead wires was looped and immersed with the junction. The thermos flask was mounted in a corklined metal container to further reduce the melting rate of the ice. The metal container was mounted near the floor on a pair of horizontal pivots. The operator could impart a rocking motion to the container with his foot. In this way the reference bath was agitated to minimize thermal stratification. The mixture of ice and water was assumed to be at 0°C.

Figure 7.10 Installation of soil temperature elements

Ì.

The circuit diagram for the modulated-carrier-type d-c amplifier is shown in Figure 7.11. The prominent characteristics of this amplifier are high sensitivity, virtually no zero drift, high gain stability, relatively high input impedance, and a high degree of linearity. The amplifier used for temperature measurements had a nominal input range of 0 to 400 microvolts which corresponds to the output of copper-constantan thermocouples for a 10°C temperature difference. A control was provided for precise setting of the amplifier gain.

The amplifier output was indicated on a meter (Weston, Model 271) which had a range of 0 to 1 milliampere and an internal resistance of 1400 ohms. The meter scale was 5.8 inches (147 mm) in length, had 100 divisions, and was marked to read a temperature range of 0° to 100°. This meter was equipped with a knife-edge pointer and a mirror scale which eliminated reading errors due to parallax.

The reference temperature compensator circuit is shown in Figure 7.12. This unit is a calibrated variable microvoltage source. By setting the dial of the 5000-ohm precision variable resistor and regulating the voltage across the precision divider consisting of the 1-ohm, 250-ohm, and nominal 5000-ohm series-connected resistors; a microvoltage equivalent to that produced by copper-constantan thermocouples for any temperature difference in the ranges of 0° to 45°C and 0° to 45°C could be obtained. In this circuit, the output microvoltage is made dependent only on the setting of the 5000-ohm resistor by maintaining a constant voltage across the divider. This is accomplished by comparing the voltage across the divider with the emf of a standard cell and varying the 100K ohm resistor in series with the 1.5-volt dry cell until a condition of balance is obtained as indicated by the microammeter.

Since the input range of the amplifier was limited to a 10°C increment and the reference thermocouple junction was maintained at 0°C, the reference temperature compensator was employed in measuring temperatures which exceeded 10°C. The connection of the compensator in the measuring circuit was such that its output voltage was subtracted from the voltage

produced by the thermocouples. The net voltage was then amplified and indicated on the meter. The following example illustrates the operation of the temperature measuring system:

To measure the temperature (assumed to be between 20° and 30° C) at the 50-cm depth in the soil:

(1) Set the selector switch for the -50 cm soil-measuring junction,

(2) Set the reference temperature compensator dial for 20°C compensation and adjust the balance control,

(3) Set the amplifier gain dial for the 20° to 30° C increment, and

(4) Read the meter (assume a reading of 6.35 is obtained)

(5) Apply a meter correction, in this case +0.02.

The temperature (26.37) is the compensation (20 °C) plus the meter reading (6.35 °C) plus the meter correction (+0.02).

A platinum resistance thermometer (Leeds and Northrup), which had been calibrated by the National Bureau of Standards, and a Mueller Bridge (Rubicon) were used to calibrate the copper-constantan thermocouple wire. A thermocouple circuit was constructed from a length of No. 16 B&S gauge copper-constantan lead wire. One junction was placed in a 0°C reference bath and the other junction was immersed in a large thermos flask filled with water (approximately five gallons). A Beckman differential thermometer and the resistance thermometer were immersed in this calibrating bath. The thermocouple junction, Beckman thermometer bulb and resistance thermometer bulb, were placed in close proximity near the center of the bath. A motor-driven stirring mechanism was used to agitate the water. The thermocouple wires were connected in a circuit with an amplifier, meter, and reference temperature compensator as shown in Figure 7.13. The amplifier and meter merely served as c sensitive null indicator, hence their calibrations had no influence on the wire calibration.

The temperature of the calibrating bath was varied through the range of -20 °C to 50 °C and 15 evenly-distributed calibrations points were obtained. Methanol antifreeze was added to the bath water for temperatures less than 0 °C. The temperature of the bath was determined by the resistance

thermometer, and the rate of change of temperature was monitored by the Beckman differential thermometer. At each calibration point, a reference temperature compensator setting was determined which produced zero current flow in the measuring circuit as indicated by the amplifier meter null detector; that is, a setting was determined which caused the compensator output to be equal in magnitude to the emf produced by the thermocouple junctions. The emf temperature characteristic of the copper-constantan wire was then determined by measuring the output of the compensator for each of the dial settings. A potentiometer (Leeds and Northrup Type K), a precision voltage divider, an amplifier-meter null detector, and an auxiliary emf source were used for this measurement as shown in Figure 7.14. The amplifier and meter were calibrated by means of the circuit shown in Figure 7.15. In this circuit, the compensator serves as a calibrated microvoltage source which simulates the output of a thermocouple circuit. With the auxiliary microvoltage source set at zero output, the compensator was set for 10 °C and the setting of the amplifier gain control which produced full-scale meter deflection was determined. The output of the auxiliary microvoltage source was then adjusted until it was equal in magnitude to the compensator output. Since the two microvoltage sources were connected so that their polarities were in opposition, a condition of equality was indicated by a reading of zero on the meter. (The zero reading, of course, is independent of the amplifier-meter calibration.) The setting of the compensator was then changed to 20 °C and the amplifier gain setting for fullscale meter deflection was determined. The auxiliary microvoltage source was again adjusted for a condition of equality and the process was repeated. By this method, amplifier gain settings were established for a series of overlapping operating ranges, that is, 0° to 10°C, 5° to 15°C, 10° to 20°C, etc. The transfer characteristic of the amplifier-meter combination was determined and it was found that deviations from linearity were due primarily to meter movement and scale irregularities. Corrections to be applied to meter readings were established which corrected for the irregularities in the amplifier-meter transfer characteristic and the curvature of the emf temperature characteristic of the thermocouple wire.

Figure 7.15 Amplifier calibrating circuit

The emf temperature characteristic of the No. 36 B&S gauge copperconstantan thermocouple wire had been established to be virtually the same as that of the No. 16 B&S gauge thermocouple wire by the Leeds and Northrup Company. This was verified by experimentation. A series circuit was constructed from lengths of No. 16 B&S gauge copper wire, No. 16 B&S gauge constantan wire, No. 36 B&S gauge copper wire, and No. 36 B&S gauge constantan wire.

Four junctions were formed: (1) No. 16 B&S gauge copper to No. 36 B&S gauge copper, (2) No. 36 B&S gauge copper to No. 36 B&S gauge constantan, (3) No. 36 B&S gauge constantan to No. 16 B&S gauge constantan and (4) No. 16 B&S gauge constantan to No. 16 B&S gauge copper. This circuit was connected to an amplifier-meter null detector. The No. 16 B&S gauge copper-constantan junction and the No. 36 B&S gauge copperconstantan junction were maintained at the same temperature by immersing them in a thermos flask filled with water. The No. 16 B&S gauge to No. 36 B&S gauge copper junction and constantan junction were heated separately. No thermoelectrical emf was obtained.

An overall statement of the accuracy of the temperature measurements cannot be made. The accuracy of the air temperature measurements is a function of the prevailing atmospheric conditions at the time the measurements were made. Errors inherent in thermal measurements further complicate an assessment of accuracy. It is possible, however, to designate the sources of error and to estimate, in some cases, the magnitude.

Absolute accuracy can be defined as the deviation of a measurement from true temperature. Relative accuracy can be defined as the deviation of a measured difference from true temperature difference. The significant errors in air temperature measurements are calibration error, radiation error, and sampling error.

The calibration of the thermocouple wire is the basis of the calibration of the temperature measuring system. The accuracy of the wire calibration is difficult to evaluate. However, the calibration was conducted with extreme care and several determinations of each measured value

showed the calibration to be reproducible. A conservative estimate of the error due to calibration inaccuracies is 0.05 °C for an absolute measurement and 0.02 °C for a relative measurement. Error caused by loss of calibration due to change in characteristics of the system components (in particular, a change in the emf temperature characteristic of the thermocouple wire) can be considered insignificant. A comparison of this wire calibration (conducted in April 1956) with a calibration conducted in May 1953 shows an average difference of 0.05°C. An unknown fraction (believed to be small) of this difference is probably due to a change in the emf temperature characteristic of the wire. Frequent checks of the amplifier calibration were made by the method illustrated in Figure 7.15 to insure no loss in accuracy due to this component.

Probably the most detrimental effect on the accuracy of the air temperature measurements was produced by radiative transfer at the measuring junctions. The magnitude of the radiation error is difficult to determine since it is a function of atmospheric conditions, time, height, and vertical distribution of wind velocity. In the daytime with a clear sky and low wind velocity this error would be greatest. All measured air temperatures would be higher than true air temperature. Air movement decreases the effect of radiation. The measurement nearest the ground would have the greatest error since the wind speed there is less than the wind speed aloft. At night with a clear sky the radiation error would produce measured temperatures lower than real, and variable with height and wind speed. Under cloudy and windy conditions, the radiation error would be less significant. Under isothermal conditions with zero net radiation at the surface, the radiation error would be completely absent. It is conceivable that the radiation error could be as high as 2°C; however, for most of the observations made at O'Neill it probably did not exceed 0.1 °C.

A handy means of checking the relative accuracy of air temperature measurements independent of sampling error makes use of Nature's heat bath which exists with adiabatic thermal stratification. At these times, the thermocouples on the mast are exposed to the same constant potential

temperature.* That is, since the potential temperature is constant throughout the depth of measurement, and over the time of measurement, no breath of air of different potential temperature can come along to introduce sampling error. Since meteorological sampling error is missing, only radiational error and calibration error remain.

Adiabatic thermal stratification near the ground occurs typically twice a day, shortly after sunrise and a while before sunset. However, these are also times of rapid heating in the morning and cooling in the afternoon, so that the length of time that adiabatic stratification exists may be very short. On some occasions the entire 16-meter depth of measurement will not be at uniform potential temperature at any one time. Adiabatic profiles may be caused at other times by high turbulence if the turbulent heat flux is relatively small.

Analyses were made of six adiabatic or nearly adiabatic air temperature profiles (20-minute periods) obtained during the 3-day observation period 6-9 August 1956. Profiles of mean temperature and mean potential temperature were plotted for each of the six runs (see Figures 7.16, 7.17, 7.18, 7.19, 7.20 and 7.21). It was assumed that the logarithmic profile equation holds:

$\theta = \theta_{\rm o} + {\rm n} \Delta \theta \,,$

where $\Delta\theta$ does not vary with height in the lowest 16 meters. Logarithmic profiles were fitted-by-eye, and the standard error of mean potential temperature for the 20-minute period was estimated as 1.25 times the average deviation of the points from the fitted line. The values are given in Table 7.1. This standard error ranges from 0.0048°C to 0.031°C, with an average value of 0.020°C. Since some meteorological sampling

*More precisely, to the same value of $\theta = T + \frac{g}{C_p} z$ where z is measured from the surface of the ground.

ı

1.2.1.20

30

ŧ

•

error still exists, and possibly a very small radiational error, these values are considered outside limits for the calibration standard error.

3.44

Date	Time	Туре	Δθ* (°C)	Wind Velocity Speed Dir (cm/sec) (deg)		S, E, T (°C)	Remarks
6 Aug	1755-1805	Cooling	.00	537	160	.031	.1 Cs
7 Aug	0255-0315	Dynamic	.04	574	65	.016	.4 low cloud Was raining previous two hrs
8 Aug	0155-0205	D ynamic	.015	812	20	.0048	Thunderstorms to north last few hrs
8 Aug	0755-0805	Warming	.01	314	330	.030	Overcast Raining one hr. ago
8 Aug	1855-1905	Cooling	.03	5 2 7	0	.017	.2 Cu
9 Aug	1655-1705	Cooling	.002	416	30	.019	Huge thunder- storm to west, advancing on us for last 3 hrs

Table 7.1 Values of standard error of mean potential temperature

* $\Delta \theta = \frac{\vartheta \theta}{\vartheta n}$, where n ("number of doubled levels") is the logarithmic, non-dimensional height scale $n = \frac{\ln z/z_0}{\ln 2}$.

The importance of the meteorological sampling error still remaining can be appreciated by taking a closer look at the data for two of the runs: that of 0205 CST on 8 August, an ideal case, and that of 1805 CST on 6 August, a less than ideal case. The thing sought is the nature of trends during the 20-minute periods. To this end, simplified profiles of potential temperature for the first and last five minutes of each run were obtained. The data of the lowest two heights, middle two heights, and top two heights were combined, giving profiles of only three points. These profiles are plotted in Figures 7.22 and 7.23. The latter 20-minute profile was obtained when shelter-height temperature dropped 1.0° C in 15 minutes, and the potential temperature profile quickly passed from daytime type to nighttime type during the run.

On the other hand, the ideal 20-minute profile was obtained with high turbulent mixing and small, nearly constant, heat flux downward. The drop in shelter-height temperature was only 0.4°C in 15 minutes, and the slope of the potential temperature profiles changed very little during the run. Meteorological sampling error was therefore much less in this period of observation than in that of 1805 CST on 6 August 1956.

Errors in the 20-minute profiles of mean temperature due to sampling may be evaluated by simple statistical techniques. The magnitude of these errors is least (nearly zero) when thermal stratification is adiabatic. It is also usually small with calm conditions at night. These errors are greatest in the heat of the day when no steady breeze is blowing.

A computation was made to evaluate sampling error in the temperature profiles. Data are from the 1455-1515 observation period of 8 August. This was a time of strong solar heating (clear sky above, bank of cumulus clouds in the distant southeast) and "very light" winds from the southwest. In the computations, the standard deviations are in all cases estimated at 5/4 of the average deviation.

The standard deviation of the 20 temperature measurements at each height varied from 1.06 degrees (Z = 0.125 m) to 0.44 degrees (Z = 16 m). Since the serial correlation is negligible, the standard error of the mean temperature is $(1/20)^{1/2}$ times the standard deviation. The mean

temperatures at the various heights are found to have standard errors of 0.10 to 0.24 degrees. Figure 7.24 shows the profile of \overline{T} plus or minus S.E. $_{\overline{T}}$ as a function of height.

The accuracy of mean temperature differences within the profile is increased by a small positive correlation between temperature observations at various heights. In this example, the difference in mean temperature at 1 m height and at all other heights is between 0.18 degrees and 0.24 degrees.

The means, standard deviations, and correlation coefficients are given in Table 7.2.

Height (Cm)	T	σT	S.E. _T	$\overline{T}_{z} - \overline{T}_{lm}$	$\sigma(T_{g} - T_{im})$	$SE(T_z,T_{ln})$	*	$r(T_z, T_{im})$
1600	28.86	0.44	0,10	-1.83	0.93	0.21	0.20	044
800	29.37	.57	.13	-1.32	.92	.21	.22	+.13
400	29.76	.75	.17	-0.93	.91	.20	.25	+.31
200	30.31	.68	.15	-0.38	.91	.20	.23	+.25
50	31.40	.93	.21	+0.71	0.82	.18	.27	+.56
25	32.54	0.92	.21	+1.85	1.06	.24	.27	+.25
12	33.55	1.06	0.24	+2.86	1.03	0.23	0.30	+.41

Table 7.2. Statistical measures of temperature

* - Value that S.E. $(T_z - T_{lm})$ would have if correlation were zero.

$$\overline{T} = \frac{1}{\overline{N}} \sum_{i=1}^{N} T_i$$

$$\sigma_T^2 = \sqrt{N} \sum_{i=1}^{N} (T_i - \overline{T})^2 ; \qquad \sigma_T = \frac{5}{4} \sqrt{\frac{1}{N}} \sum_{i=1}^{N} |T_i - \overline{T}|$$
S.E. $T = \sqrt{N} \sigma_T$

i !

$$\sigma^{2}(\mathbf{T}_{z}-\mathbf{T}_{lm}) = \frac{1}{N} \sum_{i=1}^{N} \left[(\mathbf{T}_{z}-\mathbf{T}_{lm}) - (\mathbf{\overline{T}}_{z}-\mathbf{\overline{T}}_{lm}) \right]^{2}$$

$$S.E. (\mathbf{\overline{T}}_{z}-\mathbf{\overline{T}}_{lm}) = \sqrt{N} \sigma(\mathbf{T}_{z}-\mathbf{T}_{lm})$$

$$\sigma^{2}(\mathbf{T}_{z}-\mathbf{T}_{lm}) = \sigma^{2}\mathbf{T}_{z} + \sigma^{2}\mathbf{T}_{lm} - 2\mathbf{r}(\mathbf{T}_{z},\mathbf{T}_{lm})^{\sigma}\mathbf{T}_{z}^{\sigma}\mathbf{T}_{lm}$$

The accuracy of the soil temperature measurements is 0.05 °C for absolute measurements and 0.02 °C for relative measurements since the only significant error is that due to calibration inaccuracy.

Malfunctioning of the temperature measuring system could be easily recognized by observing the hourly change in temperature at the 1-meter depth in the soil. Large scale change or rapid fluctuations in this reading usually indicated shorts or leakage to ground, electric and magnetic field pickup, or component failures. Difficulties could also be recognized by reading the 1-meter soil temperature using two overlapping reference temperature compensator ranges.

7.3.5 Air Temperature Difference. The air temperature difference between the 1-meter and the 1/2-meter levels was measured by means of two radiation-shielded thermocouple junctions of the same type as that used for air temperature profile measurements. The two junctions were differentially connected and the output was recorded by a modulatedcarrier-type d-c amplifier and an Esterline-Angus graphic ammeter.

A recording scale of -5° to $+5^{\circ}$ C was used; hence, the temperature at one level relative to the other was determined in addition to the temperature difference.

7.3.6 Vapor Pressure Profiles. The measurement of the amount of water vapor in the air was accomplished by means of an air sampling system and a dew-point hygrometer. During the 20-minute observation periods, air samples were obtained at each level as shown in Figure 7.3. The dew point of each sample was then measured using a Thornthwaite automatic dew-point hygrometer.⁶ The data reported are in units of vapor pressure (millibars) which were obtained by conversion of the measured data which were in terms of dew-point temperature (degrees Centigrade).

The air sampling system shown schematically in Figure 7.25 consisted of (a) polyethylene sampling tubes, (b) sample storage jugs, (c) sample selector valves, (d) a variable speed pump, and (e) a pump speed control. Polyethylene tubing having an inside diameter of 0.25in. was used since this material is virtually non-hygroscopic. One gallon glass jugs were used as reservoirs for the air samples in order to obtain average samples(that is, samples which did not exhibit small scale fluctuations) simultaneously from all levels. The sample selector valves permitted extraction of the samples from the reservoirs for measurement. A modified vacuum cleaner was used as an air pump. The rate of pumping could be changed by varying the input voltage to the pump motor. Two pump speeds were used and were conveniently obtained by switching the motor input to full line voltage or to the voltage at a tap on an auto-transformer.

The dew-point hygrometer is shown in Figure 7.26. This is a condensation type hygrometer which utilizes a mirror surface on which moisture is caused to condense. By measuring the temperature of the mirror at the time of incipient condensation the dew point is obtained.

The instrument which was used consisted of (a) a mirror assembly, (b) a sample chamber, (c) a photoelectric dew-film detection system, (d) a dry-ice heat sink, (e) a control circuit, and (f) a radio frequency induction-heating unit. The mirror assembly was formed by copper foil chrome plated on one surface and soldered to the end of a steel rod 0.25-in. in diameter which, in turn, was connected to a copper slug 1-inch in diameter and 5 inches long. The chrome surface served as the mirror and a copper-constantan thermocouple junction was held in contact with the under or copper surface by a second piece of copper foil. This junction

.

39

. * *** ***

was connected to the temperature measuring system (see Figure 7.7). The thermocouple wire was the same type, No. 36 B&S gauge, as that used for the air temperature measuring junctions.

The copper slug of the mirror assembly was inserted in a thermos flask filled with crushed dry ice and the steel mirror stem was inserted in a hole in the sample chamber. A radio frequency induction heating coil concentric with the hole in the sample chamber then encircled the steel mirror stem. The sample chamber was ahollow, airtight, plastic block with air sample intake and exhaust ports, windows for two photocells, and a window for the admission of a light beam.

The photoelectric dew-film detection system was connected to an amplifier (control circuit) which, in turn, controlled a radio frequency oscillator (R-F induction heating unit).

In operation the mirror surface was cooled by the dry ice and heated by the R-F induction heater. By controlling the heating, the mirror temperature could be varied. Three heat controls were available: (1) a guick-heat button, (2) a manual control, and (3) an automatic control. By manually depressing the quick-heat button, rapid heating of the mirror was obtained. The manual control enabled the operator to vary the mirror temperature to obtain a dew-film of proper thickness. The automatic control was provided by the photoelectric dew-film detection system. Light which was incident at an angle of 45 degrees on the mirror was reflected to one photocell. A second photocell positioned directly below the mirror surface(that is, on a line normal to the mirror surface) received scattered light when a dew-film was present. An increase in dew-film thickness caused a decrease in reflected light and an increase in scattered light. This change was sensed by the photocells which produced a control voltage causing an increase in R-F induction heating. Conversely a decrease in dew-film thickness was sensed and the heat supply to the mirror decreased. In this way the automatic control aided the operator in maintaining a constant dew-film thickness on the mirror.

In addition to providing automatic control, the photoelectric dewfilm detection system produced a meter indication of dew-film thickness. The dew-film thickness meter permitted establishing a standard dew-film thickness for all measurements.

The following procedure was used for measuring dew-point profiles. With the sample selector valves set in the simultaneous sample position and the pump set for high speed, air samples were drawn into the storage jugs. The pump was set for low speed and the valves were set so that air which was a mixture of all the samples was passed through the sample chamber. In this way an initial setting of the manual control was made to produce a dew-film and the proper reference temperature compensator range setting was determined for the temperature measuring system. The quick-heat button was then depressed to clear the dew-film from the mirror and the zero or clear mirror reading of the dew-film thickness meter was checked. Valve settings were made for selection of the first sample. The pump was operated at high speed for 3 to 5 seconds to scavenge the sample chamber and connecting tubes of the initial air. With the pump operating at low speed, the manual control was set to produce a dew-film of the proper thickness as indicated by the dew-film thickness meter. The temperature of the mirror was then read by means of the temperature measuring system. The second sample was selected and the first sample scavenged by operating the pump at high speed. The process was then repeated. Slow speed operation of the pump during the measuring period was necessary to prevent depletion of the air sample and mechanical disturbance of the dew-film by the air passing over its surface.

Because of the number of manual adjustments and switch settings, and complexity of the procedure, considerable skill was required of the operator in measuring dew-point profiles.

Prior to Project Prairie Grass, the dew-point hygrometer was calibrated by an air saturating chamber as shown in Figure 7.27. The chamber was formed by two sheet-copper boxes one within the other

Figure 7.27 Air saturating chamber

and separated by insulating material 1-inch thick. The box was constructed in two sections to permit access to the chamber. The bottom section formed a pan 18 inches by 18 inches by 1.5 inches deep. The top section contained a labyrinth of baffle plates. The pan formed by the top section was 1.5 inches deep and the baffle plates were 2 inches in width. The bottom section was filled with distilled water and the top section was positioned in such a way that the lower edges of the baffle plates were immersed to a depth of 0.5 inches. In this way an enclosed and baffled air space 1.5 inches high was formed over the water surface. Glass tubing inserted through the top section of the chamber provided intake and exhaust ports. Air entering the chamber was confined to a path formed by the baffle plates. Between the intake and exhaust ports, the air path length was 27 feet. The air temperature and water temperature were measured by means of copperconstantan thermocouple junctions at three stations along the air path: at the intake port, at the exhaust port, and at the midpoint of the air path. The dew-point hygrometer, a pump, and the chamber were connected in a closed circuit by means of polyethylene tubing. The pump circulated air through the chamber and dew-point hygrometer at a speed sufficiently high to produce turbulent flow in the saturating chamber. The difference between air and water temperature at each station was observed. A condition of temperature equilibrium between air and water was used as an indication of saturation. The temperature at which saturation occurred was then taken as the actual dew point of the air. The condensation temperature or dew point as indicated by the dew-point hygrometer when operating with various dew-film thicknesses was compared with the saturation temperature. By repeated tests a dew-film thickness was established which produced agreement of saturation temperature and dew point as indicated by the dew-point hygrometer. To prevent condensation from occurring in the connecting polyethylene tubes which were virtually at room temperature, saturation temperatures less than room temperature were used. This was accomplished by using

10

water in the chamber having a temperature a few degrees below that of the room.

医胆酸酶酶 化羟基酮酸酸酸酶酶酶酸盐酸盐 医普尔氏管 化化物学物理学 计

LINSIE:

The accuracy of the dew-point measurements is at best equal to the accuracy of the calibration of the temperature measuring system. In addition there are sampling errors, and small random errors introduced in setting the dew-film thickness. Sampling errors are difficult to evaluate but are suspected to exist when a smooth profile is not obtained. Excluding sampling errors, absolute measurements are probably accurate to 0.06°C and relative measurements are probably accurate to 0.03°C.

Malfunctioning of the dew-point hygrometer was readily recognized by observing the behavior of the dew-film thickness meter. The presence of water in the sampling tubes could be detected by the behavior of the instrument and by readings of dew point which were greater than ambient temperature. Water in the sampling tubes sometimes occurred as a result of rain, fog or an inversion under humid conditions. The sampling tubes were necessarily cleared of water before resuming measurements. During the observation periods, moisture measurements were made by means of a sling psychrometer. These measurements were used as a check for gross error in the dew-point system.

7.3.7 Wind Profiles. Wind profiles were measured by a set of matched three-cup anemometers. Nineteen Rikoken* anemometers were modified, compared, and grouped in sets of seven matched units.

When received from the manufacturer, the Rikoken anemometers were equipped with gear trains and contact systems for counting the

*Manufactured by the Sanoya Iron Works, 1064 Nakata-machi, Kanuma-shi Tochigi-ken, Japan

turns of the cups. The modification consisted of replacing the gear train and contact system with a photoelectric counting system. The latter system utilized a cadmium sulfide photoconductive cell and a No. 51 light bulb. The light reflected to the photocell by the mirror was interrupted by a shutter blade connected to the shaft which was turned by the cup assembly. In this way the photocell was illuminated and shaded once for each revolution of the cup assembly. The photoelectric counting system had several advantages not afforded by the gear train and contact system: (a) Friction due to the gear train and contacts was eliminated by use of the photoelectric system. Since this was the major portion of the friction in the instrument, its elimination resulted in lower starting speed. Also, the magnitude of this portion of the friction was not the same in each anemometer so its absence tended to make the anemometer characteristics more nearly alike. (b) The resolution (counts per revolution or counts per meter of all passage) obtained by using a photoelectric system which counted each revolution of the anemometer cups was 6.9 times as large as that provided by the gear train and contact system. Since the anemometer output was in digital or pulse form and was recorded by means of a digital counter (step function integrator), wind measurements having a resolution commensurate with accuracy could be obtained for a shorter time interval using the photoelectric system than by using the gear train and contact system. (c) Gear train and contact systems often produce spurious counts caused by contact bounce and intermittent conduction at the instant of make or break. The photoelectric system produced no spurious counts. (d) Contacts become pitted with use requiring that they be burnished or replaced. The photoelectric system required little and infrequent maintenance.

A unit having 8 counting channels (one for each anemometer and one spare) was used to register the number of revolutions of the anemometers. The circuit of a counting channel is shown in Figure 7.28. The circuit consists of a pulse-shaping stage, three bi-stable multivi-

brators, and a thyratron-driven electromechanical counter. Input pulses from the anemometer were converted to short rise time rectangular pulses. The output of the pulse-shaping stage was then fed to the three bistable multivibrators which were connected as a binary frequency divider. By means of a selector switch, the thyratron driven electromechanical counter could be connected to the output of the pulse-shaping stage or the output of any multivibrator. In this way the electromechanical counter was caused to register either each, every other, every fourth, or every eighth revolution of the anemometer. The electromechanical counter (mercury four-digit reset type) was rated at 10 counts per second. Since the anemometer speed could exceed this rate, the binary frequency divider was employed. In addition to enabling the counting circuit to accommodate a maximum input rate of 80 counts per second, the binary frequency divider reduced wear of the electromechanical counter when wind measurements were made which did not require the maximum available resolution.

The counting unit was constructed in three assemblies. The electronic portion of the counting channels was built on a single chassis. The threshold controls and count-down (frequency division) selector switches were located on this chassis. Two banks of electromechanical counters, a counter start-stop switch and a bank selector switch were mounted on a panel. One bank of counters could be read and reset while the other was registering counts. In this way successive profile measurements could be made without loss of data during the reading and reset periods. The power supply for the system was contained on a single chassis.

Prior to Project Prairie Grass, the amemometers were matched by means of a whirling device having four horizontal arms each eight feet long.⁷ The anemometers were matched at O'Neill by mounting them at the same level on a horizontal support approximately two meters above the ground in an open field as far as possible from obstructions.¹ The support could accommodate 10 anemometers

having a horizontal spacing of approximately 1 foot.

An anemometer which was representative of the matched set was selected as a standard and its calibration was determined. This anemometer was calibrated in a wind tunnel* against a pitot tube which had been calibrated by the Bureau of Standards. Several trial calibrations were run to investigate the characteristics of the calibrating procedure and equipment. Four independent calibrations were then made and the average was taken as the true calibration. A check of this calibration was made using a different procedure and different calibrating apparatus.** The calibrating apparatus consisted of an airtight room (located in the laboratory building) having an air intake nozzle (9-inch throat diameter) in one wall and a volumetric flow rate-measuring exhaust nozzle in the opposite wall. By measuring the rate of flow out of the airtight room, the speed of the air entering the room through the intake nozzle could be determined. The anemometer was placed in the throat of the intake nozzle and its calibration determined. In the velocity range of 1 to 4.5meters per second this calibration was virtually the same as the previous calibration. At higher velocities a difference was obtained. The calibrations differed by 2 percent at 5 meters per second and increased to 8 percent at 15 meters per second. A pitot tube was recognized to be most accurate at high velocities. The second calibrating technique was recognized to have an accuracy deficiency at high velocities. Both calibration techniques were unsatisfactory at velocities less than 1 meter per second since the air flow could not be maintained constant and the zero error and drift of the manometers became large compared to their readings. The calibration using the pitot tube, therefore, was accepted for the velocity

*Massachusetts Institute of Technology portable wind tunnel at O'Neill, Nebraska.

**This calibration was performed at the Fan Test Laboratory, Engineering Experiment Station, Texas A&M campus, October 1956.

Research)

Figure 7.29 View of Rikoken anemometers installed at heights of 25, 50, and 100 cm

range of 1 to 15 meters per second. A third method was employed to obtain a calibration point at a velocity less than 1 meter per second. Under conditions of steady low velocity, virtually laminar flow at a height of 0.5 meters in the atmosphere* the wind velocity was measured by observing the time required for smoke from a cigarette to travel a measured distance, and the corresponding anemometer indication was obtained.

In measuring wind profiles, the anemometers were installed at the heights shown in Figure 7.3. The three lowest anemometers,

*These conditions existed at 2100 CST, 22 July 1956 at O'Neill.

those at 25, 50, and 100 cm, are shown in Figure 7.29. Each anemometer was carefully leveled so that the cups rotated in a horizontal plane thus minimizing the effect of asymmetrical weight distribution in the cup assembly.¹ The revolutions of the anemometers were measured for 20-minute periods and converted to units of wind speed by means of tables derived from the calibration curve shown in Figure 7.30.

7.3.8 Summary. In measuring these micrometeorological parameters, the method used in each case was designed to provide data which was in a convenient form for immediate reduction. The operating procedure was such that the operator observed the behavior of each measuring system at least once during each 20-minute observation period. With the exception of the radiation, wind direction and air temperature difference measurements which were recorded on strip charts, all measurements were recorded on data forms. These were so arranged that all tabulations and computations per data class were on one page. All computations were made from prepared tables, slide rule, and or standard desk calculator. This enabled the operator to reduce the data immediately after the measurements were made; hence, gross errors due to malfunctioning of the measuring equipment were noted and remedial action could be taken before measurements were resumed.

Figure 7, 30 Anemometer calibration curve

REFERENCES

- 1. Halstead, M. H., "The Measurement of Wind Profiles." <u>Publications in Climatology 7, No. 2</u>, The Johns Hopkins <u>University Laboratory of Climatology</u>, Seabrook, New Jersey, 1954.
- 2. Portman, D. J., "The Measurement of Air Temperature Profiles." <u>Publications in Climatology 7</u>, No. 2, The Johns Hopkins University Laboratory of Climatology, Seabrook, New Jersey, 1954.
- 3. , "The Measurement of Radiation." ibid.
- 4. "The Measurement of Temperature and Heat Transfer in the Soil." ibid.
- 5. Superior, W. J., "The Mobile Micrometeorological Station." Publications in Climatology 7, No. 2, The Johns Hopkins University Laboratory of Climatology, Seabrook, New Jersey, 1954.
- Thornthwaite, C. W. and C. Beenhouwer, "The Measurement of Humidity Profiles." <u>Publications in Climatology 7</u>, No. 2, The Johns Hopkins University Laboratory of Climatology, Seabrook, New Jersey, 1954.
- Thornthwaite, C. W., et al., "Micrometeorology of the Surface Layer of the Atmosphere." The Johns Hopkins University Laboratory of Climatology, Interim Report 10, 6, 1950.
- Thornthwaite, C. W., et al., "Micrometeorology of the Surface Layer of the Atmosphere." The Johns Hopkins University Laboratory of Climatology, Interim Report 13, 4, 1951.

CHAPTER 8

MICROMETEOROLOGICAL DATA COLLECTED BY TEXAS A&M

W. Covey, M. H. Halstead*, S. Hillman, J. D. Merryman, R. L. Richman*, and A. H. York Texas A&M Research Foundation

This section contains three groups of data collected during Project Prairie Grass. In the first group (Table 8.1) are micrometeorological data collected during the 68 regular and the two special gas releases. These observations covered a period of 20 minutes each, starting 5 minutes before and ending 5 minutes after the 10-minute period during which the gas was released.

The second group (Table 8.2) includes similar observations, but at times other than the 70 gas release times. 177 observational periods are included in this group.

The third group (Table 8.3) contains soil moisture and soil density data on four days during July and August.

*Present affiliation: U.S. Navy Electronics Laboratory

HOURLY OBSERVA	TIONS						NETT I	JEDDA CKA
GAS RELEASE NO.	1	2	3	4	5	ธั	weinn' v	EDIMONA
JULY (1956)	3	3	5	6	6	6		
CST	1105	1505	2205	0105	1405	1705		
		RAC	ATTON (cat/cm2e	an)			
Insolution	.0080	.0048			.0205	.0120	1	r
Reflected							l	1
Net Radiation	.0050	.0029	0013	0010	.0145	.0080		L
		AIR and a	SOIL TEN	IPERATU	RES (°C)			
Height (m)		1]			1	
16.00							}	{
8.00	21.68	23,78	22.41	20.09	29.18	30.19		
4.00	21.90	23,79	21.12	18,55	29,72	30.50	1	
2.00	22,12	23.87	19.83	17.50	30,17	30.80		
1.00	22.32	23.09	18.40	10,75	30.71	31.09		1
.50	22.90	24.18	17.24	16.00	31.44	31.32	1	ł
.25	23.22	24.54	16.89	15.63	32,05	31.63		
.12	23.84	24.85	18.55	15.33		31,82	ļ	
03	24.06	25.39						1
08	23,11	24.63						{
12	21.71	23.20						1
25	21.61	21.58				i		
~.50	20.53	20.38					4	}
-1.00	18 21	18 18		<u> </u>	• •		I	L
		VA	POR PRES	SURE (m	ь)			
16.00	T	T					1	
8.00	18,43	18.62	18.34	16.43	17.19	16.53	l	Į
4.00	18 73	18.73	18,44	16.52	17.39	16.64		1
2.00	18/86	18.88	18.46	16.53	17.73	16.88	l	(
1.00	19-04	19.10	18.58	16.58	18,11	17.07		
.50	19.51	19.38	18.58	16.64	18.46	17.24)	1
.25		19.77	18,49	16.65	18.73	17.30		
.12	19.95	20.21	18.96	17.29	19.27	17.41		
		WI	ND SPEEI) (cm/sec	-) -)			
16.00	T						T	1
8.00	321	233	211	304	703	846	1	
4.00	289	216	113	202	651	765		1 .
2.00	258	190	44	129	593	680		
1.00	239	174	66	91	515	599	İ	ĺ
.50	206	154	39	52	448	523	1	Ì
. 25	173	122	10	17	378	439		1
		WIN	D DIREC	TION (dec	•)			
1.00	150	100	150	200	100	180	l	
	4 ······	SOIL TEN	APERATU	RE CHAN			•	
Initial Time		1450		T	<u></u>		1	T
Run Time (min)		29			1			
03		- 10				1	1]
08		00					1	1
12		1 11	l					1
-,25		03	1					1
-, 50		. 02					1	1
-1.00		01	}				1)
I	I		L	A	L	<u> </u>	.	L
Precipitation (cm)								

Table 8,1

54

i.

HOUPLY OBSERVA	TIONS						
GAS RELEASE NO	1 IONS 7	8	9	10	11	12	NEILL, NEBRASKA
JULY (1958)	10	10	11	îi	14	14	· ·
CST	1405	1705	1005	1205	0805	1005	
		PAR		nal/am2a			
Insolation	0212	0115	0180	0200	.0105	.0185	· · · · · · · · · · · · · · · · · · ·
Reflected	.0039	.0023	.0035	.0040			
Net Radiation	.0129	.0057	.0114	.0128	.0060	.0117	
		AIR and f	SOIL TEM	DERATH	RES (°C)	L	
Height (m)				1 aluri 0			I
18.00	28.71	29.90	25.70	28.42			
8.00	29.04	30,15	26.25	28,98	24.16	28.83	
4.00	29.46	30.57	26.61	29.58	24.64	29.25	}
2.00	30.27	31.10	27.39	30.45	25.01	29.67	
1.00	31.21	31.47	28,19	31.47	25.42	30.53	
.50	31,99	32.01	28.75	32.11	25,92	31.18	
.25	33.10	32.58	29.53	33.14	20.34	31.94	
.12	34,23	33.08	29.82	33.78	26.68	32.65	
03	34.90	33.74	20.04	31.79	29.23	28.80	
-,06	30.33	31.77	29.40	27.91	23,40	25.98	
12	24.23	20.77	23.14	23.93	24,20	29.10	
25	41.11	10.00	22.47	26.21	29.19	20.00	
50	10.00	10.00	10 50	10.34	10 75	19 69	
-1.00	10.22	10.22	10.20	10.40	10.10	10.00	L,
		VA	POR PRES	SURE (m	b)	•	
18.00	12.06	13.16	20.60	22.84			
8.00	12.97	13.87	20.88	23.10	•-		
4.00	13.02	13.72	20.92	23.14			
1.00	13.05	13.75	21.10	23.27			
50	13.18	13.85	21,14	23.40			
	10.00	1396	21.20	23.43			
.12	13.00	14.10	21.39	23.00			1
	11.10	11.52	<u> </u>	23.02	<u>.</u>		
16.00	560		ND SPEEL) (cm/800 1 670	}		r
8.00	509	540	842	536	944	973	
4.00	481	408	769	506	850	892	
2.00	444	452	700	468	761	799	
1.00	402	405	611	415	677	721	
.50	352	350	533	376	579	617	
.25	295	288	450	312	490	522	
		wn		TION (dag	r)		
1.00	204	171	199	200	185	175	
		SOIL TEN	APERATU	RE CHAN	IGE (°C)	L	
Initial Time	1351	1651	0950	1150	0750	0950	
Run Time (min)	27	26	16	26	28	27	
03	-1.80	76	1.01	.79	.80	.23	
06	.53	29	.59	.70	16	.72	
12	.53	. 20	.06	.23	08	.10	
-,25	.07	,13	08	- 03	11	08	
50	00	03	01	01	03	01	
-1.00	00	00	01	00	01	01	

Table 8.1 (Continued)

Precipitation (cm)

and material statistics

-

HOUDLY OBSERVA	TIONS						
GAS RELEASE NO	1.3	14	15	16	17	18	NEILL, NEBRASKA
JULY (1956)	22	22	23	23	23	23	
CST	2005	2205	0805	1005	2005	2205	
CD1	2003	4400		1005	2003	2200	
		RAD	IATION (al/cm2sc	·c)		
Insolution	.0001	.0000	.0101	0183	.0001	.0000	
Reflected							1 1
Net Radiation	0011	-,0010	.0050	,0100	0011	0014	
		AlR and S	SOIL TEM	PERATU.	RES (°C)		
Height (m)				معيشية سيري ويريد	,		
16.00	22.34	21.04	20.32	24.61	27.91	25.11	
8.00	21.64	19.76	20,51	24.82	27.83	24.30	•
4,00	21.04	17.87	20.78	25.10	27.62	23.83	
2,00	20.39	16.25	21,44	25.61	27.44	23.52	1 1
1.00	19.56	15.31	22.05	26.67	27.32	23.23	
.50	18.72	14.66	22.58	27.79	27.19	23.03	
.25	18,15	14.31	23.32	28.64	27.08	22.83	
.12	17.78	13.99	23.95	29.63	27.00	22.66	
- 03	26 49	23 10	20 75	26.71	29 40	26 39	1 1
- 08	97 AN	24 69	20.10	23 55	20.40	20.00 97 N9	
*,00	06 60	24.02	20.40	20.00	20.00	21.00	1 1
12	20.00	29,00	21.44	21.02	41.40	20.01	
25	22.17	22.00	22.12	21.79	22.90	23.20	{·
50	20.36	20,48	20.72	20.68	20.32	20.28	1 (
-1.00	18.95	19.02	19.04	18.99	18,54	18.62	
		VAI	POR PRES	SURE (m	b)		
16.00	16.13	14.91	17.19	17.66			
8.00	16.47	14.20	17.39	18.14			
4.00	16.74	14.21	17.41	18.21		~-	
2,00	16.60	14.20	17.43	18.30			1 1
1 00	16.02	14.25	17.52	18.40			
.50	15.88	14 27	17.63	18 57			1 1
25	15 71	14.32	17 65	18 81			
.12	15.71	14.99	17.77	19.08			
	ha	 - - - - -				L	-A
16.00	343	445	ND SPERI	378	555	656	T
8.00	264	348	378	362	455	488	
4.00	198	225	354	346	402	375	
2.00	148	1 139	322	331	341	322	
1 00	92	74	290	296	287	268	
50	46		201	201	237	220	
. 00	18	18	215	225	209	186	
. 4 (*	····					l	
+ 66	r	WD	ID DIREC	TION (deg	4) <u> </u>	100	·
1.00	L	· · · · · · · · · · · · · · · · · · ·	193	202	172	188	
	-	SOIL TEN	APERATU	RE CHAN	(GE (°C)		
Initial Time	1952	2150	0752	0950	1950	2155	
Run Time (min)	25	30	24	27	26	22	
03	-1.08	68	.79	1,54	76	83	
96	63	60	. 32	.92	59	70	
12	07	-,18	04	.17	10	25	
0.0	1 04	1 04	. 04	. 02	05		1 1
25	1.04	1 .07			1 .00		
50	05	.04	00	.01	00	04	

Precipitation (cm)

HOURLY OBSERVA	TIONS						NETLT. NI	DDAQKA
GAS RELEASE NO.	19	20	21	22	23	24	(1911), IV	IDIMONA
JULY (1956)	25	25	25	26	29	29		
CST	1105	1305	2205	0005	2105	2305		
			LA BUCKEL	-1/2-20				
Insolation	.0140	.0218	IN TION (al/cm-at	·c)	·	<u></u>	
Reflected	.00290	.00415						
Net Radiation	.0081	.0137	0009	0014	0014	00115	1 / 1	
<u> </u>		da-a,			· · · · ·	·····	L	
Holyht (m)	r	AIR and S	SOIL TEM	PERATU	RES (°C)	r		. <u> </u>
16.00	27.26	30.14	28.91	26.75	23.62	22.07	1 1	
8.00	27.77	30.88	28,84	26.70	23.52	21.99	1	
4.00	28.04	31.87	28.74	26,60	23.49	21,96	1	
2.00	28.59	32.49	28.60	26.42	23.40	21.89	1	
1,00	29.28	33.34	28,50	26.32	23,31	21.83	1 1	
.50	29.75	34.31	28.42	26.22	23.21	21.74		
.25	30.56	35.16	28.32	26.05	23.11	21.71	1 1	
.12	31.06	35.98	28.19	25.93	23.04	21.63		
03	28.52	33.60	27.70	26.32	27.92	25.85	1 1	
06	24.91	28,89	27.65	26.57	28.14	26.38	1 1	
12	22.80	23.92	26.76	26.11	26.83	26.16		
25	22.74	22.56	23,90	24.06	23.98	24.10	{ }	
50	21.21	21.12	21.14	21.17	21.03	21.65		
-1.00	19.00	10.94	19.04	19.08	19.02	19.02	LL	
		VAI	POR PRES	SURE (m	b)			
16.00	14.91	14.19	14.56	15.81			r	
8.00	15.22	14,33	14.65	15.87			1	
4.00	15.24	14.39	14.66	15.81			1 1	
2.00	15,30	14.41	14.60	15.82				
1,00	15.41	14.47	14.62	15.80	20.7 ·	20.9*		
.50	15.60	14.51	14.64	15.81				
. 25	15.60	14.57	14.65	15.77		·		
.12	15.73	14.71	14.59	15.75				
		wii	ND SPEED) (cm/aec)			
18.00	752	1211	859	1041	883	865		
8.00	721	1130	772	933	784	764		
4,00	627	1017	675	814	685	662		
2.00		938	611	739	605	586	(I	
1.00	533	826	531	639	637	521	1	
.50	475	727	402	557	471	461	1 1	
.25	393	594	376	454	389	382		
		WIN	D DIREC	TION (deg				
1.00	162	168	167	170	132	146		
		SOIL TEN	PERATU	RE CHAN	GE (°C)			
Initial Time	1050	1250	2154	2350	2050	2250		
Run Time (min)	26	27	23	26	26	27	([
-,03	.91	.07	16	24	53	78		
06	.96	.64	20	11	43	77	[
12	.13	.37	- 21	11	12	33		
-,20	04	01	.02	.05	.08	12		
-, DU	02	01	01	00	00	00	I I	
~1.UU	01	00	01	.01	00	03	L	

Precipitation (cm) * Sling Psychrometer - -

- 1984 F.

i

ŝ

O'NEILL, NEBRASKA O'NEILL, NEBRASKA GAR RELEASE NG. O'NEILL, NEBRASKA GAR RELEASE NG. C'NEILL, NEBRASKA GAR RELEASE NG. C'NEILL, NEBRASKA GAR RELEASE NG. O'NEILL, NEBRASKA GAR RELEASE NG. C'NEILL, NEBRASKA Insolution (1956) 1205 1305 RADIATION (cal/cm ² acc) Insolution (0052 0126 0202 AIR and SOLL TEXMPERATURES ('C) Horight (m) 16.00 23.62 29.7 - - AIR and SOLL TEXMPERATURES ('C) Horight (m) 16.00 23.62 29.14 31.62 29.24 31.88 8.00 23.62 29.14 33.62 29.24 33.83 33.83 23.93 23.92 23.93 23.93 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>												
GAS RELEASE NO. 25 26 27 28 29 30 AUGUST (1056) 1 2 2 3 3 3 CST 1305 1205 1405 0006 0205 1305 RADIATION (cal/cm ² acc) Insolution .0002 .0183	HOURLY OBSERVA	TIONS					0'1	NEILL NEBRASKA				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GAS RELEASE NO.	25	26	27	28	29	30	,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AUGUST (1956)	1	2	2	3	3	3	1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CST	1305	1205	1405	0005	0205	1305					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			RAD	IATION (c	al/cm ² se	c)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Insolution	.0092	.0180	.0183	+-		.0202					
Net Ibadiation .0052 .0126 .0123 0003 .0129 AIR and SOIL TEMPERATURES (°C) itelight (m) 16.00 22.92 27.93 30.26 24.70 25.81 32.39 4.00 23.62 28.57 30.84 24.38 25.72 32.06 2.00 23.62 29.21 31.43 24.22 25.36 33.53 1.00 24.00 29.91 31.46 24.07 25.14 34.00 .50 24.77 30.42 22.62 23.52 34.53 36.10 .603 27.41 29.97 23.68 22.92 33.20 03 .703 27.41 29.97 23.68 22.92 33.20 12 .712 22.50 22.31 23.74 23.68 22.94 50 .713 21.38 21.72 19.27 60 50 .733 22.43 22.17 2- 19	Reflected	.00185	.00305]]	.00329					
AIR and SOIL TEMPERATURES (°C) Height (m) - - 25.24 26.24 31.88 8.00 22.92 27.93 30.73 24.70 25.81 32.39 4.00 23.26 28.57 30.84 24.38 25.72 32.96 2.00 23.62 29.21 31.43 24.22 25.30 33.63 1.00 24.09 29.91 31.96 24.77 34.40 54.72 34.73 .25 25.32 31.15 33.46 23.72 24.56 35.42 12 .01 29.72 31.74 34.25 23.53 24.33 30.10 -03 27.41 27.42 25.42 27.84 24.64 23.78 30.50 -12 22.50 22.44 23.23 23.24 60 25.94 40.64 23.78 30.50 -25 22.50 22.44 21.97 21.971 1.962 19.71 10.00 -7 -7	Net Radiation	.0052	.0126	.0123		0003	.0129					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			AIR and S	OIL TEM	PERATU	RES (°C)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ileight (m)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.00	22.87		•-	25.24	26.24	31.88					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8,00	22.92	27.93	30.28	24.76	25.81	32.39	[[
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.00	23.26	28.57	30.84	24.38	25.72	32.96					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.00	23.62	29.21	31.43	24.22	25.36	33.63					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00	24.09	29.91	31.96	24.07	25.14	34.00					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.50	24.77	30.42	32.62	23.92	24.78	34.73					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.25	25.32	31.15	33.45	23.72	24.58	35.42					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.12	25.72	31.74	34.25	23.53	24.33	36.10					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03	27.41	27.41	29.97	23.68	22.92	33.29					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	25.32	25.42	27.84	24.64	23.78	30.50					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 14	22.91	22.96	23.93	25.25	24.60	25.03					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	22.50	22.34	22.31	23.74	23.68	22.94					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		21.73	21.38	21.31	21.58	21.52	21.58					
VAPOR PRESSURE (mb) 16,00 22.57 22.43 21.72 18.67 4.00 22.57 22.43 21.72 19.27 4.00 22.63 23.02 22.02 19.48 2.00 22.63 23.02 22.02 20.74 1.00 23.40 22.29 20.07 50 23.72 22.44 20.53 25 23.28 23.92 22.57 20.65 .12 23.75 24.31 22.82 21.04 WIND SPEED (cm/soc) 16.00 328 451 849 508 620 852 4.00 207 721 694 321 441 775 2.00 275 648 613 255 304 697 1.00 246 568 <td>-1.00</td> <td>19.82</td> <td>1 19.70</td> <td>19.65</td> <td>19.82</td> <td>19 82 1</td> <td>19.71</td> <td>L</td>	-1.00	19.82	1 19.70	19.65	19.82	19 82 1	19.71	L				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			VAI	OR PRES	SURE (m	<u>b)</u>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16,00				•-	~~	18.67					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.00	22.57	22 43	21.72			19.27					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.00	22 40	22.69	21.80			19.48					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.00	22.63	23.02	22.02			19.74					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,00	. -	23.40	22.29			20.07					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.00	00.00	23.12	22.99			20,00					
112 23.13 21.01 22.02 11 21.04 WIND SPEED (cm/sec) 16.00 328 851 849 508 606 885 8.00 318 775 755 388 529 852 4.00 207 721 694 321 441 775 2.00 275 648 613 255 394 697 1.00 246 566 540 212 340 628 .50 221 511 483 177 296 540 .25 173 422 402 154 241 455 WIND DIRECTION (dog) TION 183 171 176 167 208 196 SOIL TEM PETRATURE CHANGE (°C) Initial Time 1252 1150 1350 2357 0150 1250 <th colspan="4" so<="" td=""><td>.20</td><td>23.20</td><td>24.02</td><td>20.07</td><td></td><td></td><td>20.00</td><td></td></th>	<td>.20</td> <td>23.20</td> <td>24.02</td> <td>20.07</td> <td></td> <td></td> <td>20.00</td> <td></td>				.20	23.20	24.02	20.07			20.00	
WIND SPEED (cm/sec) 16.00 328 851 849 508 606 885 6.00 318 775 755 388 529 952 4.00 207 721 694 321 441 775 2.00 275 648 613 255 394 697 1.00 246 566 540 212 340 628 50 221 511 483 177 296 540 25 173 422 402 154 241 455 WIND DIRECTION (deg) 1.00 183 171 176 167 208 196 SOII. TEM PETRATURE CHANGE (°C) Initial Time 1252 1150 1350 2357 0150 1250 Run Thme (min) 26 27 26 20 27 26 <	.14	40.10	L	44.04			41.04	L				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 00		wu	ND SPEE) (cm/soc	1	0.05					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.00	328	001	848	200	600	885 0E0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.00	318	115	(00 004	388	029	002	[]				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.00	201	121	094	321	441 204	110					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.00	210	500	640	200	240	400					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00	440	511	402	177	206	540					
Initial Time Initial Time<	.00	173	499	403	154	290	156					
WIND DIRECTION (deg) 1.00 183 171 176 167 208 196 SOIL, TEMPERATURE CHANGE (°C) Initial Time 1252 1150 1350 2357 0150 1250 Run Time (min) 26 27 29 20 27 26 03 .04 1.35 1.10 51 21 .72 06 .21 1.09 .69 61 17 .74		110	144	403			100	L				
Solit 133 171 170 167 208 196 Solit TEM PERATURE CHANGE (°C) Initial Time 1252 1150 1350 2357 0150 1250 Run Time (min) 26 27 20 20 27 26 03 .04 1.35 1.10 51 21 .72 06 .21 1.09 .69 61 17 .74	- 1 00		WIN	D DIREC	TION (dep	¢		·····				
SOII, TEMPERATURE CHANGE (°C) Initial Time 1252 1150 1350 2357 0150 1250 Run Time (min) 26 27 29 20 27 26 03 .04 1.35 1.10 51 21 .72 06 .21 1.09 .69 61 17 .74	1.00	183		170	167	208	100	I				
Initial Time 1252 1150 1350 2357 0150 1250 Run Time (min) 26 27 28 20 27 26 03 .04 1.35 1.10 51 21 .72 06 .21 1.09 .69 61 17 .74			SOIL TEN	IPERATU	RE CHAN	IGE (°C)						
Run Time (min) 26 27 29 20 27 26 03 $.04$ 1.35 1.10 51 21 $.72$ 06 $.21$ 1.09 $.69$ 61 17 $.74$	Initial Time	1252	1150	1350	2357	0150	1250					
03 .04 1.35 1.105121 .72 06 .21 1.09 .696117 .74	Run Time (min)	20	27	20	20	27	26	i l				
00 [,21 [1.09 [.69]61 [-,17] .74 []	03	.04	1.35	1.10	51	21	.72					
	06	.21	1.09	.69	~.61	17	.74					
12 .07 .14 .364510 .02	12	.07	.14	.36	45	10	.02					
25 64 06 $.11$ 27 01 $.05$	25	04	06	.11	27	01	.05					
	50	03	07	.05	~.20	.02	00					
-1.000304 .0031 00 .02	-1.00	03	04	.00	31	00	,02	L				

Precipitation (cm)

.....

- -

HOURLY OBSERVA	TIONS					0'	NETLT. N	IT'BRASKA
GAS RELEASE NO.	31	32	33	34	358	35	36	COLLAGNA
AUGUST (1956)	3	6	7	7	7	11	11	
CST	1505	2005	1305	1505	2305	2135	2335	
		RAL	MATION (cat/em2a	00)			
Insolation	.0152	1.0000	1.0164	0174	<u> </u>		T T	
Reflected	.00264							
Net Radiation	.0092	0013	.0109	.0113	0007	00091	.00085	
		AIR and	SOIL TEN	(PERATI	IRES (°C)	· · · · · · · · · · · · · · · · · · ·	······	
Height (m)	1	T	1	1		[T	
16.00	33.23	27.21	21.71	29.09	23.03	23.57	20.74	
8,00	33.44	25.33	27.88	29.21	22.68	22.30	19,81	
4,00	33.79	23.71	28.16	29.68	22.47	21.04	19.32	
2.00	34.25	22.93	28.73	30.19	22.28	19.73	18.94	
1,00	34,85	22.45	29.16	30.99	22.17	19.13	18.63	
,50	35.37	22.06	29.64	31.45	22.05	18.47	18.10	
.25	35.81	21.66	30.07	32.13	21.94	18.34	18.19	
.12	36.11	21.38	30.61	32 62	21 70	18.21	17.98	
03	34 04	25.35	29.57	31 07	23 42	24 85	23 15	
06	32 10	26 49	27 07	28.00	94 41	26.02	24 41	
12	26 80	26 18	99 49	24.80	95 99	20.02	25 40	
- 25	20.00	24.00	1 1 1 5 0	00 74	22 02	20.21	20.40	
- 50	1 44.11	1 39.00	1 22.00	24.10	40.93	23.70	24.01	
-1.00		32.02	1 21.00	21 02	1 31.91	21.03	21.34	,
-1.00	1 19.09	19.94	149.00	1 19.93	1 20.08	10.09	120.08	
		VA.	POR PRE	SSURE (m	<u>1b)</u>			
16.00	18,49	13.82	16.64	17.00	19,99	19.08	18.30	
8.00	18.65	14.39	16.97	17.21	20.12	18.93	18.43	
4.00	18.76	15.08	17.16	17.38	20.17	19.06	18.44	
2.00	18.79	15.54	17.41	17.51	20.17	18.91	18.44	
1.00	19.07	15.85	17.62	17,76	20.23	18.84	18.52	
. 50	19.20	16.01	17.77	15.97	20.27	19.32	18.83	
. 25	[19.34	16.09	18,09	18,10	20.27	18.59	18.59	
.12	19.33	16.12	18.36	18.26	20.33	18.59	18.83	
			ND SPEEI) (cm/see	e)			
16,00	1013	009	1063	1214	639	421	464	
8.00	(412		1128	520	318	342	
4.00	887	288	848	1052	434	253	243	
2.00	787	213	756	920	373	180	186	
1.00	691	160	690	846	340	110	137	
.50	617	136	580	706	281	88	116	
.25	527	95	484	587	231	45	81	
		wn	DIREC	TION (dee	g)			
1.00	204	168	171	140	164	97	154	
		SOIL TEN	MPERATU	RE CHAN	NGE (°C)			
Initial Time	1450	1950	1250	1450	2255	2120	2320	
Run Time (min)	28	27	27	28	21	26	30	
03	06	- 70	.10	14	- 38	- 47	- 35	
08	.25	- 55	64	31		. 49	- 38	1
12	.25	0	22	25	- 19	- 19	- 93	
25	.10	05	- 12	02	- 04	12	40	
~.50	00	1 00 00	- 11	.04	04	.14	00	
-1.00	00	,01	08	.03	04	.04	00	
Precipitation (cm)		# r						

HOURLY OBSERVA	TIONS					0'1	NEILL, NEBRASKA
GAS RELEASE NO.	37	38	39	40	41	42	
AUGUST (1956)	12	12	13	14	14	14	
CST	0305	0505	2235	0035	0305	0505	
		RAD	IATION (d	al/cm ² B	ec)		
Insolation							
Reflected							
Net Radiation	00087	-,00085	00135	0014	00123	00192	
	•	ATR and 5	SOUL TEM	ווידעמאמ	DES ("C')	·	******
lleight (m)				Iduard		·	I
16.00	21.02	20.07	23.68	21.91	21.63	21.92	1 1
8.00	20.90	19.93	22.39	21.11	20.82	21.68	1 1
4.00	20.79	19.84	21.28	2U.69	20.43	21.61	
2.00	20.65	19.82	20.47	20.29	20.20	21.49	
1.00	20.55	19.65	20.01	19.96	20.03	21.30	
.50	20.41	10.34	19.55	19.52	19.90	21.10	1 1
.25	20.33	19,48	19.35	19.20	19.62	21.03	
.12	20.22	19.37	19.06	19.08	19.43	20.90	1 1
03	21.68	21.59	25.09	23.64	22.26	21.92	
06	22.69	22.37	26:52	24.88	23.53	22.82	1
12	24.21	23.62	27.42	26.41	25.28	24.56	
25	23.83	23 62	24.63	24.89	24.80	24.47	
50	21.80	21.81	21.87	21.92	22.06	22.06	
-1.00	20.08	20.05	2 0.03	20.02	20.09	22.03	
		VAI	POR PRES	SURE (m	(b)		
10.00	19.61	19.77	12.82	13.11	14.93	14.13	
8.00	19.62	19.77	12.91	13.15	15.03	14.14	1
4.00	19.63	19.82	12.92	13.18	15.08	14.19	
2.00	19.62	19.75	12.92	13.19	15.07	14.16	
1.00	19.63	19.73	12.94	13.21	15.08	14.20	
.50	20.11	20.00	12.95	13.22	15.08	14.23	1 1
.25	19.68	19.72	12.93	13.23	15.09	14.22	{ }
.12	19.84	19.73	12.99	13.31	15.09	14.23	
		wi	ND SPEED) (cm/sec	·····		
16.00	726	679	542	486	671	828	I I I I I I I I I I I I I I I I I I I
8.00	60H	585	410	343	550	751	1 1
4.00	528	504	291	250	435	673	1 1
2,00	450	428	229	208	369	594	
1.00	400	370	169	158	316	527	
. 50	344	317	152	137	267	452	
. 25	281	258	112	99	216	380	
		WIN	ID DIREC	TION (de	~)		
1.00	170	161	122	166	185	199	
		SOIL TEN	APERATU	RE CHAN	NGE (°C)		
Initial Time	0250	0450	2220	0020	0250	0450	
Run Time (min)	30	26	28	28	28	28	
03	.06	12	46	27	10	05	1
06	13	09	45	-, 30	18	.01	()
~.12	29	11	25	25	15	14	1
-,25	04	06	. 02	04	03	06	
00	00	01	00	.01	.01	.01	
~1.00	01	01	02	00	.02	00	L
Precipitation (cm)							

Table 8.1 (Continued)

ł

60

.

15 1205 .0178 .0030 .0108 31.63 32.09	15 1405 RAD .0164 .0028 .0097 Allt and 1	15 1705 01ATION (c 000443 .00080 .0014	15 1850 cal/cm ² sc .00035	20 1005 .0187	20 1205 .0125	20 1255	21 0905
.0178 .0030 .0108 .0108	1405 RAD .0164 .0028 .0097 Allt and	1705 1ATION (6 .00443 .00080 .0014	1850	1005 .0187	.0125	1255	0905
.0178 .0030 .0108 31.03 32.09	RAD .0164 .0028 .0097 Allt and	00443 00080 00080 0014	cal/cm ² sc .00035	.0187	.0125		
.0178 .0030 .0108 31.63 32.09	.0164 .0028 .0097	.00443 .00080 .0014	.00035	.0187	.0125	·1	
.0030 .0108 31.63 32.09	.0028 .0097 Allt and 1	.00080 .0014		00010			.0142
.0108 31.63 32.09	.0097	.0014	0.004.4	.003131	.00215		.00253
31.63 32.09	Allt and		0014	.0108	.0070		.0681
31.63 32.09		SOIL TEM	PERATU	RES ("C)	_		
32.09	22.00	24 60	22.10	10.01	10 55	10.00	
32.00	94.97	34.00	22 01	10.01	10.00	10.29	17.10
20 RA	01.01	34.01	33.01	17.10	10,11	19,71	17.70
22.00	34.10	34.31	32.00	11.41	10.04	20.11	10.00
34.14	30.10	35.04	36.14	11.13	19.40	20.72	18.40
34.11	30.00	05.20	32.01	18.40	19.91	21.31	18.86
34,92	30.92	30.09	32.44	19.20	20.52	22.10	19.43
30,70	57.09	35.82	32.32	20.13	21.12	23.15	19.97
30.04	38.64	35,95	32.20	21.30	22.02	24.44	20.46
33,60	37.31	35,56	32.59	18.27	25.66		17.12
28.82	32.25	33,03	31.67	17.79	22.57		16.89
24,63	26.11	27.99	28.32	18.21	19.07		18.40
23.75	23.7 <u>2</u>	24.11	24.49	20.24	19.87	~~	20.52
22,29	22.25	22.12	22.09	20.96	20.78		20.73
20.13	20.11	20.08	20.05	20.28	20.13		20.04
	VA	POR PRES	SURE (m	b)			
11.83	10.64	11.90	11.41		9.73		12.53
12.28	11,17	12.17	11.51	1	10.09		12.78
12.36	11.16	12.18	11.57	1	10.26)	12.81
12.46	11.15	12.21	11.63	1	10.35		12.93
12.50	11.19	12.20	11.64	1	10.49		13.03
12.61	11.30	12.31	11.64	}	10.58		13.17
12.74	11.33	12.39	11.68	1	10.86		13 27
12.95	11.41	12.34	11.70		11.33		13,38
	u/1		**** 1 > 101 ms 20100		······································		
641	760	788	787	394	356	376	1027
606	719	735	707	374	347	365	981
565	680	665	625	358	329	342	
522		602	558	332	307	3.21	784
468	539	531	488	302	277	2.94	691
411	408	460	128	270	249	2.94	BUB
343	397	378	364		210	2.23	505
		D DIREC	TION (dice			الى	
168	156	153	134	1	216		189
	SOIL TEN	MPERATU	RE CHAN	GE ('C)	···· ···· ·		····
1150	1350	1650	1835	0950	1150		0850
27	28	28	27	26	28		27
. 67	21	57	77	1.87	.47		90
.60	.52	25	40	.70	1.03	İ	.52
.22	.36	.13	- 05	.03	34		00
	.03	08	05	03	- 06		- 08
03	_ 02	. 02	_ 04	- 04	_ 07		. 00
02		00	_ 07	- 04			. 02
	34.17 34.92 35.76 35.76 33.60 28.82 24.63 23.75 22.29 20.13 11.83 12.26 12.26 12.26 12.26 12.46 12.50 12.74 12.95 641 606 552 565 522 466 411 343 168 1150 27 .67 .67 .60 .22 09 03 02	34.17 36.06 34.92 36.92 35.76 37.69 36.64 38.64 38.60 37.31 28.82 32.25 24.63 26.11 23.75 23.72 22.29 22.25 20.13 20.11 VAI 11.83 10.64 12.26 11.17 12.36 11.16 12.46 11.15 12.50 11.19 12.61 11.33 12.74 11.33 12.74 11.33 12.75 565 660 522 468 539 411 468 539 411 468 343 397 WIN 168 156 -00 .52 .22 .36 .03 02 .03 02 .03 02 .03 02	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table 8,1 (Continued)

Appendiate of the second second

NO REAL

ł
HOURLY OBSERVA	TIONS					0'1	NEILL, NEBRASKA
GAS RELEASE NO.	55	56	57	58	59	60	
AUGUST (1956)	25	25	25	25	25	26	
CST	0105	0305	1735	1935	2235	0035	
		RAI	IATION (al/cm ² sc	ec)		
Insolation			.0054				
Reflected			.00087				
Net Eadlation	0015	0014	0013	0013	0014	0014	
		AIR and	SOIL TEM	PERATU	RES (°C)		
Height (m)]					
16.00	17.17	15.88	33.54	29,50	26,61	26.49	
8.00	17.08	15.70	33.76	28,49	25,34	26.17	
4.00	16.90	15.47	33.91	27.16	24.31	25.91	
2.00	16.75	15.29	34.11	23.64	23,60	25.75	
1.00	10.00	10.10	34.19	25.64	23,13	25.49	
.00	10 40	15.03	34 33	25.13	22.82	25.35	
.20	10.37	14.91	34.52	24.82	22.58	2014	
03	10.20	1 19.77	34.01	24.38	22.20	24.98	
05	20.50	19.42	31.70	28.09	24.52	23.28	
00	31.43	20.85	29.94	27.97	25.12	23,87	{ }
- 95	2.3 38	22.75	25.51	25.90	25.10	24.40	
- 50	23.04	22.02	22.19	22.49	22.99	23.09	
-1.00	21.02	21.02	20.89	20.78	20.89	20.94	
-1.00	12.41	17160	1 19.40	1.15.51	1.10.00	19.00	L
		VA	POR PRES	SURE (m	b)		
16.00	11 72	12.37	12.39		12.82	11,89	
8.00	11.73	12.21	1.1.59		12.99	11.96	
4.00	11 73	1,2,29	12 55		13.05	11.97	
2.00	11.73	42.39	12.56		3.11	11.97	
1.00	11-74	12.39	12.59		13.10	12.01	
.50	11 70	[-12.36]	12 61		13.14	12.04	1 1
,25	11.73	12.36	.12.63		13.15	12.00	
.12	11.72	12.30	12.65		13.15	12,08	
		wi	ND SPEED) (cm/sec	•)		
16.00	830	704	969	572	628	723	
8.00	755	619	879	433	462	595	
4.00	679	546	824	311	342	533	
2.00	594	4/5	720	224	261	457	
1.00	517	415	642	155	202	404	
.50	446	361	550		108	349	
.25	379	299	409	103	134	204	
		WI	ND DIREC	TION (deg	()		
1.00	143	138	185	158	160	182	
		SOIL TE	MPERATU	RE CHAN	IGE (°C)		
Initial Time	0050	0250	1722	1923	2227	0028	
Run Time (min)	26	26	25	25	19	18	
03	- 24	21	.67	80	39	10	
06	21	.22	22	51	24	17	
12	17	22	.16	03	13	13	
25	- ,01	-,04	.08	.11	.03	03	1
50	00	00	E 01	63	1 61	00	! }
		1 00	1 .04	1 .00	1 .01	1 20	1 1

Table 8.1 (Continued)

Precipitation (cm)

٢

--

HOURLY OBSERVATIONS O'NEILL, NEBRASKA GAS RELEASE NO. 54 24 49 50 51 52 53 21 21 21 24 24 AUGUST (1956) 1105 1405 1120 2005 2205 CST 1535 RADIATION (cal/cm²sec) Insolation .0209 .0202 .0158 .0204 - -.00309 Reflected .00303 .00259 .00289 - -**Net Radiation** .0129 .0128 .0088 .0110 -.0015 -,0017 AIR and SOIL TEMPERATURES (°C) lieight (m) 21.45 27.14 28.36 23.17 16.00 21.32 19.56 27.68 8.00 21.94 29.1323.59 20.26 19.31 4.00 22.64 27.90 29.40 24.08 18.77 18.942.00 23.29 28.64 29.80 24.96 17.39 18.68 1.00 24.05 29.20 30.5025.98 16.56 18.45 30.05 26.74 25.00 31.07 15.76 18.25 ,50 25.72 31.97 27.95 .25 31.2315.37 18.04 .12 26.38 31.95 32.52 29.19 14.90 17.89 -,03 22.77 29.55 30.45 27.56 25.07 22.48 -.06 20.34 26.18 27.78 23.69 26.32 23.92 -.12 18.86 21.20 22.45 21.12 25.65 24.88 -.25 20.1519.99 20.1221.57 22.6622.96-.50 20.60 20.45 20.34 20.91 20.82 20.60 -1.00 19.92 19.83 19.58 19.73 19.56 19.64VAPOR PRESSURE (mb) 16.00 14.03 14.09 12.949.22 10.64 11.40 8.00 13.84 14.3513.21 10.72 10.79 11.42 4.00 13.77 14.39 13 23 10.69 10.75 11.42 2.00 13.6014.49 13.34 10.79 10.7411.40 1.00 14.58 13.47 13.5311 19 10.78 11.42 .50 13.29 14.68 13.57 $11 \ 10$ 10.8611.41.25 13.20 14.75 13.66 11.21 10.84 11.39.12 12.8714.93 13.9211.49 10.84 11.42 WIND SPEED (cm./sec) 808 819 594 641 16.00 508 8.00 802 796 804 446 537 4.00 752 764 766 496 320464 674 673 682 442 228 394 2.00 603 606 618 404 156 340 1.00 52**2** 547 137 299 .50 - -- -308 444 448 475 101 248 .25 WIND DIRECTION (deg) 1.00 185 197 226 119147 SOIL TEMPERATURE CHANGE ("C) Initial Time 1059 1350 1520 1150 1950 2150 Run Time (min) 28 28 25 262627 -.03 1.44 ,58 -.02 1.21 -.90 -.35 -.00 -.61 .60 .20 ,97 .89 -. 44 -.12 .40 .02 .22 -34 .20 -.12 -.21 -.25 -.06 .04 .08 .07 .04 -.50 -.03 -.02 -,03 -.02 -.01 00 -1.00 -.01 -.03 -,02 -.02 .01 00 - -- -. . - ----

Table 8.1 (Continued)

Precipitation (cm)

12 11 21

77、174、19月1月4月,19月1日,19

1929109-1

- -

HOURLY OBSERVA	TIONS					O'I	EILL, NEBRASKA
GAS RELEASE NO.	61	62	63	64	85	66	
AUGUST (1956)	27	27	27	27	29	29	
<u>CS</u>	1105	1405	2005	2236	1930	2135	
		RAD	IATION (al/cm ² se)		
Insolation	.0190	.0110					
Reflected	.0030	.00174					ļ
Net Radiation	.0019	-,0072	0011	0005	0022	0018	
		AIR and §	OIL TEM	PERATU	RES (°C)		
Height (m)							
16.00	29.80	29.77	29.52	26.77	25.98	22.02	
8.00	30.41	30.00	27.27	23,85	25.61	21.22	
4.00	31.00	30.49	25.54	22.16	25.22	20.05	
2.00	31.63	30.75	24.07	20.90	24.96	20.19	
1.00	32.29	31.15	21.41	19,60	24.76	19.88	
,50	33.20	31.58	19.24	18.70	24.57	19,57	
.25	34.10	32.10	18,17	18.16	24.30	19.27	
.12	34.61	32.35	17.57	17.83	24.04	18.99	
03	30.12	30.02	26.64	23,49			
-,06	25.80	28.56	27.33	24.08			
12	23.60	25.44	26.30	20.54			
25	23.19	23.01	23.77	23.98			
50	21.49	21.39	21.55	21.59			
-1.00	19.66	19.61	19.50	19.78			
واستناب مرجوبين	······	VAI	POR PRES	SURE (m	b)	·	
16.00	11.64	12.41	15.09	15.33			
8.00	12.15	12.56	15.04	15.68			
4.00	12.10	12.67	14.68	15.87			
2.00	12.20	12.83	14.13	15.58			
1.00	12.20	12.91	13.64	15.16			l l
.50	12.28	13.13	13.20	14.86			
.25	12.36	13.30	12,75	14.69			
.12	12.44	13.47	12.20	14.51			
		wi	ND SPEEL) (cm/800	.)		
15.00	980	632	267	307	768	650	
8.00	926	603	195	209	626	506	
4.00		583	139	169	530	392	
2.00	782	518	116	120	455	314	
1.00	700	461	26	46	393	256	
.50	614	405		25	339	217	
.25	520	343	·		277	177	
		WI	D DIREC	TION (des	s)		
1.00	190	189			159	153	
ورساد مستقاد ومعدونين		SOIL TEN	IPERATU	RE CHAN	IGE (°C)		
Initial Time	1050	1353	1950	2220]	
Run Time (niin)	26	23	27	27			
03	1.40	.46	89	24			
u6	.82	27	54	31			
12	.11	.15	03	19			
25	08	.03	.08	.01			
60	05	.01	.04	00		••	
-1.00	03	00	.05	00	1		
Provinitation (am)							

Table 8.1 (Continued)

HOURLY OBSERVA	TIONS					O'I	NEILL, N	EBRASKA	
GAS RELEASE NO.	67	68						•	
AUGUST (1956)	0025	30							
	0030	J230			·				
		RAD	ATION (al/cm ² se	ec)				
Insolution			ĥ .						
Reflected			1						
Net Radiation	0011	0009							
		Allt and a	SOIL TEM	PERATU	RES (°C)				
Height (m)	,						I		
16.00	21.12	21.97	4			1			
8.00	20.88	21.36							
4.00	20.66	20.94							
2.00	20.55	20.65			ļ				
1.00	20.38	20.38							
00,	20.21	20.24							
, 40	20.15	10.88				i			
- 03	20,02	10.00	1 1			1			
06									
- 12			1						
25									
50									
-1.00			1			1			
16.00		VA1	POR PRES	SURE IM	0) 			r	
8.00									
4.00									
2.00									
1.00									
.50			1						
.25									
.12									
		wn) icm/sec	1				
16.00	74R	558	[10112/ 1000	f				
8.00	615	427			1				
4.00	521	331							
2.00	444	269	I		ł				
1.00	385	219							
. 50	336	188							
. 25	274	149							
		WIN	ID DIREC	TION (dre	2) 2)				
1.00	168	159	[]		Υ				
		SOU. TEM	1	RE CHAN	L	L	L	L	
Initial Time		<u></u>	T		1 1 1 1 2/	I			
Run Time (min)									
03]	1			
00									
12									
25									
50									
-1,00			L					L	

Precipitation (cm)

HOURLY OBSERVA	TIONS		July 10,	1956		O'l	NEILL, N	EBRASKA
CST	1305	1405	1505	1 605	1705	1805		
Ŷ		RAD	IATION (al/cm ² so				
Insolation	.0225	.0212	.0187	.0150	.0115	.0066		
Reflected	.0040	.0039	.0930	.0027	.0023	.0015		
Net Radiation	.0138	.0128	.0108	.0085	.0057	.0025		
	Λ <i>μ</i> ·ν	Allt and S	ML TEM	DEDATI				
Height (m)							r	1
16.00	28.55	28.71	29.22	29.85	29.90	29.89		
8.00	29,09	29.04	29.57	30.18	30,15	30.12		
4.00	29.21	29.46	29.75	30.61	30.57	30,34		
2.00	29.64	30.27	30.34	30.73	31,10	30.52		
1.00	30.50	31.21	31.10	31.61	31.47	30.79		
. 50	32.01	31.99	32.01	32.30	32.01	31.00	Ì	ļ
. 25	32.93	33.10	33.39	33.22	32.58	31.16		
.12	33.92	34.33	34.27	34.16	33.06	31.38	· ·	
03	33.68	34.89	35.41	35.22	33.74	31.75		
06	29.89	30.53	31.58	32.08	31.77	30.82	{	
12	23.25	24.23	25.34	20.10	20.77	21.10		1
25	21.01	21.11	21.27	21,00	21.04	22.17		
50	20.07	20.03	19.97	20.00	10.00	10.97		
-1.00	10.23	10.66		10.22	10.22	10.20	L	L
		VAI	OR PRES	SURE (m	h)			
16.00	11.90	12.06	12 12	13 28	13 16	13 41		
8.00	13.06	12.97	13.07	13.81	13.87	13.59		
4.00	13.03	13 02	13.10	13.87	13.72	13.63		
2.00	13.12	13.05	13.16	13.92	13.75	13.69		1
1.00	13.32	13.18	13.42	14.15	13.85	13.78		
.50	13.71	13.50	13.63	14.52	13.98	13.88		
. 25	14.26	13.85	13.94	14.65	14.16	13.93		l
. 12	14.81	14.15	14.31	15.12	14.32	14.02		
		wn	ND SPEEI) (cm/sec	:)			
16.00	362	560	479	506	611	827	T	
8.00	314	508	433	461	540	710	1	l
4.00	324	481	408	427	498	647		
2.00	298	444	379	390	452	572	1	
1.00	277	402	350	353	406	503		
. 50	246	352	309	308	350	432	1	
. 25	203	295	257	253	288	362	L	l
		WIN	ID DIREC	TION (de	g)			
1.00		205			171	~-		
		SOIL TEN	IPERATI	IRE CHAI	NGE (°C)			
Initial Time	1253		1452	1550	1757		1	
Run Time (min)	26		29	29	21			
03	.65		.02	37	1		l	1
06	.85	• •	.40	.06		ł ·	1	
12	.55	.	.39	.35				
-,25	.02		.08	.12			1	1
50	05		04	01				1
-1.00	0		•.01	0		L	<u> </u>	L

Table 8.2

Precipitation (cm)

HOURLY OBSERVA	TIONS		July 10	1956		Q	NEILL, MEDI	ASKA	
CST	1905	2005	2105	0005+	0105+	0205+			
	· · · · · · · · · · · · · · · · · · ·	RAD	IATION (cat/cm ² sc	<u>er)</u>				
Insolation	.0002								
Reflected	.0004								
Net Radiation	0004	0017	~.0016	-,0014	0013	~.0013	<u> </u>		
	r	AIR and !	SOIL TEN	<u>(PERATU</u>	<u>RES (°C)</u>	*		<u> </u>	
Height (m)	90.15	96.00	05.99			[
10.00	29.13	26.36	25.12	23.29	21.99	21.92			
8.00	29.07	25 90	24.47	23 03	21.61	21.50			
4.00	20.03	25.50	24.47	20.00	21 14	21.00	1 1		
2.00	28.00	25.26	21.10	22.00	21.00	21.21			
1.00	28.00	95 09	99.45	22.00	20.06	20.96			
, 3U ne	28.91	24 78	23.40	99 90	20.30	20.00			
.20	28.80	24.10	23.20	22.20	20.59	20.04			
.12	30 14	28 48	26.00	24 10	23 47	22 01			
03	29.98	20,40	20.00	24 99	24 40	23.01			
00	27 20	27.00	26.84	95 54	24.40	20.01			
~.12 05	27 42	21.00	23.04	20.04	99.20	27.00			
20	19 99	20 01	20.00	20.00	20.00	20.34			
	18.90	18 25	18 99	18 20	18 74	19 25			
-1.00 18.20 18.23 18.32 18.39 18.34 18.33									
		VAI	POR PRES	SSURE (m	b)			_	
16,00	1-14:08 -	1 - 14.63 -	[14.06		15.76	16.07			
8.00	14.24	14.80	14.20	15.70	16.06	15.04	i l		
4.00	14.35	14.84	14.24	15.73	16.00	16.07			
2.00	14.43	14.93	14.28	15.76	16.02	16.69			
1.00	14.54	14.98	14.34	15,78	16,01	16.09			
.50	14.58	15.02	[14.36	15.78	16.03	16.11			
.25	14.63	15.02	14.43	15.80	15,98	16,11			
.12	14 70	15.02	14.54	15.80	16.00	16.13	<u> </u>		
		WI	ND SPEE) (em∕sec	•)				
16.00	729	627	660	801	1368	632	T		
8 00	639	478	501	640	1061	401			
4.00	5 69	380	397	554	900	416			
2.00	497	307	322	484	775	352			
1.00	432	260	279	415	661	305			
.50	373	222	230	362	576	262	1		
. 25	299	161	173	294	457	201			
		WIN	a) DIREC	TION (dep	s)				
1.00									
		SOIL TEN	APERATU	URE CHAN	IGE (°C)				
Initial Time	1850	1950	2050	2353	0058	0155			
Run Time (min)	28	28	28	28	26	22			
03	84	87	- 68	27	20	.20			
06	- 51	52	53	30	-,17	.20	1		
12	02	09	17	19	08	.11			
25	.15	.14	+.06	0	+.06	.01			
50	,02	.01	0	02	+.09	0			
-1.00	.01	.05	0	04	U	.02	1		
Dremailation (am)									

Precipitation (cm) * July 11, 1956

HOURLY OBSERVA	TIONS		July 11,	1956		0'	NEILL, N	EBRASKA	
CST	0305	0405	0505	0605	0705	0805			
		RAD	DIATION (cal/em2s	ec)		_		
Insolation			1000.	.0020	.0058	.0078			
Reflected				.0003	.0014	.0013			
Net Radiation	0010	0009	0012	.0000	.0028	.0042			
		AIR and	SOIL TEN	PERATU	RES (°C)				
lleight (m)									
16.00	21.96	21.00	02 92	00.07	22 40	94.00			
8.00	21.00	21.60	22.33	22.07	23.49	24.02	{		
4.00	21.30	21.00	22 12	22.00	23.05	24.35			
2.00	21.16	21.42	22.04	22.77	24 03	24.51			
50	20.97	21.30	21.87	22.74	24.23	24.66			
25	20.78	21.18	21.66	22.67	24.38	24.81	}		
12	20.61	21.03	21.54	22.64	24.50	24.88			
03	22.44	22.18	22.07	21.96	22.35	23.19			
06	23.34	23.02	22.74	22.55	22.52	22.84			
12	24.48	24.13	23.80	23.56	23.30	23.07			
-,25	23.28	23.10	23.08	22.99	22.87	22.70			
50	20.40	20.38	20.40	20.44	20.44	20.40			
-1.00	18.36	18.34	18.32	18.33	18.31	18,28			
16.00	10.34	1 10.73	17.18	1 17.10	18.00	18.32			
8.00	16.30	16.68	17.10	17.21	17.92	18.38			
4.00	16.35	16.71	17.15	17.39	18.09	18.56			
2.00	16.36	16.76	17.19	17.39	18.19	18.82			
1,00	16.39	16.75	17.21	17.39	18.19	18.94			
.50	16.43	16.80	i 7.24	17.47	18.15	18.68			
.25	16.46	16.82	17.24	17.54	18.22	19.32]		
.12	16.46	16.82	17.24	17.54	18.15	18.42			
		wi	ND SPEEI) (cm/sec	•)				
10.00	651	685	843	780	914	1090	<u> </u>		
8.00	506	559	707	689	793	936	1		
4.00	429	491	628	607	704	833	1		
2,00	365	437	558	543	636	744			
1,00	314	383	488	474	558	649			
,50	272	327	424	411	484	570	ļ		
.25	204	267	348	340	402	468			
		WIN	ID DIREC	TION (dec	r)				
1.00	T]]		
SOIL TEMPERATURE CHANGE (CO)									
Initial Time	0255	T 0351	0452	1 1550	0050	0750	γ		
Run Time (min)	23	25	24	26	26	26			
03	.15	03	.08]11	29	26			
06	.07	.14	<u>06</u>	+.03	.04	15	}		
- 12	.12	.16	.10	.09	.11	+.11	1		
25	.02	.06	.04	.04	.08	.09	}		
50	.02	01	01	02	.02	.03]		
-1.00	02		0	- 02	.01	0			
Precipitation (cm)									

Table 8.2 (Continued)

HOURLY OBSERVA	TIONS		July 11,	1956		0'1	NEILL, N	EBRASKA
CST	0905	1105	1305	1405	1505	1605		
		RAD	ATION (al/cm ² sc	96)			
Insolution	.0135	.0200	.0190	.0202	.0135	.0135	I	
Reflected	.0028	.0038	.0037	.0039	.0028	.0032		
Net Radiation	.0082	.0128	.0125	.0123	.0080	.0075		L
		AIR and S	OIL TEM	PERATU	RES (°C)			-
Height (m)							1	
16.00		27.13	29.54	31.20	32.47	32.83		1
8.00	25.06	27.27	30.00	31.67	32.83	33.38		
4.00	25.38	27.93	30.46	32.13	33.32	33.81	1	
2.00	25.87	29.11	31.39	32.85	34.11	34.33	Ì	1
1.00	26.09	29.84	32.22	33.26	34.80	35.23]	1
.50	26.77	30.46	32.98	33.97	35.75	36.19		
.25	27.36	31.64	33.82	35.26	36.98	37.17	1	1
.12	27.89	32.07	34.71	36.49	38.02	37.76	1	1
03	24.42	29.29	34.30	35.52	36.46	36.00]	}
-,06	23.37	26.06	29.64	31.12	32.34	32.72		1
12	23.04	23.40	24.68	25.53	26.28	27.10	1	
25	22.58	22.34	22.34	22.36	22.50	22.58		
50	20.41	20.37	20.4Ú	20,34	20.38	20.26	ļ	l .
-1,00	18.27	18.21	18.25	18.21	18.20	18,18	L	L
		VAI	OR PRE	SSURE (m	(b)			
16.00	[19.11	23.21	23.14	22.62	24.01	23.55		ļ
8.00	19.17	23.48	23.62	22.94	24.31	23.69		
4.00	19.20	23 57	23.40	23 10	24.45	23.74		ļ
2,00	19.26	23.78	23.40	23.22	24.75	23.89		Į
1.00	19.34	23.98	23.54	23.34	24.94	24.10		1
. 50	19.51	24.31	23.73	23.57	24,90	24.15		
. 25	20.05	24.64	24.06	23.85	24.91	24.55		
.12	20.21	25.07	24.58	24.26	24.88	24.75		L
		WI	ND SPEE	D (cm/see	c)			
16,00	1068	735	670	004	466	630	ļ	
8.00	923	684	626		463	628	1	
4.00	837	634	575	533	435	596		1
2.00	761	582	530	490	403	515	1	[
1.00	663	519	471	439	360	484	1	
,50	585	460	416	390	320	429	1	
25	527	380	350	321	261	361		l
		WI	AD DIREC	TION (de	<u>e)</u>			· · · · · · · · · · · · · · · · · · ·
1.00							<u> </u>	
		Soil_tem	PERAT	URE CHA	NGE ("C)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Initial Time	0850	1050	1250	1350	1453	1550		
Run Time (min)	26	26	26	27	25	27		1
s.0 3	+.87	+1.12	+.67	+.52	+.29	23		Į
06 	+.37	+.76	+. 88	+.57	+.38	+.11	1	i
12	U	+.17	+.31	+.34	+.28	+.25	1	
».25	05	-,03	0	+.01	+.03	+.07	1	1
··· . 50	0	0	01	02	01]03	1	1
		1	1	-				1

Table 8.2 (Continued)

Precipitation (cm)

--

69

(1) Full and the state of th

÷.

HOURLY OBSERVA	TIONS	July 23, 1956				O'NEILL, NE	BRASKA	
СЅГ	0905	1105	1205	1305	1405	1605		· · · · · · · · · · · · · · · · ·
		DAD	A TA TELENA I	na 1 /a2				
Insolation	0148	.0205	[.0219	1.0217	.0201	.0148		
Reflected								
Net Radiation	.0080	.0118	.0130	.0130	.0117	.0078		
	·····	ATR and S	SOIL TEN	101:124711	RES (°(*)			
Height (m)	[<u>Ann an</u> u v		1.1001.0		r		
16.00	22.67	26.10	27.43	28.56	30.54	30.92		
8.00	23.18	26.83	27.89	28.83	30.91	31.22		
4.00	23.65	26.89	28.30	29.52	31.76	31.61		
2.00	24.19	27.81	29.11	30.45	32.47	32.03		
1.00	25.04	28.73	29 88	30.96	32.85	32.80		
.50	25.81	29.59	31.02	31.85	33.62	33.68		
.25	26.80	30.92	32.17	33.05	34.90	34.62		
.12	27.44	31.97	33.06	34.21	35.80	35.22		
03	23.44	30.35	33 22	35.40	37.20	36.63		
06	21.09	25.88	20.20	30.24	32 72	33.05		
12	21.37	22.10	22.51	2.3.74	20.72	21 48		
~,20	21.00	21.04	21.07	21 00	21.08	21.98		
50 1. 00	1 10 01	18.00	20.54	14 95	20.36	18 56		
-1.00	1	10.34	10.52	1.5.92	1	1 10 30	- I	
		VAL	POR PRE	SSURE (m	b)			
16.00	18.21		13 77		13.00			
8 00	18.47	1			13 91	· · -		
4.00	18.50	17.57	1 -		13.83			
2.00	18.54	[17.57]	-	i	13.84		1 1	
1.00	18.61	17.77	14.89	· -	13.82			
.50	18 80	18.04	14.68		13.99			
.25	18.86	18.34			14 07	- (
.12	19.09	1.,18.83	1 15 30	1	1 1 1 1 1	1		
		WI	ND SPEE	D (c <u>m·a</u> ec)			
16.00	516	410	442	512	546	521		
8.00	489	378	424	483	511	485		
4.00	464	359	397	452	472	455		
2.00	425	342	373	428	457	123		
1,00	379	305	334	387	410	382		
. 50	338	275	303	343	3 69	336		
. 25	281	234	255	289	303	287	· / … · /	
		<u>wn</u>	ID DIREC	TION (dep	5)			
1.00	181	180	170	170	200	210		
		SOIL TEN	J.PERATI	URE CHAN	IGE (C)			
Initial Time	0850	1057	1154	1254	1354	1555	- 	
Run Time (min)	27	25	27	20	25	30		
03	1.4U	1.38	. 89	. 63	10	36		
06	.74	1.03	.74	.72	.36	.16		
12	.07	. 22	.30	.49	.21	.16	1	
25	05	09	04	.13	.17	. 25		
50	0	08	04	.08	02	.12		
-1.00	.01	01	03	0	02	01		
Precipitation (cm)	** 6					• •		

101-100-

Table 8.2 (Continued)

HOURLY OBSERV.	ATIONS	· · · · · · · · · · · · · · · · · · ·	July 23,	1956		0'1	IEILL, NEB	RASKA
CST	1705	1805	1905	2105	2305	0005+		
		RAD	IATION (cal/cm ² sc	ec)			
Insolation	.0099	.0060	.0018					
Reflected							ļ	
Net Radiation	,0042	,0017	0007	0011	0014	0014		······
		AIR and S	OIL TEN	PERATU	RES (°C)		<u> </u>	
Height (m)	31 21	31.05	29.96	26.82	83.50	24.82		
8.00	31.48	31.27	30.04	26.49	23.13	24.26		
4.00	31.93	31.52	30.04	26.18	22.69	23.93		
2.00	32.37	31.77	30.01	26.01	22.34	23.55		
1.00	32.65	31,99	30.02	25.70	22.07	23.15		
50	33.16	32.26	30.01	25.58	21.74	22.59		
.25	33.61	32.50	30,01	25.40	21.51	22.27		
12	34.06	32.69	30,03	25.22	21.33	21,99		
03	34.40	33.20	31.31	27.98	25.27	24.66		
00	32.77	31.84	30,68	28.31	26.20	25,69	l	
12	26.98	27.30	27.28	26.95	26.16	26.07		
-,25	22.19	22.52	22.74	23.17	23.44	23.75	1	
50	20.31	20.38	20.32	20.32	20.38	20.65	1	
-1.00	18.58	18.54	18,54	18.54	18.65	18.93		
		VA	POR PRR	SSURE On	(h)			
16.00	T	[· · · ·] . · · ·		15.33	1 15.17	16.64	<u>-</u>	
8.00				15.38	15.17	16.46		
4.00				16.26	15.17	16.50		
2.00				15.74	15.12	16.43		
1.00		~		15.81	15.09	16.34		
.50				15.53	15.13	16.30		
.25]	15.71	15.16	16.11		
.12				15.58	15.15	16.11		
		WI	ND SPEEI	D (cm./øer	•)			
16.00	637	778	731	532	575	437	I	
8.00	600	706	635	410	474	398		
4.00	537	667	5 68	341	385	341	1	
2.00	487			278	330	288		
1.00	449	505	437	233	279	241	Í	
.50	390	442	377	176	241	207		
.25	326	368	310	160	174	168		
		wi	AD DIREC	TION (de	g)			
1,00	190	180	170	180	200	250		······································
	· · · · · · · · · · · · · · · · · · ·	SOIL TER	PERAT	RE CHAN	GF ('C)			
Initial Time	1657	1753	1850	2050	2252	2352		
Run Time (min)	20	13	27	27	33	25	l	
03	85	62	76	- 68	49	33		
-,06	35	38	48	58	43	31		
12	.37	.22	U	26	- 24	17		
•.25	04	.10	.12	.06	.07	U		
00	15	01	0	0	.07	.01		
-1.00		0	0	<u> 0 </u>	.01	-,01	~	
Precipitation (cm)						÷ •		

Table 8.2 (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HOURLY OBSERVA	TIONS		July 24,	1956		0'	NEILL, N	EBRASKA	
RADIATION (cal/cm ² sec) Insolation 0000 .0003 Net Radiation 0000 .0003 Net Radiation -	CST	0105	0205	0305	0405	0505	0605			
Insolution 0.001 .0013 Net Redicted 0.000 .0003 Net Radiation 0.014 0.017 0.001 0.000 Ifeight (m) 24.34 22.55 20.06 19.47 19.52 18.70 4.00 23.83 21.73 20.18 19.27 19.14 18.68 2.00 23.83 21.73 20.18 19.08 19.25 18.60 18.50 .50 23.30 21.23 19.02 18.48 18.90 18.34 .12 22.60 20.64 19.02 18.33 18.62 18.24 00 24.23 23.71 22.02 22.37 21.91 21.60 01 25.5 23.70 23.70 23.62 26.22 20.44 12 25.65 23.70 23.70 23.62 <td></td> <td></td> <td>RAD</td> <td>IATION (</td> <td>cal/cm²s</td> <td>ec)</td> <td></td> <td></td> <td></td>			RAD	IATION (cal/cm ² s	ec)				
Reflected 0.000 .0003 Net Radiation 0014 0017 0018 0008 Itelght (m) 24.34 22.55 20.06 19.83 19.04 18.70 16.00 24.34 22.55 20.06 19.47 10.52 18.70 4.00 23.08 21.93 20.35 19.27 19.41 18.60 1.00 23.05 21.47 19.06 18.95 18.15 18.60 1.00 23.05 22.14 19.02 18.68 18.25 18.60 1.00 23.05 22.07 22.37 21.84 18.89 18.43 25 22.00 20.64 19.32 18.48 18.89 18.43 26 22.30 22.37 22.37 23.00 22.64	Insolution					.0001	.0013			
Net Radiation 0014 0017 0018 0018 0008 AIR and SOIL TEMPERATURES (°C) Height (m) 24.34 22.55 20.06 19.83 19.64 18.74 16.00 24.17 22.18 20.05 19.47 19.52 18.70 8.00 24.17 22.18 19.27 19.41 16.68 2.00 23.83 21.73 20.18 19.27 19.41 16.68 2.00 23.83 21.73 20.18 19.08 19.25 18.60 1.00 23.65 21.47 19.96 18.48 18.90 18.34 .12 22.60 20.64 19.02 18.33 18.62 18.24 .12 22.60 22.37 21.91 21.60 23.90 22.37 .12 25.62 23.76 23.70 23.62 23.52 .23.76 23.76 23.77 23.62 23.52 .20.01 18.43 18.94	Reflected				}	.0000	.0003			
$\begin{tabular}{ c c c c c c c c c c c c c $	Net Radiation	0014	0017	0016	.0017	0018	0008	l		
$\begin{array}{ c c c h (in) c c c c c c c c c c c c c c c c c c $			AIR and !	SOIL TEM	IPERATU	RES (°C)		_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Height (m)				I		[
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.00	24.34	22.55	20.96	19.83	19.64	18.74			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8.00	24.17	22.18	20.62	19.47	19.52	18.70			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.00	23.98	21.93	20.35	19.27	19.41	18.68	1	ĺ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.00	23.83	21.73	20.18	19,08	19.25	18.60			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00	23.65	21.47	19.96	18.95	19.13	18.50			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.50	23.30	21.23	19.62	18.68	18.95	18.43	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.25	23.05	20.91	19.32	18.48	18.89	18.34	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.12	22.80	20.64	19.02	18.33	18.62	18.26			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		24.23	23.71	22.92	22.37	21.91	21.60	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	06	25.04	24.58	24.02	23.50	23.00	22.64			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	25.65	25.28	24.96	24.66	24.32	23.99			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	23.76	23.75	23.70	23 70	23.62	23.52	1 1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	20 70	20.74	20.80	20.84	20.88	20.91			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	18 93	18.92	18 93	18 94	18 94	18.95	1	l i	
VAPOR PRESSURE (mb) 16.00 18.43 17.77 17.97 18.23 18.32 17.99 8.00 18.43 17.77 17.97 18.23 18.35 18.05 4.00 18.44 17.70 17.97 18.09 18.42 18.03 2.00 18.41 17.61 17.97 18.09 18.45 18.05 1.00 18.36 17.57 18.01 18.17 18.45 18.05 1.00 18.36 17.57 18.01 18.19 18.51 18.01 18.13 .50 18.36 17.57 18.01 18.21 19.56 18.12 .25 18.31 17.43 18.14 18.25 18.71 18.11 .12 18.31 17.43 18.19 18.25 18.71 18.13 .12 18.31 17.43 18.14 18.25 18.71 18.14 .12 .16.31 17.43 18.14 18.25 18.71 18.14 </td <td colspan="10">1.00 10.00 10.02 10.00 10.04 10.00</td>	1.00 10.00 10.02 10.00 10.04 10.00									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			VA.	POR PRES	SSURE (m	b)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16.00	18.43	17.77	17.97	18.23	18.32	17.99			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.00	[18.47	17.74	17.98	18.05	[18.35	18.05			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.00	18.44	17.70	17.97	18.09	18.42	18.03			
1.00 18.36 17.57 18.07 18.19 18.51 18.07 50 18.36 17.57 18.07 18.21 19.56 18.12 .25 18.31 17.48 18.09 19.23 18.61 18.13 .12 18.31 17.43 18.14 18.25 18.71 18.11 WIND SPEED (cm/sec) 10.00 669 605 530 637 642 584 2.00 559 472 418 495 542 532 4.00 467 415 371 435 463 505 2.00 375 358 310 378 411 420 1.00 321 307 273 328 378 380 .50 294 267 229 287 330 336 .25 246 222 197 244 281 289 HIND DIRECTION (deg) 1.00 320 320 320 320 320 320 <td co<="" td=""><td>2.00</td><td>18.41</td><td>17.61</td><td>17.98</td><td>18.17</td><td>[18.45</td><td>18.05</td><td></td><td>i</td></td>	<td>2.00</td> <td>18.41</td> <td>17.61</td> <td>17.98</td> <td>18.17</td> <td>[18.45</td> <td>18.05</td> <td></td> <td>i</td>	2.00	18.41	17.61	17.98	18.17	[18.45	18.05		i
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00	18.36	17.57	18.01	18.19	18.51	18.07	1		
.25 18.31 17.48 18.09 18.23 18.61 18.13 .12 18.31 17.43 18.14 18.25 18.71 18.11 WIND SPEED (cm/sec) 10.00 669 605 530 637 642 584 8.00 559 472 418 495 542 532 4.00 407 415 371 435 463 505 2.06 375 358 310 378 411 420 1.00 321 307 273 328 376 380 .50 294 267 229 287 330 336 .25 246 222 197 244 28i 289 WIND DIRECTION (deg) 1.00 320 320 320 320 320 SOIL TEMPERATURE CHANGE ("C) Initial Time 0051 0157 0238 0350 0051 0051 03 12 26 31 20 .12 <td>,50</td> <td>18.36</td> <td>17.57</td> <td>18.07</td> <td>18.21</td> <td>18.56</td> <td>18.12</td> <td></td> <td></td>	,50	18.36	17.57	18.07	18.21	18.56	18.12			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.25	18.31	17.48	18.09	18.23	18.61	18.13			
WIND SPEED (cm/sec) 10.00 669 605 530 637 642 584 $\delta.00$ 559 472 418 495 542 532 4.00 407 415 371 435 463 505 2.00 375 358 319 378 411 420 1.00 321 307 273 328 378 380 .50 294 267 229 287 330 336 .25 246 222 197 244 281 289 WIND DIRECTION (drg) 1.00 320 320 320 320 320 WIND DIRECTION (drg) 1.00 051 0157 0238 0350 0450 1.00 25 19 20 27 27 25 03 12 26 31 20 .12 .11 12	.12	18.31	17.43	18.14	18.25	18.71	18.11			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			wr		•	•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.00	660	BU5	590	637	649	584	1	r	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.00	550	470	A19	1 405	540	522	}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.00	300	415	9/1	1 495	483	505	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.00	101	210	310	970	411	420			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00	616	300	310	200	270	300	{		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00	341	0.07	270	040	310	300			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.50	2/14	201	107	201	230	1 330			
WIND DIRECTION (drg) 1.00 320 <th< td=""><td>. 20</td><td>240</td><td>466</td><td>1</td><td>444</td><td></td><td>203</td><td>1</td><td>L</td></th<>	. 20	240	466	1	444		203	1	L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			WII	VD DIREC	TION (de	<u>د</u> ا	· ····································			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00	320	320	320	320	320	320	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			SOIL TEL	MPERATI	IRE CHAN	₩GE ("C)				
Run Time (min) 25 19 20 27 27 25 03 12 26 31 20 12 11 00 17 21 18 19 12 15 12 15 13 11 10 14 25 01 0 01 03 0 06 50 $.02$ $.03$ $.01$ 0 0 $.03$ 02	Initial Time	0051	U157	0238	0350	0450	0051	T		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Run Time (min)	25	19	20	27	27	25	1	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-,03	12	26	31	- 20	~.12	11	1	l	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	17	21	18	19	- 12	15	1	I	
25 01 0 01 03 0 06 50 $.02$ $.03$ $.01$ $.03$ $.06$ 02 -1.00 0 $.01$ 0 0 $.03$ 02	12	15	13	11	11	10	14	1	1	
50 -1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25	01	i o	01	03	0	06			
-1.90 0 .01 0 0 .0302	50	.02	.03	01	.03	.06	02		1	
	-1.00	0	1	1 0	0	.03	02])	
		1	1	L		L	1		l	

ecipitation (cm)

HOURLY OBSERVA	TIONS		July 24,	1956		0'	NEILL, N	IEBRASKA		
CST	0705	0805	0905	1005	1105	1 205				
		RAD	IATION (cal/cm ² st	pc)					
Insolation	.0048	.0095	.0143	.0182	.0212	.0225				
Reflected	.0012	.0022	.0030	.0035	.0039	.0041	}			
Net Radiation	.0015	.0051	.0084	.0115	.0133	.0144				
		AIR and S	SOIL TEM	IPERATU	RES (°C)					
Height (m)	10.05	01.40	aa 710	04.50	95.04	0.0 10	1			
16.00	19.75	21.48	22.10	24.56	20.04	20.77		Ì		
8.00	20.95	21.87	23.09	24.90	20.00	27.03		4		
4.00	20.05	22.13	23.00	25.20	20.00	27.87				
2.00	20.20	24.40	24.02 94 68	20.04	27.23	20.00				
1.00	20.30	22.13	24.00	20.01	20.10	29.19				
.50	20.42	23.20	25.00	21.00	20.11	21 21		{		
.25	24.55	23.00	23.11	20.44	20.50	31.31	}	<u>{</u>		
.12	20.01	23.00	20.30	20.00	30.20	32.04	1	1		
03	99.99	22.13	27.14	24.84	28.57	22.00	}	}		
06	22,30	22.00	23.47	24.04	20.01	20.00	}			
12	23.00	29.90	23.30	23.30	29 00	22 85				
25	20.00	20.20	20.08	20.04	21.00	22.05	1			
-,50	18.94	18 06	18.95	18 84	18.87	18 85				
-1.00	-1.00 10.94 10.90 10.90 10.04 10.07 10.05									
		VAI	OR PRE	SURE (m	b)					
16.00	17.98	18.21	17.91	15.93	15.96	12.24		ł		
8.00	18.05	18.30	18.00	17.10	15,90	12.74	1			
4.00	18.00	10.34	18,04	17.15	10.12	12.74	1			
2.00	18.03	10.34	10.01	17.14	10.08	12.08	}	{		
1.00	10.09	10,43	10.97	17.20	10.19	12.10	1			
.50	10.10	10,40	10,19	17.39	10.23	12.11	i			
,25	18.21	18.57	18.30	17.68	16.20	12.00				
.12	10.21		10.50	17.00	10.11	12.00	L	l		
		WI	ND SPEEL) (cm/sec	1					
18.00	843	905	929	999	974	918		1		
8.00	763	828	856	904	689	863	l	l		
4.00	708	719	723	756	745	765	ł	l		
2.00	609	608	614	062	658	679	1	4		
1.00	552	532	540	085	585	013				
.50	501	475	402	037	238	509		1		
.25	420	916	410	455	455	302	L			
		WIN	D DIREC	TION (deg)					
1.00	340	340	340	340	340	340				
		SOIL TEN	PERATU	RE CHAN	(GE (°C)					
Initial Time	0651	.0750	0851	0051	1050	1150	[
Run Time (mln)	25	27	26	25	29	30	ł	1		
03	.20	.70	.97	1.05	1.27	.88	1	1		
00	03	.29	.46	. 61	.75	.74	1	1		
12	-,14	-,06	.03	.09	.21	.29				
25	06	-,02	04	-,05	05	04	}	1		
50	01	1,06	.02	U U	0	01]	1		
-1.00	01	,01	0	02	02	02		L		

Table 8.2 (Continued)

,

Precipitation (cm)

HOURLY OBSERVA	TIONS		July 24,	1956		0'	NEILL,	NEBRASKA		
CST	1305	1405	1505	1605	1805	1995				
		RAD	IATION (cal/cm ² sc	ec)					
Insolation	.0222	.0208	.0183	.0150	.0063	.0019				
Reflected	.0041	.0039	.0034	.0030	.0017			1		
Net Radiation	.0142	.0127	.0109	.0080	.0014	-,0011	l	<u> </u>		
		AIR and S	OIL TEM	IPERATU	RES (°C)					
Height (m)							1			
16.00	27.71	28.60	28.92	29.04	29.09	28.45				
8.00	28.11	28.83	29.39	29.63	29.19	28.51				
4,00	26.75	29.50	30.07	30 12	29.54	28.54	1			
2.00	20.03	30.06	30.74	30.83	29.82	28.00				
1,00	31 32	32.05	31.44	31.24	10 UR	28,59				
.00	32.54	32.03	33 (18	32 42	30.30	20.00				
12	33.36	33.77	33.98	33.26	31 17	28.63				
03	34.60	36.12	36.74	36.43	33.54	31.58		1		
06	30.03	31.45	32.52	32.95	32.03	30,99	i i			
12	24.98	25.77	26.47	27.17	28.04	28.08				
25	22.84	22.94	23.03	23.20	23.45	23.69	1			
50	20.98	21.03	21.01	20 99	20.87	20.85				
-1.00	18.82	18.84	18.80	18.75	18,87	18.87	1			
VAPOR PRESSURE (mb)										
16.00	11.17	10.96	11.29	16.51	16.46	12.26	1	1		
8.00	11.82	11.65	11,89	16.88	16.61	12.38				
4.00	11.84	11.68	12.00	16.88	16,51	12.38				
2.00	11.66	11.65	11.76	16.84	16.45	12.36				
1.00	11,78	11.68	11.79	16.76	16.44	12.35				
.50	11.90	12.19	11.93	16.81	16.46	12.26				
.25	12.24	12.70	11.93	10.92	16.57	12.30				
.12	12.33	12.04	12.21	17.14	10.57	12.30	<u> </u>	. I		
		wir	D SPEEL) (cm/see)					
16.00	856	790	825	657	487	503		1.		
8.00	793	707	745	588	433	427				
4.00	736	688	704	566	426	398				
2.00	657	611	618	501	376	339				
1.00	540	D4U 495	504	444	337	291				
. 30	477	400	207 434	401	290	209		1		
, 44		120	101		401	664	1	1		
1.00	340	WIN 340	D DIREC	TION (deg	()	r	r			
	L			1	L	l	1	_ <u></u>		
Intital Tima	1050	BOIL TEN	THERATU	TIEEA	UE (C)	1050				
Bun Time (min)	1200	1350	1450	1554	1752	1850	}	1		
03		21 AF.	20	- 42	20	20	1			
06	74	46	30	0.43	- 33	- 59	1			
12	32	.30	.30	28	.05	02	1			
50	.01	.02	.03	1.00	.10	+.08	1	1		
-1.00	-,01	0	02	0	.01	Ō	1			
	l	}	L	l	1	<u> </u>	<u> </u>			
Precipitation (cm)						~ -				

Table 8.2 (Continued)

HOURLY OBSERV	ATIONS		July 24,	1956	<u> </u>	0'	NEILL, NEBRASKA
CST	2005	2105	2205	2305	0005+	0105+	
	· · · · ·	RAD	DIATION (cal/cm ² s	ec)		
Insolation	.0002						
Reflected					**	·	
Net Radiation	0015	0012	0011	0010	0011	0009	L
	······	AIR and	SOIL TEM	PERATU	RES (°C)		· · · · · · · · · · · · · · · · · · ·
lieight (m)	07 10	06.40	95.49	02.66	00.44	21.94	
10.00	08 47	20.10	02 12	23.00	01 00	10.50	1 1
8.00	20.41	41.00	23.13	22.31	10 42	19.00	1
4.00	20.20	22.90	10.60	20.13	19.40	11.10	
2.00	23.03	21.71	19.03	19.17	17.04	10.04	
1.00	22.94	20.23	17.27	10.31	10.54	14.04	
.50	21.00	10.52	10.01	19.00	15.70	13.05	
.25	21.02	17.49	15.42	13.73	15.20	12.13	
.12	20.20	10.30	14.81	13.02	14.77	11.00	1
03	29.13	26.72	25.05	23.70	22.64	21.70	
06	29.62	28.04	26.68	25.49	24.48	23.62	{ {
12	27.94	27.63	27.21	26.69	26.14		
25	23.95	24.19	24.33	24.42	24.44	24.46	
50	20.95	21.05	21.08	21.10	21.16	21.24	
-1.00	18.91	18.95	19.00	19.04	19.08	19.16	
		VAI	POR PRES	SURE (m	b)		
16.00	12.36	12.93	12.40	13.18	13.74	13.16	
8.00	12.28	12.64	12.46	13.18	13.58	12.89	i I
4.00	12.26	12.42	12.46	13.29	13.55	12.76	
2.00	12.22	12.28	12.38	13.25	13.56	12.71	
1.00	12.20	12.19	12.22	13.10	13.52	12.67	1 1
.50	12.33	12.08	11.99	13.08	13.34	12.66	1 1
.25	12.22	11.98	11.96	13.08	13.15	12.64	1 1
.12	12.18	11.97	11.94	13.13	12.98	12.96	<u> </u>
		wn	ND SPEEI) (cm/sec)		
16.00	417	442	448	478	512	521	
8.00	317	270	387	395	414	378	
4.00	250	172	301	291	302	230	
2.00	146	115	216	217	202	178	
1.00	85	69	130	126	137	116	
.50	36	21	79	69	92	48	t t
.25	26	18	27	16	45	16	
······	······	WIN	D DIREC	TION (deg	;)		
60.1	L	••				180	
Induct (1)	1-105-	SOIL TEN	IPERATU	RE CHAN	GF. ("C)	·····	· · · · · · · · · · · · · · · · ·
Dun Time (m(z)	1951	2052	2150	2250	2353	0053	
nua i me (min)	26	25	27	27	25	31	
-,03	1 -1.19	83	~.66	57	34	49	
00	73	•.64	57	50	39	47	
-,12	-,19	-,16	20	28	22		
-, 20	.17	.04	.05	01	01	-,11	
00	11, 1	01	.03	0	0	03	
-1.00	0	.01	.02	01	.02	.02	

Table 8.2 (Continued)

Precipitation (cm) • July 25, 1958

i

,

......

75

· , •

.

ł

HOURLY OBSERVA	IOURLY OBSERVATIONS			1956		0'	NEILL, N	VEBRASKA		
CST	0205	0305	0405	0505	0605	0705				
		RAD	IATION (eal/cm ² so	ec)					
Insolation				0000,	.0017	.0057				
Reflected				.0000	.0006	.0016				
Net Radiation	0009	0008	0012	0011	0004	.0022				
		AIR and f	SOIL TEM	PERATU	RES (°C)					
Height (m)	90.05	10.25	10.16	17.05	1 1 1 4	10.00				
10.00	18.51	15 14	16,10	15 54	16.67	19.22				
4.00	15.78	14 13	15.07	14 04	16.52	19.56		1		
9.00	14.60	13.73	14.47	13.25	16.41	19.75	ł			
1.00	13.61	13.38	14.00	12.86	16.36	20.09				
.50	12.56	11.91	13.66	12.45	16.27	20.33				
.25	11.77	10.73	13.34	12.13	16.24	20.69	1	(
.12	11.04	9.86	13,01	11.89	16.19	20.87	1	l I		
03	21.24	19.94	19.47	19.21	18.99	19.82				
08	22.78	22.04	21.40	20.90	20.31	20.64				
12	25.06	24.56	24.07	23.60	23.14	22.82	1	1		
25	24.30	24.18	24.06	23.90	23.69	23.57				
50	21.24	21.26	21.30	21.29	21.32	21.34		1		
-1.00	19.15	19.18	19.18	k9.16	19.08	19.08	L			
VAPOR PRESSURE (mb)										
16.00	13.27	13.13				14.65		Τ		
8.00	12.33	12.01	-			14.87				
4.00	12.23	11.05				14.79	1	1		
2.00	12.20	11.82	••			14.86	1			
1.00	12.28	11.79				14.87				
.50	12.30	11.83			~-	14.92]			
.25	12.36	11.89				14.98				
.12	12.03	12.27				15.05	L	L		
		wn	ND SPEEL) (cm/sec	.)					
16.00	521	458	599	538	646	521				
8.00	398	217	442	414	514	512				
4.00	229	118	301	267	426	466				
2.00	193	19	230	100	100	300				
1.00	30	45	1 40	07	278	330				
25	16	16	94	55	220	271		-		
		1		1	\		I	I		
1.00	180	180	190	190 (deg	180	190	<u> </u>	T		
	L	6011 mm	10604/01			L	L	L		
Initial Time	0150	DOLL TEP	AFEINTU 0250	DAES		DAFO	Y	1		
Run Time (min)	0102	0202	0302	0100	0000	0000	1			
~.03	- 61	- 24	- 08	- 14	11	+ 56		{		
06	- 43	- 32	- 12		- 58	12				
12	30	- 21	22	- 14	-,18	- JR		1		
-,25	05	07	05	01	06	- 10	1	1		
50	.01	- 01	.03	0	.03	- 01	[1		
-1.00	0	0	.03	.01	0	01		1		
L	·	4 ···· ···· ···								

Table 8.2 (Continued)

Precipitation (cm)

-

HOURLY OBSERVAT	TIONS		July 25,	1956		0'	NEILL, N	EBRASKA				
CST	0805	0905	1005	1205	1405	1605						
		RAD	IATION (cal/cm ² sc	nc)							
Insolation	.0085	.0055	(.0120)	.0230	.0203	.0180						
Reflected	.0020	.0012	.0025	.0044	.0038	.0033						
Net Radiation	.0042	.0023	.0069	.0142	.0128	.0108						
		AIR and f	SOIL TEM	IPERATU	RES (°C)							
Height (m)							1					
16.00	21.95	23.96	25.37	28.91	31.40	32.63						
8.00	22 69	24.20	20.04	30 44	32.10	33.30						
200	22.96	24 64	26.90	31.13	33.63	34.70		}				
1.00	23.17	24.83	27.43	31.75	34.40	35.31	1)				
.50	23.64	24.95	27.98	32,80	35.18	35.80]]				
.25	24.06	25.17	28.55	34.06	36.07	36.55	l					
.12	24.27	25.35	28.81	34,96	36.82	37.35	[
-,03	21.41	23.58	25.58	31.46	35.05	35,69	(ļ				
-,06	21.19	22.30	23.38	26.50	30.32	31.22	ļ					
12	22.02	22.49	22.37	23.29	29.00	20.00						
-,25	21.31	21.27	21.85	21.15	21.11	21.02						
-1.00	19.05	19.01	19.02	18.97	18.92	18,89						
16.00	14.69	15.09	15.20	1 13.22	13.75	13.28	r	r				
8.00	14.79	15.23	15.37	13.68	13.95	13.44	1	}				
4.00	14.83	15.24	15.38	13.76	13.99	13.48	1]				
2.00	14.89	15.32	15.42	13.97	14.05	13.54		ł				
1.00	14.89	15.38	15.48	14.04	14.11	13.58						
.50	14.96	15.46	15.51	14.30	14.17	13.64						
.20	15.00	15.50	15.00	14.50	14.21	13.07	{	{				
.14						10,00	L	L				
18.00	790		ND SPEEL	J (Cm/800	1280	1145	T	<u></u>				
8.00	717	753		1009	1217	1103		1				
4.00	652	684	662	878	1073	994		1				
2.00	547	624	616	841	975	9Q1	1	1				
1.00	522	550	545	732	864	785	1					
.50	460	474		648	740	688		ł				
.25	375	388	393	534	014	563		L				
-1.00	- 100	WIN	D DIREC	TION (dep	z)	100		·····				
1,00	190	180	1.10	1 100	105	190	L	l				
- Televis 1 Mileson - T		SOIL TEN	PERATL	RE CHAN	IGE (°C)		~	·····				
Run Time Imin)	0750	0854	0951	1151	1350	1450		4				
03	20	24	28	27	28	26		i i				
06	.30	.40	.80	.75	.58	27	1	1				
12	13	.02	.07	.21	,33	.31	}	1				
25	11	08	09	05	.01	.05		I				
-,50	02	0	01	02	02	0	l	ł				
-1.00	04	.02	101	02	0	L O	1	L				

Precipitation (cm)

-- --

HOURLY OBSERVA	TIONS		July 25,	1956		0"	NEILL, NEBRASKA
Сбт	1605	1705	1805	1905	2005	2105	
		RAD	IATION (cal/cm ² sc	ec)		
Insolution	.0145	.0000	.0045	.0011	.0001		
Reflected	.0028	.0020	.0010				
Net Radiation	.0080	.0040	.0006	0015	0017	-,0011	
		Allt and S	SOIL TEM	PERATU	RES (°C)		
Height (m)	20.00	00.40	00.14	01.00		-	
16.00	32.00	33.42	33.14	31.97	29.63	28.91	
8.00	33.32	33,08	33.20	31.87	29.52	28.86	
4.00	33.19	34.01	33.30	31,79	20.42	20.70	
2.00	14 08	34.30	33,40	31.00	20.21	20.00	
1.00	35 40	35.02	22.40	31.50	20.03	20.02	
.50	36 17	35.34	33,00	21.20	20.00	20.02	1 1
.20	36 78	95 89	33.02	21 29	20.00	20.01	
.12	35 28	34 46	39.60	31 28	20.00	20.00	
03	31.64	31 71	31 10	30.26	20.04	28.28	i l
.00	26.22	26.84	97 14	97 99	27 1R	20.20	1
-,12	22.70	22.09	23 17	23.37	23.60	23 78	
20	20.98	21.06	21.04	21.04	21.06	21 10	
-, 50 1, 00	18.88	18.99	18.98	18.98	19.01	19.04	
-1.00	L				I	l	L
		VAI	POR PRES	SURE (m	b)		
16.00	14.01	13.05	13.13	13.80	14.37	14.51	
8.00	14.20	13.12	13.27	13.94	14.43	14.61	
4.00	14.24	13.21	13.26	13.85	14.49	14.60	
2.00	14.31	13.26	13.28	13.94	14.38	14.53	
1.00	14.35	13.29	13.35	13.86	14.48	14.62	
.50	14.39	13.33	13.32	13.97	14,45	14.59	
.25	14.42	13.40	13.32	13.94	14,49	14.59	
. 12	14.49	13.46	13.33	13.84	14.39	14.59	L
10.00		WI WI	ND SPEEL) (cm/800	:)		
10.00	1260	1236	1174	948	920	972	
0.00	1179	1193	1073	821	803	863	
4.00	1046	1044	944	727	714	770	
2.00	955	959	853	1 150	614	683	
1.00	830	820	744	202	541	587	
. 50	501	709 589	534	400	110	520 A10	
		000	001	L	300		
		WIN	D DIREC	TION (deg	:)		•••···
1 00	170	180	170	160	160	160	
		SOIL TEN	IPERATU	RE CHAN	(GE (°C)		
Initial Time	1650	1650	1752	1851	1951	2053	
Run Time (min)	28	26	24	25	26	27	
03	12	, f13	.74	74	50	30	
~.06	.03	12	33	32	39	31	
12	.26	.13	.09	+.02	~.05	07	
- 20	+.07	+,10	.10	.08	.10	.07	
	02	02	.01	0	.04	.01	
*1.00	01	Ű	.03	.02	.04	0	L
Precipitation (cm)							

Table 8.2 (Continued)

		Ta	ble 8,2 (Continued)		
HOURLY OBSERVA	TIONS		July 25,	1956		Ú'I	NEILL, NEBRASKA
CST	2305	0005+	0205+	0305+	0405+	0505+	
		RAD	IATION (al/cm ² se	ec)		
Insolution	·· -	~-	**			.0000	
Reflected						.0000	
Net Radiation	0014	0014	0009	0012	0011	0007	
		AlR and S	SOIL TEM	PERATU	KES (°C)		
Height (m)							
16.00	27.72	26.75	26.37	25.65	25.07	24.02	1
8.00	27.63	26.70	26.38	25.56	24.83	23.48	
4.00	27 51	26.60	26.34	25.30	24.63	22.79	
2.00	27.43	26.42	26.23	25.16	24.45	22.03	
1.00	27.35	26.32	26.16	24.89	24.20	21,31	
, 50	27.23	26.22	·26,09	24.69	24.07	20.65	
.25	27.11	26.05	26.00	24.42	23.94	20.27	
.12	27.03	25.93	25.91	24.25	23.78	20.02	
03	27.16	26.32	25.44	25.26	24.75	24.02	
06	27 14	26.57	25.69	25.44	25.09	24.67	
12	26.46	26.11	25.78	25.48	25.26	25.07	
25	23.98	24.06	24.17	24.15	24.10	24.05	
50	21.14	21.17	21.33	21.34	21.37	21.42	
-1.00	15.05	19.08	19.19	19,19	19 20	19.21	
		VAI	POR PRES	SURE (m	b)		
16.00	15.29	15.81	17 73	15 75	15.38	14.55	r
8.00	15.23	15.87	17.75	15.84	15.48	14.99	1 1
4.00	15.24	15.81	17 75	15 88	15 46	15 05	}
2.00	15.28	15.82	17 73	15 87	15 50	15 16	
1.00	15.31	15 80	17 73	15.88	15 48	15 16	
.50	15 22	15.81	17 75	15.98	15.54	15 18	
.25	15 26	15 77	17 77	15.92	15.48	15 19	
.12	15.28	15.75	17.84	15.97	15.60	15.18	
		WB	ND SPEER	i lem/see	1		
16.00	1084	TU41	968	581	607	341	<u> </u>
8.00	931	933	954	524	550	287	
4.00	864	814	853	432	457	238	
2.00	724	739	757	400	411	191	
1.00	636	639	655	342	351	150	
.50	561	557	576	295	290 (120	
.25	463	454	469	236	242	72	
		WIN	D DIREC	110N (dep	;)		
1.00	150	170	190	215	210	250	
		SOIL TEN	IPERATU	RE CHAN	(GF ('C)		
inital Time	2253	2350	0150	0250	0350	0450	
Run Time (min)	23	26	26	26	25	26	
03	.23	24	.01	- 27	17	38	
-,00	18	- 11	13	14	13	20	
~.12	11	11	.01	12	06	08	
25	.02	.05	.03	04	01	02	
50	0	0	.01	U	U	0	
-1.00	.02	.01	0	0	01	0	

Precipitation (cm) + July 28, 1956

.

1

- **199**-1

.

79

ŝ

.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HOURLY OBSERVA	TIONS		July 26,	1956		Oʻl	NEILL, N	EBRASKA
RADIATION (cal/cm ² sec) Insolition .0016 .0050 .0040 .0015 .0030 Not Radiation .0006 .0019 .0027 .0080 .0030 Incipit (m) 10.3 .0013 .0013 .0013 .0013 .0013 16.00 23.44 24.78 26.74 20.84 32.45 20.29 16.00 21.78 25.10 26.58 30.07 32.68 20.35 2.00 21.78 25.10 26.64 33.43 29.38 2.00 21.23 25.26 27.17 33.61 36.00 29.42 .100 20.78 25.99 26.25 33.06 30.04 29.42 .12 20.78 26.28 28.57 33.61 36.82 29.46 03 23.41 23.71 24.76 28.58 30.15 28.71 03 24.41 23.83 23.70 23.64 23.76 <t< td=""><td>CST</td><td>U 605</td><td>0705</td><td>0805</td><td>0905</td><td>1005</td><td>1805*</td><td></td><td></td></t<>	CST	U 605	0705	0805	0905	1005	1805*		
Insolution .0016 .0050 .0000 .0150 .0035 .0030 Net Radiation 0002 .0019 .0027 .0030 .0030 Iteight (m) 16.00 22.42 24.78 26.74 29.84 32.45 29.29 Iteight (m) 16.00 21.78 25.10 26.85 30.07 32.86 29.35 4.00 21.78 25.10 26.85 30.07 32.84 29.38 2.00 21.23 25.26 27.10 30.63 33.63 29.35 1.00 20.74 25.74 27.93 32.10 34.08 29.40 .550 20.78 25.99 28.25 33.06 30.00 29.42 .12 20.78 23.91 24.76 24.89 26.04 28.65 .03 23.41 23.70 23.54 23.70 23.54 23.76 .25 24.03 23.49 23.57 14.55 14.42			RAD	IATION (cal/cm ² sc	ec)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Insolation	.0016	.0050	.0060	,0150	.0155	.0035		
Net Radiation 0002 .0019 .0027 .0080 .0000 .0009 Allt and SOIL TEMPERATURES (°C) Incidit (nn) 16.00 23.44 24.78 26.74 29.84 32.45 29.26 8.00 22.52 24.90 26.65 30.07 32.66 20.38 2.00 21.23 25.28 27.19 30.63 33.64 20.38 5.0 20.78 25.74 27.93 32.10 34.98 29.49 .723 20.78 25.99 26.25 33.08 30.00 29.42 .723 20.78 25.79 28.77 33.81 36.82 29.48 03 24.21 23.76 24.42 24.89 26.06 26.69 12 24.48 24.62 24.89 26.06 22.06 22.06 25 24.403 21.45 21.44 21.42 23.76 23.64 26 24.03 21.45 21.45	Reflected	.0006	.0013	.0013	.0030	,0030			
Allt and SOIL TEMPERATURES (°C) Horight (m) 23.44 24.78 20.74 29.64 32.45 20.29 4.00 22.52 24.90 26.65 30.07 32.66 29.35 4.00 21.23 25.28 27.19 30.83 33.61 29.36 5.00 20.93 25.45 27.57 31.42 34.18 29.36 5.00 20.74 25.74 27.93 32.10 34.08 29.40 .25 20.78 25.54 27.67 33.81 36.62 29.47 -03 22.41 23.71 24.76 26.58 30.15 28.71 -03 24.41 23.70 24.42 22.06 21.57 23.64 23.76 -12 24.88 24.62 24.39 24.62 24.92 26.64 28.68 -12 24.88 24.62 24.91 23.70 23.44 23.70 -100 19.21 10.21 19.20 13.97	Net Radiation	0002	,0019	.0027	.0080	.0090	.0009		,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			AIR and S	SOIL TEM	IPERATU	RES (°C)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Height (m)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16.00	23.44	24.78	26.74	29.84	32.45	29.29		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.00	22.52	24.90	26.85	30.07	32.68	29.35		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.00	21.78	25.10	26.98	30.26	33.21	29.38		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.00	21.23	25.28	27.19	30.83	33.63	29.35		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,00	20.93	25.45	27.57	31.42	34,18	29,38		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.50	20.74	25.74	27.93	32.10	34,98	29,40		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. 25	20.78	25.99	28.25	33.08	36.00	29.42		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.12	20.78	26.22	28.57	33.81	36.82	29.48		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03	23.41	23.71	24.76	26.58	30.15	28.71		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	06	24.21	23.96	24.24	24.89	26.68	28.69		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	24.88	24 62	24 38	24.26	24 29	26.38		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	24.03	23.94	23.83	23.70	23.54	23.76		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	21 45	21.45	21.44	21.42	21.36	22.06		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1.00	19.21		19.20	19.19	19,15	19.91	L	L
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			VAI	OR PRES	SSURE (m	b)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16.00	15.05	14.49	14.39	13.88	13.38	14.34		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.00	15.27	14.55	14.45	14.02	13.57	14.89	İ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.00	15.38	14.59	14.50	14.04	13.56	15.07		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.00	15,50	14.63	14.66	14.11	13.63	15.21		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00	15.54	14.67	14.77	14.21	13.77	15.44		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,50	15.58	14.72	14.89	14.37	14.09	15.58		
12 15.73 14.96 15.26 15.16 14.33 15.76 WIND SIPEED (cm/sec) 16.00 $\overline{306}$ $\overline{364}$ $\overline{311}$ $\overline{430}$ $\overline{319}$ $\overline{726}$ 8.00 264 $\overline{372}$ $\overline{326}$ $\overline{415}$ $\overline{328}$ $\overline{680}$ 4.00 212 $\overline{346}$ $\overline{301}$ $\overline{374}$ $\overline{308}$ $\overline{612}$ 2.00 179 $\overline{324}$ 281 $\overline{371}$ $\overline{277}$ $\overline{537}$ 1.00 146 287 248 $\overline{331}$ 253 471 .50 121 272 180 296 234 411 .25 86 206 174 246 198 332 WIND DIRECTION (deg) 1.00 180 210 200 235 320 160 SOIL TEMPERATURE CHANCE (°C) MIND DIRECTION (deg) 03 24 46 49 1.20 1.46 74 -06 <t< td=""><td>.25</td><td>15.62</td><td>14.79</td><td>15.01</td><td>14.68</td><td>14.22</td><td>15.71</td><td>1</td><td></td></t<>	.25	15.62	14.79	15.01	14.68	14.22	15.71	1	
WIND SPEED (cm/sec) 16 00 306 364 311 430 319 726 8.00 264 372 326 415 328 680 4.00 212 346 301 374 308 612 2.00 179 324 281 371 277 537 1.00 146 287 248 331 253 471 .50 121 272 180 296 234 411 .25 86 206 174 246 198 332 WIND DIRECTION (deg) 1.00 180 210 200 235 320 160 SOIL TEMPERATURE CHANCE ('C) Initial Time 0550 0650 0750 0852 0052 1750 Run Time (mln) 26 28 28 24 26 27 03	.12	15.73	14.96	15.26	15.16	14.33	15.76	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			wi	ND SPEE	D lem/sec	•)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16 00	306	364	311	430	319	726	Γ	Γ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8.00	264	372	326	415	328	680		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.00	212	346	301	374	308	612		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.00	179	324	281	371	277	537		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.00	146	287	248	331	253	471		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.50	121	272	180	296	234	411		{
WIND DIRECTION (deg) 1.00 180 210 200 235 320 160 SOIL TEMPERATURE CHANGE (°C) Initial Time 0550 0650 0750 0852 0952 1750 Run Time (mln) 26 28 28 24 26 27 03 24 .46 .49 1.20 1.46 74 06 20 .05 .17 .40 .85 .43 12 10 15 08 02 .06 .05 25 01 04 05 05 .05 50 .0 .0 .0 .00 .00	.25	86	206	174	246	198	332	I	
1.00 180 210 200 235 320 160 SOIL TEMPERATURE CHANGE (°C) Initial Time 0550 0650 0750 0852 0952 1750 Run Time (min) 26 28 28 24 20 27 03 24 .46 .49 1.20 1.46 74 06 20 05 .17 40 .85 43 12 10 15 08 02 .06 .05 50 0 0 0 0 .01 .03 .01 100 0 0 0 0 0 0 0			WIN	ID DIREC	TION (de	r)			
SOIL TEMPERATURE CHANGE (°C) Initial Time 0550 0650 0750 0852 0952 1750 Run Time (mln) 26 28 24 26 27 -0.3 24 46 49 1.20 1.46 74 -06 70 0.55 74 64 92 0.65 74 74 62 66 20 0.55 74 62 66 20 0.55 74 62 66 25 01 04 02 $.06$ $.055$ 55 01 04 05 05 $.055$ 01 50 0	1.00	180	210	200	235	320	160	T	[
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			SOIL TEN	APERATI	JRE CHAN	NGE (°C)	L	.k.,	<u> </u>
Run Time (mln) 26 28 28 24 26 27 03 24 .46 .49 1.20 1.46 74 -06 20 .05 .17 .40 .85 43 12 10 15 08 02 .06 .05 25 01 04 05 05 .05 50 0 0 0 01 03 01 -1.00 0 0 0 01 03 01	Initial Time	0550	0650	0750	0852	0952	1750	T	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Run Time (mla)	26	28	28	24	26	27	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	- 24	46	49	1.20	1.46	.74	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 06	- 20	05	17	40	85	- 43	ļ	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	- 10	- 15	- 08	02	.06	05	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	- 01	04	04	05	05	.05	1	
	50		1 1	0	, 01	- 03	01	1	}
	-1.00	l õ	Ŭ	ŏ	0	0	00		

Precipitation (cm) * August 6, 1956

4

80

l

HOURLY OBSERVA	TIONS		August	6, 1956		O'NEILL, NEBRASKA		
CST	1905	2105	2205	2305	0005*	0305*	<u> </u>	
		RAD	IATION (cal/cm ² se	ac)			
Insolation	.0015	í				`		
Reflected								
Net Radiation	.0007	-,0012	0011	rain	0007	0013		
		AIR and	SOIL TEM	PERATU	RES (°C)		· · · · · · · · · · · · · · · · · · ·	
Height (m)	00.10	04 70	00.05	01.67	21 04	17.54	1	
16.00	20.10	24.70	22.20	21.07	21.00	17.61		
8.00	20.00	40.01	22.10	01.03	21.00	17.61	1	
4.00	27.94	22.00	01 07	01 59	01.00	17 58	}	
2.00	21.10	24.44	01 77	21.33	21.00	17 5.4	1	
1.00	21.00	21.07	21.11	21.44	20.06	17 50		5
.50	07.96	01.05	01 45	21.39	20,00	17 47		
.25	41.40	21.40	01 40	21.20	20.00	17 AR	1	
.12	07 10	97 00	22 00	21.20	20.00	20.57	[ł
03	97.84	43.00	04.20	03.80	02 50	20.07	1	1
08	1.04 ng 20	20.22	29.30	26.60	04 70	21.00	1	1
12	20.30	20.00	62.10	20.10	94 10	23.83	{	
-,25	23.89	24.07	24.10	00 11	09 18	22.00		
50	10.02	10.04	20.00	20.11	20.02	20.01	1	
-1.00	10.03	10.00			20.02		I	L,
		VA	POR PRES	SSURE (m	ს)			
16,00	13.47	15.06	22.93	rain	rain	20.27	1	
8,00	13.85	15.54	22.55	rain	rain	19.59	1	1
4.00	14.02	15.90	22.58	rain	rain	19.59		ĺ
2.00	14.14	16.11	22.51	rain	rain	19.51		
1.00	14.24	16.31	22.45	rain	rain	19.50		(
.50	14.32	16.42	22.45	rain	rain	19,59		
.25	14.38	10.52	22.33	rain	rain	19.27		
.12	14.45	16.58	22.39	rain	rain	19.63	<u></u>	
		WI	ND SPEEL) (cm/sec	:)			
16.00	630	492	651	549	779	780	1	
8.00	528	367	544	457	697	700		
4.00	464	308	498	425	660	638	1	ł
2.00	404	244	437	374	565	574	1	l
1.00	354	196	386	327	491			
.50	305	166	337	286	428	437	[
.25	247	131	281	235	300	371	l	L
		wn	ID DIREC	TION (der	<u>z)</u>			
1.00	165	80	60	55	75	50		
······································	• <u></u> -	SOIL TEN	APERATU	RE CHAN	IGE (°C)			
Initial Time	1850	2050	2150	2250	2350	0250	<u> </u>	
Run Time (min)	27	28	27	27	26	26	1	1
03	05	50	31	04	.11	- 29	1]
08	45	46	41	14	00	29	ł	l
12	05	14	22	18	14	-,19	1	1
, 25	.04	.06	00	01	.06	14	}	
-,50	01	.02	00	00	.09	06]]
-1.00	00	.03	+,03	.02	00	-,02	1	1
		I	<u>،</u>				• 6	·

Precipitation (cm)

-

*August 7, 1958

I.

HOURLY OBSERVA	TIONS		August	7, 1956		0'	NEILL, N	IEBRASKA
Сбт	0405	0505	0605	0705	0805	0905		
		RAD	IATION (cat/cm ² se	ec)			
Insolation		.0000	.0005	.0048	.0092	.0125	[
Reflected								
Net Radiation	0014	0012	0009	.0019	.0055	.0088		L
	-	AIR and !	SOIL, TEN	IPERATU	<u>RES (°C)</u>			
Height (m)								
16.00	17.76	17.19	16.82	10.28	20.67	22.60		
8.00	17.83	17.11	16.70	18.41	20.98	22.93		
4.00	17.75	17.00	16.57	18.55	21.22	23.15		[
2.00	17.09	10.90	10.40	18.00	21,49	23.41		}
1.00	17.02	10.80	10.37	10.10	21.73	23.74		1
.50	17.01	10.09	10.24	10.04	22.03	23.80		
.20	17.50	10.57	10.10	10,00	22.37	27.23	1	ļ
.13	20.17	10.55	10.13	10.04	20.14	21.01	1	
- 05	21.11	20.01	20.38	20.00	20.14	21.01		ļ
00	22.11	20.01	20,30	20.08	20.41	22.04	1	
	23.75	23.00	22,10	22.11	22.10	22.00	{	
- 50	22.06	22.01	22.00	22.08	23.20	22 04		
-1.00	20.03	20.03	20.04	20.00	20.01	20.00		
-1.50							L~~	I
		VAL	POR PRES	SSURE (m	b)			······
16.00	18.64	17.60	17.43	17.86	17.75	18.07		ļ
8.00	18.62	17.53	18.02	18.14	18.11	18.19	1	
4.00	18.56	17.53	18.13	18.23	18.23	18.32		
2.00	18.04	17.50	1 18.08	18.37	18.42	18.49		1
1.00	10.07	17.01	18.07	10.00	10.01	18.00		
.50	10.75	17.72	17.00	10.17	10.04	10.91]
.20	10.70	17.13	17.80	18.14	19.22	10.47		
.14	1 10.02		11,02	10.21	10.02	10.41	L	
		WI	ND SPEEI	D (cm/sec)		•··	
16.00	698	623	589	583	694	1218	1	
8.00	617	553	509	535	660	1134		
4.00	577	611	455	512	606	1040		
2.00	498	436	385	400	042	995	1	1
1.00	439	221	200	931	100	030 200		1
.50	210	331	200	310	420	693	1	
.25	319		272		370	003	L	
		wir	DIREC	TION (dep	4)	·····	T	· · · · · · · · · · · · · · · · · · ·
1.00	10	85	68	L	110	140	L	l
	1	SOIL TEM	PERATL	IRE CHAN	ICE (°C)		······································	······
Initial Time	0355	0450	0551	0652	0751	0851	1]
itun Time (min)	21	26	25	24	25	25		1
03	30	14	06	.18	.72	.51		1
00	19	.78	08	05	.27	.41		
14	11	13	j - 07	-,11	05	00		
20	00	06	01	05	04	08	1	
	.01	.01	.04	02	.02	03	[1
-1.00	01	00	.10	04	,03	02	I	I
Precipitation (cm)								

Table 8.2 (Continued)

HOURLY OBSERVA	TIONS		August '	7, 1956		O'	NEILL, N	NEBRASKA
CST	1005	1105	1205	1405	1605	1705		[
	• •• •• •• •• •• •		IATION (····		· · · · · · · · · · · · · · · · · · ·		
Insolation	.0145	.0192	.0150	0100	.0150	.0097	1	l
Reflected							1	
Net Radiation	.0102	0130	.0110	.0135	.0103	.0054		
		Allt and :	OIL TEM	PERATU	RES (°C)			
Height (m)	22.05	25.07	077 477	07.74	00.00	00.50	T	
16.00	20.00	20.01	27.47	21.19	29.83	28.58		1
8.00	24.59	20.34	21.00	20.00	30,20	20.00		
	24.00	20.02	28.54	20.02	30.02	20,20	ł	
2.00	25.32	28.94	20.00	20.01	31.00	20.02		1
1.00	25.83	28 77	20.21	30.78	31.30	20.00		
(.5U	26.39	20.25	30.39	31 69	39 47	30.40		1
.25	26.67	30 30	30 89	12 (12	32.00	21 15		
.12	23.09	25.80	27 62	30.24	31 12	31.15		
05	21.71	23.80	25.54	28 18	20.48	20.00	{	1
00	22.13	22.32	22.81	24.24	25 52	25.97		1
	22.94	22.76	22 70	22.68	22.96	23.12	ł	
- 50	21.99	21.92	21.92	21.86	21.88	21.87		
-1.00	10.98	19.92	19,96	19.94	19.98	19.98	1	
	·				L.)		A.,	·····
16.00	18 48	19 99		17 40	0 <u>7</u> 17 10	10.50	T	r
8.00	18.07	18 17	10.00	17 80	17.14	19.00		
4.00	19.10	18.15	10 14	17.00	17.50	19.02		ļ
2.00	19.42	19 24	10.10	11.57	17.04	20.02	1	}
1.00	19.12	18.63	19.25	19.14	17.05	20.10		
.50	19.02	18.01	19.79	10.20	18.00	20.21		}
.25	20.33	10.34	20.14	18 70	18.94	20.44	{	
.12	20.59	19.65	20.64	18.97	18.46	20.00	[
	•	wi	ND SPEEL	• • (em 'see	•		· _ · · · · · · · · · · · · · · · · · ·	1
16.00	F ^{(***} 994 - 1	838	865	1348	1379 1	992	1	T
8.00	874	754	173	1251	1290	923	{	l t
4.00	878	707	718	1135	1165	841		
2.00	764	609	654	1004	1025	739	1	1
1.00	710	554	595	908	923	669		
.50	404	470	509	7.68	773	5.60	ļ	[
.25	340	385	405	640	630	464		1
		WIN	D DIREC	TION (dom	· ·····			· ····
1.00	145	155	175	155	150	155		1
		SOIL TI N	IPERATU	RE CHAN			•	
Initial Time	0952	1052	1150	1350	1550	1650		1
Run Time (min)	24	25	27	27	26	<u>2</u> 8	Į	ļ
03	61	1.00	.(+)	. 43	19	38		1
⊷.00	1.41	.79	.54	.27	.07	04	Į	l
~.12 br	.07	.13	.24	[.36	.21	.18		
25	05	- 08	07	.02	.07	.11]
00	02	~.03	~.04	00	01	.04		ł
-1.00	.01	03	- ,04	.01	.01	.04	L	l
Precipitation (cm)	~ -	~ *						

HOURLY OBSERVA	TIONS		August 7	7, 1956		O'NEILL, NEBRASKA		
CST	1805	1905	2005	2105	2205	0005*		
		RAD	IATION (cal/cm ² se	ec)			
Insolation	.0050	.0009	.0000			••		
Reflected							1	1
Net Radiation	.0023	~,0009	0012	0010	0008	0014	<u> </u>	L
14 de		Allt and S	OIL TEN	PERATU	RES (°C)			· · · · · · · · · · · · · · · · · · ·
Height (m)	60.00		66.90	04.00	00.01	00.00	ļ	
16.00	28.29	27.00	20.10	24.90	23.91	22.78	1	
8.00	20.30	24.03	25.40	23.20	23.00	22.04		1
4.00	20.02	20.00	23,13	23.10	20.12	99 97	}	1
2.00	28.93	26.77	24.30	22.97	22.52	22.19		
1,00	20.00	26.65	24 57	22.59	29 17	22 03	}	Į.
.50	29.31	28.54	94 38	22 43	22 (12	21.87	ł.	1
.40	29.50	26 48	24.22	22.33	21.88	21.75	1	1
- 03	29.33	27.82	20.28	25.11	24.15	22.98	1	1
03	28.96	28.69	27.02	26.02	25.16	23.94		
19	26.23	26.29	26.19	25.93	25.59	24.89		
- 25	23.30	23.50	23.64	23.80	23.90	23.96		ł
- 50	21.85	21.89	21.86	21.00	21.91	21.93	1	1
-1.00	20.00	20.04	20.05	20.06	20,08	20,10	1	
	I		L	L	I	L		+
		VA.	POR PRE	SSURE (m	(b)	•		
16.00	[19.62	19.84	[19.31	19.89	19.75	18.42		(
8.00	19.77	20.00	19.50	20.01	20.08	18.59		[
4.00	19.84	20.01	19.60	20.12	20.25	18.60		Į
2.00	19,69	20.10	19.62	20.11	20.26	18.62		
1.00	20.02	20.13	19.64	20.13	20.27	18.66	ļ	ļ
.50	20.11	20.22	19.75	20.21	20.39	18.74		ļ
.25	20.22	20.22	19.76	20.14	20.36	18.74		(
.12	20.27	20.31	19.87	20.22	20.39	18.78	<u> </u>	1
		wi	ND SPEE	D (cm/sec	:)			
16.00	714	697	632	440	378	932		1
8.00	668	634	521	349	298	833	1	[
4.00	615	554	439	267	238	745		1
2.00	544	491	376	214	191	652		ł
1.00	500	447	342	177	1 63	589		}
.50	423	378	280	139	128	491		ļ
.25	350	314	232	102	92	399	.l	1
		, wn	vo priteo	TION (de	g)	.		·
1.00	145	135	145	105	75	150	<u> </u>	<u> </u>
		SOIL TE	MPERATI	URE CHAI	NGE (°C)	•		··
Initial Time	1750	1850	1950	2050	2155	2353	1	1
Run Time (min)	26	26	26	26	1 21	23	1	1
03	47	- 68	53	- 44	28			1
06	31	- 42	42	40	31	118	[1
12	.07	02	09	-,17	15	11		1
25	.08	.09	03	,06	1.04	01	1	1
-, 50	.02	00	-,00	00		02	1	1
~1,00	00	00	01	00		01	<u> </u>	
Precipitation (cm)							*August	8, 1956

Table 8.2 (Continued)

HOURLY OBSERV	ATIONS		August 8	i, 1957		0'	NEILL, NEBRASKA
CST	0105	0205	0305	0405	0505	0605	
		RAD	IATION (cal/cm ² se	ec)		
Insolation					.0000	.0005	
Reflected							
Net Radiation	0015	0007	0014	-,0015	0011	-,0004	<u> </u>
		AIR and S	SOIL TEM	IPPRATU	RES (°C)	• ··	
Height (m)	02.10	10 70	10 00	17/15	10.51	179 17	
10.00	23.12	18.89	17.58	16.70	16.11	17 11	l î
6.00 4.00	22.00	18.85	17 41	16 45	15.81	17.05	
4.00	22.00	18.86	17.30	16 21	15.57	16.95	
2.00	22.00	18.86	17.17	16.00	15.44	16.89	
50	21.73	18.85	17.00	15.77	15.22	16.81	
.00	21.41	18.83	16.86	15.60	15.12	16.73	
.40	21.20	18.82	16.77	15.43	15.02	16.65	
.14	22 37	21.89	21.08	20.12	19.16	19.10	
05	23.52	22.96	22.43	21.75	21.00	20.48	
19	24.74	24.34	24.02	23.70	23.29	22.84	
14	23.94	23.87	23.8	23.73	23.62	23.44	
- 50	21.95	21.95	21.95	21.96	21.95	21.90	
-1.00	20.10	20.09	20.08	20.08	20.06	20.04	
		VA.		SSUDE (m	h)		
16.00	17 30	15 20	15 21	1 15 21	15 71	16.40	T
8.00	17 43	15 29	15 25	14.89	15.52	16.42	
4.00	17.51	15.30	15 30	14.95	15.54	16.49	
2.00	17.59	15.31	15.31	14.99	15.52	16.62	
1.00	17.59	15.32	15.31	15 01	15.55	16.71	
.50	17.68	15.34	15.34	15.06	15.57	16.72	
25	17.74	15.35	15.36	15.06	15.58	16.76	
.12	17.75	15.36	15.36	15.15	15.75	16.77	
		wi	ND SPEEI) (cm/sec	·)		
16.00	479	1100	547	532	470	558	1
8.00	438	997	451	445	377	494	
4.00	395	915	397	375	310	440	
2.00	340	812	344	311	255	379	
1.00	313	729	311	283	229	349	1 1
.50	255	633	256	233	186	294	
.25	214	533	201	191	142	238]
		WD	a direc	TION (dej	:)		
1,00	265	3 60	50	85	95	110	
		SOIL TEN	IPERATE	RE CHAN	IGE ('C)	Y	
Initial Time	0053	0154	0253	0351	0454	0550	
Rua Time (min)	23	22	23	25	21	27	
93	30	~.28	37	37	.24	- 01	
00	20	17	24	31	- 21	16	
12	21	14	12	15	13	16	
25	02	04	~ 03	05	1 .01	05	
50	00	.01	00	01	00	01	
-1.00	[00	00	i ~.01	01	1 00	101	1

Precipitation (cm)

HOURLY OBSERVATIONS			August 8	, 1956		O'NEILL, NEBRASKA		
CST	0805	0905	1005	1105	1205	1305		
		RAD	ATION (at/em2a	ac)			
Insolation	.0030	.0139	0179	.0190	.0220	.0218		
Reflected								
Net Radiation	wet	,0088	.0113	.0110	.0150	.0150		
		AIR and S	SOIL TEM	PERATU	RES (°C)			
Height (m)								
16.00	18.00	20.84	23.76	25.28	26.74	27.54	{ }	
8.00	17.94	21.20	23.79	25.52	27.23	27.76		
4.00	17.96	21.45	24.17	25.80	27.74	28.13		
2.00	17,97	21.93	24.46	26.12	28.01	28.70		
1,00	17.97	22.19	25.09	20.03	28.61	29.70		
.50	17.00	22.02	20.00	21.02	20,04	30.74		
.23	17.00	20.07	20.00	20.33	21 67	20.71		
.14	19.30	20.78	21.00	20.01	20.85	31.80	}	
03	20.19	20.56	21 76	24 62	26 71	28.46		
00	22.22	22.00	21.94	22.38	23.06	23.93		
- 25	23.18	22.98	22.82	22.75	22.41	22.01	}	
50	21.90	21.88	21.82	21.87	21.87	21.83		
-1.00	20.04	20.02	19,99	20.04	20.06	20.05	1 1	
					1.1			
16.00		14 04	14 74	14 28	1 12 06	12.18	<u> </u>	
8.00		14 41	15 05	13.55	13.42	13.83	1 1	
4.00		14.55	15.26	13.74	13.62	14.03	1	
2,00		14.63	15.35	13.85	13.85	14,18		
1,00		14.95	15.58	4.18	14.04	14.40		
, 50	-	15.91	15.96	14.66	14.67	14,69	1 1.	
. 25		16.13	16.46	15.16	15,17	15.08		
.12		16.83	17.16	15.64	15.72	15.61	I	
		wn	ND SPEEL) (cm/sec	•)			
16.00	511	489	368	530	493	531		
8.00	440	466	349	505	487	541	1 1	
4.00	385	444	321	473	446	487	}	
2.00	314	409	298	436	413	452	1 1	
1.00	287	385	290	408	391	420))	
.50	250	320	245	344	178			
.25	212	270	210	317	60		l	
		WIN	D DIREC	TION (de	(r)			
1.00	330	45	5	40	1 - 110	150	1	
		SOL TEN	APERATU	RE CHAN	IGE ('C)		Langer (1997)	
Initial Time	0750	0850	0950	1050	1155	1250	1	
Run Time (min)	28	27	28	28	21	26		
-,03	.16	1,32	1.68	[1.00	.83	71		
00	02	.20	.06	1.01	.70	.70		
12	-,13	09	,06	.26	.34	.34		
25	07	16	-,09	,04	55	00		
50	01	03	01	.02	02	03		
-1.00	-,01	01	02	1.03	02	04	La	

Precipitation (cm)

;

--

HOURLY OBSERVATIONS			August 8	, 1956		0'	O'NEILL, NEBRASKA			
CST	1405	1505	1605	1705	1805	1905	[[
		RAD	LATION (cal/cm ² se	ec)					
Insolation	.0200	.0178	.0138	.0082	,0052	.0012				
Reflected		.0033	.0029	.6018	.0013]		
Net Radiation	.0133	.0110	.0077	0041	,0018	0011	L			
		AIR and S	OIL TEM	PERATU	RES (°C)					
Height (m)	<u> </u>							1		
16.00	28.02	28,86	28.48	27.91	27.14	25.66		1		
8.00	28.44	29.37	29.00	28.28	27.35	25.69		l		
4.00	28.79	29.76	29.60	28.58	27.58	25.67				
2.00	29.28	30.31	30.04	28.90	27.80	25.66				
1.00	29.92	30,69	30 43	29.26	28.03	25.65				
.50	31.31	31.40	30,99	29.65	28.19	25.63				
.25	32.09	32.54	31.77	30.03	28.39	25.62		1		
.13	33.48	33.00	32.22	30,43	20.00	20.00	1	1		
03	33.29	39.90	34,40	9.69	30.98	29.02				
00	29.97	31,20	26 49	31.93 97 14	0715	20.40	1			
-,14	24.00	23.03	20 10	21,10	93.4	21.04		}		
20	22.50	26.11	24.01	23.11	21	2178		1		
-1.00	20.01	19.96	19.94	19.93	20.00	20.03	1	}		
	L		A	۹ <u></u> ۵۰	⊾			Å		
14 00	1.0.00	VAL	OR PRES	SURE (m	b)			γ-····		
10.00	12.79	13.58	15.40	17.08	17.40	17.51	1			
0.00 4.00	13.46	13.48	15.89	17.31	17.65	17.52				
1.00	13.66	13.57	15.95	17.39	17.73	17.52	1	1		
2.00	13.76	13.65	15,45	17.39	17.77	17.51	1	ļ		
50	14,04	13.80	10.48	17.43	17.89	17,03	1			
	14.50	14.20	10.40	17.30	17.02	17.07		}		
.12	15.58	14.96	16.98	17.80	17.99	17.62	ł	ļ		
18.00	T 411	Will 205	AD SPEEL	J <u>lem/ 8ec</u>	744	704	r	T		
8.00	306	200	590	694	674	671	1	1		
4 00	350	201	508	572	587	601	1	1		
2.00	336	256	4 67	517	515	527	1	1		
1.00	317	249	438	483	480	494		1		
.50	272	218	378	408	418	419		1		
.25	228	173	318	316	360	351				
		wn		TION (dec	 z)					
1.00	145	140	5	360	350	360	1	1		
· · · _ · · · · · · · · ·	•	SOIL TEM	IPERATU	IRE CHAN	GE (°C)					
Initial Time	1350	1450	1550	1650	1752	1853	T			
Run Time (min)	26	26	26	26	24	23	1	ł		
03	.52	.12	43	- 62	- 72	77		i i		
06	. 60	.37	.06	26	- ,5Ü	51		ł		
12	.36	.30	. 28	.15	.08	03	1			
25	.14	.05	.05	.10	.09	.09	1	ļ		
50	01	03	05	04	01	00	1			
w1.00	01	09	03	02	02	.02	J	I,		

Table 8.2 (Continued)

Precipitation (cm)

HOURLY OBSERVA	TIONS		August	8, 1956		0'1	NEILL, NEBRASK
CST	2005	2105	2205	2305	0005*	0105*	
		RAD	ATION (cal/cm ² se	ec)		
Insolation	.0000	~-					
Reflected					••		
Net Radiation	0015	0010	0010	00085	00031	00110	<u>l</u>
		AIR and §	OIL TEM	PERATU	RES (°C)		
16 00	24.26	23.43	99 A5	22 44	21.92	10.40	
8.00	23.38	22.43	21.25	20.15	20.35	18.00	
4.00	22.65	21.15	19.74	18.90	18.86	18 74	
2.00	22.22	19.88	18 81	17.83	17 49	17.86	
1.00	21.82	19.08	17.19	16.46	16.38	17 64	1 1
.50	21.54	18.01	15.91	15.29	15.84	17 41	
.25	21.24	17.23	15.48	14.77	15.62	17 19	{ }
.12	21.02	16.20	15.19	14.34	15.45	17.07	
03	27.13	25.30	23.89	22.71	21.96	21.70	1 1
06	28.16	26.75	25.56	24.49	23.58	23.09	1 1
12	27.34	26.95	26.52	26.00	25.45	25.00	
25	23.92	24.07	24.21	24.27	24.25	24.24	
50	21.80	21.79	21.80	21.80	21.82	21.88	
-1.00	20.07	20.02	20.03	20.02	20,02	20.04	
	******				h		Lau
18 (9)	1 18 14	VA1	<u>- 16 77</u>	SSURE (m	D)	10.04	r
8 60	10,14	17 43	15.90	13.40	17.00	18.84	
4.00	18 41	17 49	15.05	14.04	17.70	10.30	
2.00	18 35	17 51	15.08	14.00	17.10	10.04	
1.00	18.35	17.54	16.01	14 68	17 77	10.20	
50	18.35	17.58	16.01	14.00	17 77	19.20	
25	18.28	17.58	16.09	15 63	17 71	18 22	
.12	18.29	17.89	16.53	15.00	17.82	18.44	
	L		·····				<u></u>
10 00	400	WI	VD SPEEL	D (cm/sec	2		• · · · • • • • • • • • • • • • • • • •
10.00	482	296		189	118	552	1
0.00	393	225	156	179	82	423	
1.UU 6.00	200	130	114	139	76	338	1 1
2.00	107	1 00 1 04	174	109	85	269	}
1.00	120	30	. 101	00	57	222	1
,00	101	10	21	44	10	193	
, 60		L			18	101	
		WIN	D DIREC	TION (deg	ε)		r
	40		L	<u> </u>	L	175	L
·		SOIL TEN	IPERATU	IRE CHAN	IGE (°C)		
Initial Time	1953	2054	2152	2253	2350	0050	
Run Time (min)	33	25	24	23	28	27	
03	~.63	79	50	-,40	- 21	- 23	
*,00	52	56	46	40	37	20	1
~.1X ng	11	17	21	21	26	21	
-,20 RO	01	.06	.03	00	04	04	
00	.02	.01	00	.03	00	00	
~1.UU		01	01	000		<u> </u>	L
Procipitation (cm)							* August 9, 195

HOURLY OBSERVA		August 9	, 1956		0'	O'NEILL, NEBRASKA			
CST	0205	0305	0405	0505	0605	0705			
	_	RAD	IATION (cal/cm ² s	vc)				
Insolation				,0000	.0011	.0052			
Reflected				.0000	.00035	.0015			
Net Radiation	00100	.00099	00101	00114	00038	.0026	<u> </u>		
		AIR and S	SOIL TEN	IPERATU	RES (°C)				
Height (m)				-					
16.00	19.75	19.04	18.36	17.33	16.97	19.12	1 !		
8.00	18.69	17.61	16.97	16.91	16.92	19.20			
4.00	17.92	16.97	16.14	16.56	16.70	19.27			
2.00	16.96	16.38	15.46	16.25	16.17	19.34			
1.00	16.08	15.72	14.93	16.02	15.39	19.42	1 1		
.50	15.26	15.08	14.47	15 66	14.85	19.53			
.25	14.75	14.81	14.30	15.44	14.98	19.77	4 1		
.12	14.39	14.60	14.13	15.22	15.10	19.84			
03	21.18	20.22	19.68	19.40	19.00	19,51			
06	22.61	21.99	21.38	20.85	20.54	20.37			
12	24.56	24.16	23.68	23.28	22.93	22.63			
25	24.18	24.10	23.88	23.75	23.70	23.53	1 1		
50	21.90	21.92	21.91	21.92	22 00	21.98	1 1		
-1.00	20.03	20.04	20.04	20.04	20.11	20.10			
		1/ 1/			L1				
16.00	15.06	15 16	10 45	1 15 05	17 10	18.07	······		
8.00	15.00	14.67	15 41	15.95	16.45	17 20	1		
4 00	15.25	14.07	15.41	15.70	10,45	17.30	· · · ·		
2.00	15.25	14.07	15.99	15.70	10.40	17.40	1 1		
1.00	15.22		15 20	15.70	10.01	17.40	{		
50	15.20	14.00	10.00	15.70	10.41		1 1		
	1 10.20	14.00	1 15.41	15.70	10.41	17.20	{ }		
.25	15.20	14.08	15.30	15.09	16.21	17.40			
	L	1		· · · ·	L		4		
18.00	T	WI	ND SPEE	p <u>(e</u> m/sec	7	r	·		
10,00	293	404	470	425	147	308			
0.00 4.00	278	293	3 65	336	105	286			
4.00	204	227	288	259	76	263	}		
2.00	143	160	212	205	106	245			
1,00	96	107	157	160	82	214			
.50	71	88	135	145	62	194			
.25	19	41	98	116	29	161	I I		
		WIN	<u>id direc</u>	TION (dep	φ	· · · · · · · · · · · · · · · · · · ·			
1.00				300	160+	230			
		SOIL TEN	IPERATI	URE CHAN	IGE (°C)				
Initial Time	0150	0250	0350	0450	0550	0650			
Ron Thue (mba)	27	27	28	28	26	26			
-,03	53	19	25	05	18	.64			
00	24	29	30	16	18	.08	1 1		
13	17	15	-,20	18	23	16			
25	03	03	06	06	07	06	1		
~.50	10.	+.01	00	.01	04	-,05	1		
-1.00	00	1.01	01	.02	00	02			
Precipitation (cm)		- ~					*Wind to light		

ģ

to turn vane

HOURLY OBSERVA	TIONS		August 9	, 1956		0'1	C'NEILL, NEBRASKA 5 2 3 9 0 0 0 5 2 9 7 4 2 4 6 6 3 8 9 4 0 8 1 2 1 1 7 0 7 2 7 4 9 5			
CST 1	0805	0905	1005	1105	1205	1305				
	RADIATION (ca1/cm ² sec)									
Insolation	.0071	.0138	.0177	.0204	.0214	.0132	1			
Reflected	.0015	.00265	.00315	.0035	.0037	.0023				
Net Radiation	.0037	.0077	.0164	.0119	.0127	.0069				
AIR and SOIL TEMPERATURES (°C)										
Height (m)				1 LILLAT U		· ····	1	[
16.00	21,33	23.22	24.75	26.46	27.36	28.05				
8.00	21.66	23.66	25.13	26.75	27.71	28.29				
4.00	21.82	23.92	25.58	27.08	28.14	28.74				
2.00	21.82	24.20	25,90	27.21	28.26	29.24				
1.00	22.04	24.67	26.35	28.03	29.41	29.66	Į.			
.50	22.50	25.28	27.44	29.35	30.27	30.38	ł			
.20	22.01	20.47	20.33	30.07	31.02	30,84	4			
- 03	20.04	21.10	20.21	20 41	31.09	34.10	{			
- 06	20.03	21.98	23.89	26.07	28.00	3(1.21	1			
- 12	22.33	22 25	22.02	22.06	23.63	24 70				
- 25	23.31	23.11	22.91	22.78	22.68	22.72		1		
50	21.02	21.87	21.83	21.78	21.78	21.74				
-1.00	20.03	19,96	19,99	19.93	19,91	10.95				
16.00	22 62	16.91	16 10	14 75	14.37		T	r. <u></u>		
8.00	27.58	17.36	16.53	15.40	14.51			ŧ		
4.00	27.88	17.50	16.65	15.46	14.86			{		
2.00	27.72	18.82	17.63	15,40	14.78		1	1		
1.00	26.91	17.63	16.77	15.46	14.85					
.50	19.11] 17.76	17.08	15.78	15.05		}			
.25	17.29	18.01	17.30	16.09	15.42		1	[
.12	17.29	18.34	18.17	16.64	15.98					
{		WI.	ND SPEEI) (cm/sec	:)					
16.00	174	338	322	400	393	313	· · · · · · · · · · · · · · · · · · ·	l		
8.00	176	339	290	373	391	306	l	l		
4.00	148	323	273	360	361	286	1	t		
2.00	153	300	256	330	332	258	1	(
1.00	136	(273)	239	306	309	235		(
.50	128	240	216	270	282	212				
. 20	102	204	102	2.55	230	104	L			
	·····	WIN	ID DIREC	TION (dep	z)		······	·		
1.00	265	200	235	230	260	315		L		
Luine Colors	1	SOIL TEN	APERATU	IRE CHAN	(GE ("C)	T		•		
Run Time (mte)	0750	0850	0950	1050	1148	1251	}	}		
- 03	20	1 10	1 20	1 0.6	1 1 1 7	40		ł		
- 06	40) 44	84	1.20	1.00	1.11	142		1		
12	- 04	00	17	31	42	.56	}			
25	08	11	00	- 07	.04	01	1	1		
00	01	03	03	1 - 06	.07	04		1		
-1.00	00	. 12	-,03	02	02	03		}		
l						<u>م متتب</u>	م ــــــــــــــــــــــــــــــــ	A		

Table 8.2 (Continued)

Precipitation (em)

HOURLY OBSERVA	TIONS		August 9	, 1956		0'1	NEILL, N	EBRASKA
CST	1405	1505	1605	1705	1505*	1605*		
RADIATION (cal/cm ² sec)								
Insolation	.0210	.0185	,0080	.0012	.0072	.0125		
Reflected	.0038	.0033	.0016		.0013	.0021		
Net Radiation	,0125	.0105	.0030	0008	.0038	.0080		
		AIR and S	OIL TEM	IPERATU	RES (°C)			
Height (m)					00.00			
16.00	28.81	29,80	29.27	27.98	32.09	33.00		
8.00	29.29	30.33	29.64	28.07	32.30	33.26		
4.00	29.59	30.88	29.89	28.13	32.59	33.81		
2.00	30.01	30.80	30.11	28.13	32.94	34.32		
1.00	30.27	31.66	30.24	28.18	33.30	34.84		
.50	31.03	32.88	30.75	28.18	33,62	35.61		
. 25	33.04	33.92	31.27	28.18	34.00	36.10	Į	
.12	34.02	34.94	32.12	28.15	34.35	36.50		
03	35.64	36.77	36.01	33.28	30.82	32.05		
06	31.53	32.79	33.30	32.44	28.54	28.86		1
- 12	25.77	26.64	27.48	27.98	25.65	25,70		
- 25	22.76	22.88	23.06	23.31	23.10	23.30	i i	
- 50	21.69	21.65	21.60	21.56	21.39	21.51	1	
-1.00	19.91	19.87	19.82	19.84	19.62	19.47		
·····		VAI	POR PRE	<u>SSURE (m</u>	b)	·	,	
16.00	13.06	13.60	13.53	14.38	12.71	33.24	1	
8.00	13.85	14.00	13 85	14.55	12,90	13.48	1	
4.00	13.95	14.17	13.89	14.60	12.94	13.53		
2.00	13.92	14.16	13.94	14.65	13.00	13.64	ļ	
1.00	14.04	14.26	14.09	14.66	13.09	13.68		
.50	14.32	14.59	14.27	14.74	13.13	13.71		
,25	14.64	14.66	14.51	14.76	13.18	13.77	1	
.12	15.05	14.87	14.88	14.83	13.23	13.82		
		wi	ND SPEE	0 (cm/aec	.)	-		
18.00	246	277	154	573	753	889		
8.00	261	279	153	501	727	843		
4,00	244	261	141	463	664	764])
2.00	230	244	144	416	590	678	1	1
1,00	217	228	133	370	522	603	1	l
.50	200	205	125	325	456	527	1	f
.25	168	175	101	276	383	440		
		WD	D DIREC	TION (de	z)			
1.00	215	250	85	30	158	162		
	••••••••	SOIL TEN	APERA FL	JRE CHAN	NOE (°C)			
Initial Time	1353	1454	1553	1653	1453	1553]
Run Time (min)	25	2.4	25	23	24	23	1	1
03	60	32	56	-1.23	03	48	}	1
a.06	56	44	1 17	50	.16	34	1	I
12	20	20	22	18	0.8	.10	1	1
-,25	119	05	1 11	10	03	.05	1	1
-, 50	.03	100		1	00	0	1]
-1.00	03	04	.01	.01	.02	02		ļ
Precipitation (cm)	• <u>•</u>	<u></u>					* Aum	at 97 1064

Precipitation (cm)

Auc

HOURLY OBSERVA	TIONS		August 2	27, 1956		O'NEILL, NEBRASKA			
CST	1705	1905	2105	2205	0005*	0105*			
		RAD	LATION (cal/cm ² s	ec)				
Insolation	.0070	.0003	.0000	.0000	.0000	.0000			
Reflected	.0014	**	.0000	.0000	.0000	.0000			
Net Radiation	.0027	0011	0010	0008	0006	0009			
		AIR and	SOIL TEM	PERATU	RES (°C)				
Height (m)		01 10	90.11	00.00		01.05			
16.00	33.24	31.13	29.11	25.72	24.40	21.75			
8.00	33.32	30,55	20.72	24.90	21.38	20.03	Į	ļ	
4.00	33.00	29.07	24.93	22.57	20.11	19.02	1		
2.00	33,95	28.94	22.59	20.69	18.83	18.37	1	1	
1.00	34.34	27.41	18.84	19.72	18.29	17.65	1		
.50	34.64	25.57	17.45	19.02	17.68	16.78	Į		
.25	35.04	24.45	16.86	18.56	17.26	16.47	Į		
.12	35.38	23.85	16.28	18.09	16.94	16.06	ł	l	
03	32.19	29.07	25.04	23.77	22.52	21.79	1	1	
06	29.40	28.58	26.26	25.04	23.67	23.14	1		
12	25.91	26.36	26.26	25.76	24.96	24.57			
25	23.38	23.65	23.98	23.96	23.99	23.92	1		
50	21.49	21.54	21.60	21.58	21.61	21.62	1	1	
-1.00	19.44	19.56	19.79	19.78	19.78	19.78	}		
		VAI		SIIDE /m					
16.00	13.55	14 87	14 32		14 49	14 40	Y	r	
8.00	13.00	15.00	18.10		15 20	14 04	1		
4 00	13.70	14.00	15 70		15.20	14.04	1		
2.00	13.13	14.00	10.70	{	10.00	14.00	1		
1.00	13.10	14 70	14.00		14.04	14.77	1		
50	13.01	14.70	14.00		14.70	14.51	{		
.50	10.07	14.40	14.08		14.38	14.51	1		
12	13.93	14.22	13.89		14.37	14.53			
				· · · ·		11.40	1		
18.00	105	WI	ND SPEEL) (cm/880	2			·····	
8.00	823	230	213	320	107	337			
4.00	784	201	107	325	138	265		}	
4.00	706	163	130	282	103	206	1		
2.00	625	147	149	165	100	169	1		
1.00	555	83	70	78	66	113	Í.		
.90	400	49	33	59	70	99			
	403		<u> </u>	30	52	74	I		
1.65		<u>wn</u>	D DIREC	TION (dej	¢)		·	r	
1.00	185					••			
		SOIL TEN	IPERATU	RE CHAN	IGE (°C)				
Initial Time	1652	1850	2050	2150	0000	0050	1		
Run Time (min)	24	27	27	27	26	25		ł	
03	25	96	69	30	27	- 37	1	Į	
00	.ú9	40	55	38	27	28	ł		
12	.12	.02	-,14	15	18	14			
25	.03	.06	03	.04	.00	02			
50	02	.02	.01	.02	.02	.00	1		
-1.00	01	.01	.00	.02	.00	00		1	
			·	<u></u>	.			h	

ł.

Precipitation (cm) * August 28, 1956

HOURLY OBSERVA	TIONS		August 2	28, 1956		O'NEILL, NEBRASKA			
CST	0205	0305	0405	0505	0605	0705			
		RAD	IATION (eat/cm ² se	ec)				
Insolation	.0000	.0000	0000	.0000	.0004	.0045	1		
Reflected	.0000	.0000	.0000	0000	0001	0011			
Net Radiation	.0009	- 0004	0006	0008	0007	.0021			
		AIR and a	SOIL TEN	IPERATU	RES (°C)				
Height (m)									
16.00	23.14	21.93	22.32	21.28	19.15	19.74			
8.00	21.83	21.04	21.37	20.04	17.71	19.95			
4.00	20.87	19.90	20.27	18.55	16.50	20.15	1		
2.00	19.97	18.95	19.01	17.39	15.65	20.28	[]		
1.00	19.30	18.45	18.91	15.97	14.93	20.51	1		
. 50	18.59	17.98	14.59	15.13	13.72	20.84	1		
. 25	18.10	17.05	13.92	14.75	13.30	21.14			
.12	17.76	17.47	13.38	14.43	13.02	21.41	1		
03	21.23	20.87	20.63	19,91	19.42	19.60	1		
-,06	22.63	22.15	21.88	21.41	20.94	20.63			
12	24.27	23.93	23 60	23.30	22.99	22.70	1 1		
25	23.91	23.83	23.73	23.61	23.50	23.38			
50	21.68	21.71	21.73	21.73	21.74	21.74			
-1.00	19.82	19.83	19.83	19.83	19.83	19.85			
		VAI	POR PRES	SSURE (m	ы				
16.00	14.82	14.57	14 99	14 70	14 87	14.80	1		
8.00	15.04	14 70	14 78	14 90	19.01	14.80			
4.00	14.87	15.05	14 79	14 70	13.00	14.07	1 1		
2.00	14 69	15.05	14 69	14 68	19.50	14.07			
1.00	14.52	14 95	14.03	14.50	13.50	14.00			
.50	14.50	14.00	14.51	14.33	19.02	14.00			
.25	14 30	14.85	1 13 89	14 40	12.02	14.00			
.12	14.31	14.83	13.68	14.37	12.80	14.97			
	· · · · · · · · · · · · · · · · · · ·	wn	ND SPEEI) (cm/#00)		·		
16.00	289	99	314	499	1	400	11		
8.00	248	149	183	305	184	393 -			
4.00	192	144	112	301		368			
2.00	158	114	1 11	238	57	326			
1.00	106	61	81	164	41	290			
. 50	90	51	32	124	46	25.6			
. 25	64	36		97	31	205			
		- WIN	D DIREC	TION (dea	7)				
1.00			-		340	151	ll		
·····		SOIL TEN	APERATU	RE CHAN	IGE (°C)	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Initial Time	0150	0250	0350	0450	0550	0650	[]	······································	
Run Time (min)	26	26	26	26	27	26	1		
03		07	- 35	27	22	63			
00	- 21	- 16	13		1 18	00.			
12	12	- 15	- 12	- 11	. 10	- 12			
-,25	-,12	- 09	12	. 07		- 09			
50	-102	04	03		00	*,00			
-1.00	03	.01	00	00		-,01			
			•	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•		

Table 8.2 (Continued)

Precipitation (cm)

HOURLY OBSERVA	August 28, 1956			O'NEILL, NEBRASKA				
CST	0805	0905	1005	1105	1205	1305		
	I							_ <u>_</u>
		RAD	IATION (cal/cm ² sc	ec)		····-	
Insolation	.0070	.0125	.0155	.0195	,0165	.0185		
Net Padlation	.0015	.0022	.0024	0031	.0028	0010		
Net rearrantion	.0035	.0001	.0085	.011.3	.0100	.0030	L	
		AIR and S	OIL TEM	PERATU	RES (°C)	···	·	r <u></u>
neight (m)	20.96	24 98	26.94	30.36	31-11	31.34		
8 00	21.09	25.34	27.25	30.86	31.51	31.71		
4 00	21.20	25.62	27.69	31.39	31.86	31.91		
2.00	21.29	26.02	28.07	32.26	32.43	32.27		
1.00	21.59	26.26	28.87	32.90	33.36	32.56		
.50	22.04	26.78	29.03	33.63	33.97	33.41		Ì
.25	22.05	27.74	30.77	34.42	34.99	34.28	1	
.12	23.20	28.51	31.45	34.98	35.90	34.98		
-,03	21.41	24.46	27.96	31.28	33,95	35.24	Į	
06	21.14	22.41	24.44	20,03	28.02	30.25	1	
12	22,40	24.34	22.32	44.00 99.68	23.70	24.01		
25	23.20	23.04	22.00	21.58	22.10	22.70		
30	19.82	19.83	19.80	19.74	19.84	19.82		
-1.00			L	I			I	L
ر میں میں میں میں اور اور اور اور اور اور اور اور اور اور		VAL	POR PRES	SURE (m	b)		<u>. </u>	
16.00	15.80	17 96	17.19	13.44	14.76	12.31]
8.00	15.92	10-7	17.58	14.32	15.05	12.57		
4.00	16.00	16.37	17.60	14.37	15.00	12.57		
2.00	10.04	18.00	17.65	14.30	15.03	12.00		
50	16.10	18.18	17.00	14.21 14.4R	15.08	12.55		
25	16.43	18.36	17.80	14.63	15.16	12.71		
.12	16.51	18.54	17.88	14.78	15.19	12 86		
					.)			
18.00	159	185	331	1 546	637	464	7	
8.00	162	194	322	488	598	456	1	
4.00	148	183	307	475	553	433		
2.00	144	171	281	428	476	384		
1.00	114	137	253	385	438	339		l
. 50	117	135	235	348	403	307		
. 25	94	117	207	303	367	269		L,
		WIN	D DIREC	TION (deg	;)			
1.00	315	45	315	360	360	315		
		SOIL TEN	IPERATU	RE CHAN	IGE (°C)			
Initial Time	0750	0850	0950	1050	1150	1250		
Run Time (min)	26	26	26	20	27	27	1	1
03	67	1.50	1.43	1.17	.74	.19		1
00	32	.76	.87	.88	.83	66	1	Į
- 16	08	.04	1 .10	.22	.38	.42	1	1
	08	05 	~.08	08	01	.01	{	1
-1.00	- 01 - 00	.01	00	04	01	02		
Precipitation (cm)				•	*••••			h

HOURLY OBSERVATIONS			August 2	8, 1956		O'NEILL, NEBRASKA		
CST	1405	1505	1805					
	_	RAD	ATION (cal/cm ² se	c)			
Insolation	.0175	.0157	~ •					
Reflected	.0029	.0027		1				
Net Radiation	.0097	.0083						
		AIR and S	SOIL TEN	PERATUR	ES (°C)			
Height (m)				1				
16.00	31.87	29.63	32.96	{				
8.00	32.29	30.26	33.08					
4.00	33.01	30.67	33.16	1 1				
2.00	33.54	31.38	33,18	1 1				
1.00	34.01	32.23	33.22					
.50	34.80	32.94	33.26	!				
.25	36.16	33.84	33,28	1				
.12	37.14	34,52	33.32	1				
03	35.59	36.25	31.00	1				
06	31.11	31,98	29.25	i 1				
12	25.44	26 14	26.24	1				
-,25	22.78	22.93	23.53))				
50	21.60	21.59	21.52	1 1				
-1.00	19.83	19.84	19.52					
		VAI	POR PRES	SURE (mb)			
16.00	13.80	17.16	13.92		2			
8.00	14.05	17 98	14 00	1 1				
4.00	14.00	17 98	14 11	1 I				
2.00	14.07	17.20	14.12	} {				
1.00	14.07	17.94	14.12	{ i				
50	14.00	17 11	14.20	1 1				
25	14.94	17.30	14.20	} }				
.12	14.39	17.31	14.32					
· ·	•			(cm/acc)				
16.00	7.11	1 954	567					
8.00	790	946	511	i i				
4.00	744	893	466	s í				
2.00	669	7:00	407	1				
1.00	691	711	356	1				
50	519	696	315	1				
.25	451	542	261					
	.					╺──────────	, <u>e</u>	
1.00	288	<u></u>						
	L	S()II. TEN	1059477					
Initial Time	1/05/0	1450	1750		AN LAL	· · · · · · · · · · · · · · · · · · ·		
Run Time (min)	10.00	11.00		j l				
- 03		20	57	}				
- UB	. (4	00	07	{ }				
- 12	.30		100	1				
- 25	.33	.31	10	1 I				
- 50	.06	.00	.04	1				
-1.00	.01	.02	00	1				
-1.00	L00	- 03	.01	┢───				

.

Precipitation (cm)

• --

- -

95

. .. .

,

Date:	July	10	July	6			
Depth (cm)	Soil Moisture (% Dry Wt.)	Soil Density (Gr/cm ³)	Soil Moisture (% Dry Wt.)	Soil Density (Gr/cm ³)			
0~10	7.2	1.06	6.8	.99			
10-20	7.0	1.13	8.3	1.07			
20-30	3.8	1.28	6.3	1,11			
30-40	4.2	1,35	4.9	1.17			
40-50	5.1	1.31	3.9	1.19			
50-60	3.1	1.43	3.7	1.20			
60-70	1.9	1.53*	3.4	1.27			
70-80	1.8	1.53*	3.2	1.29			
80-90	2.9	1.53*	4.8	1.40			
90-100	5.7	1.53*	4.8	1.45			
Date:	Augus	at 6	August	ugust 29			
Depth (cm)	Soil Moisture (& Dry Wt.)	Soil Density (Gr/cm ³)	Soil Moisture (% Dry Wt.)	Soil Density (Gr/cm ³)			
0-10	9,2	1.03	6.6	1.05			
10-20	6.6	1,11	6.5	1.19			
20-30	3.0	1.23	6.0	1.22			
30-40	2.8	1.27	4.4	1.35			
4050	2.9	1,29	5.6	1.29			
50-60	3.5	1.32	6.7	1.39			
60-70	6.2	1.20	3.8	1.51			
70-80	3,8	1,35	2.9	1.56			
80-90	2.6	1.45	2.4	1.58			
90 - LÚU	1.8	1.60	24	1 68			

Table 8.3 Soil moisture and soil density, O'Neill, Nebraska, 1956

•Mean value, 60-100cm.

CHAPTER 9

EVALUATION OF THE FLUXES OF SENSIBLE AND LATENT HEAT FROM MEASUREMENTS OF WIND, TEMPERATURE, AND DEW POINT PROFILES

M. H. Halstead* and W. H. Clayton Texas A&M Research Foundation

9.1 Introduction

Inasmuch as the macroparameters of meteorology are, in many cases, determinable by the microparameters in the near surface layers of the atmosphere, a great deal of study has been conducted by many investigators towards better evaluation of these microparameters. A basic attack on the problem lies in the determination of the surface energy budget; and it is the purpose of this paper to present a method of evaluating the various terms of the energy balance relationship from measurements of moisture, net radiation, and the vertical gradients of wind, temperature, and moisture at a particular site for a given time interval.

From conservation of energy requirements, the sum of energy fluxes entering or leaving the earth's surface must be zero. Or

$$R_n + q_c + q_e + q_s = 0$$
 (1)

wherc

 R_n = net radiative flux of heat,

 $q_c =$ flux of sensible heat to the air,

- q_e = flux of latent heat from evaporation or condensation of water, and
- $q_g = conductive heat flux into or out of the ground.$

The net radiation is easily measurable directly and need not concern us here other than as a measure of the reliability of the other terms in Eq. (1).

*Present affiliation: U. S. Navy Electronics Laboratory
Measurements of soil heat flux, though not performed directly, are based on the Fourier conduction equation and the treatment shown in this paper is no different from that of previous authors (for example, Sutton⁵).

The essential difference between this and previous papers is based on a definition of turbulent flow first advanced by Halstead.² This, in turn, leads to evaluations of q_c and q_e in a turbulent regime different from those obtained through the classical concept of equivalence of exchange coefficients for heat and momentum.

The applicability of these evaluations is shown by heat budget computations based on data collected during Project Prairie Grass by personnel of Texas A&M Research Foundation.

9.2 The Flux of Momentum

The transfer rate of molecular momentum within a gas per unit time and area, in a direction perpendicular to the mean velocity of the gas (or tangential shear), is proportional to the vertical gradient of the velocity. That is,

$$\tau_{y} = \mu du/dz \tag{2}$$

where μ is defined as the absolute viscosity of the gas. Equation (2), though first presented as an empirical concept, can easily be derived from kinetic theory.

This derivation shows that

$$\mu = \rho \tilde{c} L/3 \tag{3}$$

where \bar{c} is the root-mean-square velocity of the molecules comprising the gas, ρ is the density, and L is the mean free path. If the scale of motion within the gas, as characterized by the product uz, where z is the distance from the bounding surface, exceeds the molecular scale of motion as shown by $\bar{c}L$, by a sufficient amount, the flow ceases to be laminar and becomes irregular or chaotic or, as usually described, turbulent.

The critical values of this ratio for tubes of various sizes were first investigated by Reynolds, who found that turbulent motion occurred in a tube of diameter d when

$$R_{\rho} = 3ud/\bar{c}L = \rho ud/\mu > 2000.$$
 (4)

Even though turbulent motion is present, a laminar sublayer adjacent to the boundary can still exist. The thickness of this layer is determinable from R_e for flow over smooth surfaces. Assuming a linear profile within the laminar layer, the surface friction 1 is

$$\tau_{\rm O} = .332 \,\rho \, \mathrm{u}_{\delta}^2 \,/ \,\sqrt{\mathrm{R}_{\rm e}} \,.$$

From integration of Eq. (2), assuming $\tau \neq \tau(z)$,

$$\tau_{\rm O} = \rho \,\bar{\rm c} \, {\rm L} \, {\rm u}_{\rm O} / 3 \delta \, .$$

Thus, the localized Reynolds' number is

$$R_{c} = 3 u_{\delta} \delta / \bar{c} L = 135.$$
 (5)

It should be noted that the flow pattern at $z = \delta$ will not be strictly laminar or turbulent. That is, $z = \delta$ cannot be interpreted as a point but rather as a region. However, for purposes of discussion here, δ will be regarded as the thickness of the laminar layer.

To apply Eq. (2) to a turbulent regime, the molecular viscosity must be replaced by a term, usually referred to as the eddy viscosity, which will be a function of the distance from the bounding surface.

Inasmuch as division between laminar and turbulent flow does not occur at a precise point, it appears reasonable that the eddy viscosity should be so defined that it reduces to the molecular viscosity. That is, Eq. (2) could be written as

$$\tau_{z} = K \, \mathrm{d} u / \mathrm{d} z \,, \tag{6}$$

where K will be equal to μ at $z = \delta$.

Consider a flow of gas over a smooth surface and assume n hypothetical surfaces inserted in the gas above the boundary, each a mean distance δ units above the layer preceding it. That is, the first surface is coincident with the top of the laminar sublayer. The effect of turbulence may be thought of as a factor of area distortion of a given surface. Hence, the area of the surface at elevation j will be greater than the area of the surface at j - δ and less than the surface at elevation j + δ . This is shown in Figure 9.1.

The first surface has the same area as the smooth boundary itself inasmuch as below $z = \delta$ the flow is laminar. Above $z = \delta$, a given surface becomes distorted due to the distortion of the preceding surface, plus any inherent distortion of the surface itself.

Let r be the ratio of areas of any two adjacent surfaces. Then

$$\mathbf{r} = \mathbf{A}_{n} / \mathbf{A}_{n-1}.$$

(7)

Hence, Eq. (6) may be written $\tau_z = \mu A_n / A_0 du / dz$.

Thus, the area of the nth layer at elevation z will be

$$A_n = A_1 rn.$$

Since $A_1 = A_0$,

$$A_{n}/A_{o} = r z/\delta.$$
 (8)

Substituting Eq. (8) in Eq. (7), we obtain,

$$\tau_{\tau} = r z \, \mu / \delta \, du / dz \,, \tag{9}$$

as applicable to turbulent flow.

The shearing stress τ_z will vary with elevation, being a maximum at z = 0, and decreasing with elevation. For the atmosphere, τ_z will vanish at z = H, where H is the geostrophic wind level.

Assuming a linear variation of shearing stress with height*, we may write,

$$r_{z} = \tau (1 - z/H),$$
 (10)

where τ is the stress at the top of the laminar layer, which for all practical considerations for the atmosphere will equal the shear stress at the surface. Hence,

$$\tau_{\rm o} (1-z/{\rm H}) = \rho \, \bar{c} \, ({\rm Lr} z/3 \, \delta) \, {\rm d} u/{\rm d} z \tag{11}$$

Actually, ρ and \overline{c} and L will vary with height also, but for the lower layers of the atmosphere this variation will be small.

Separating variables and integrating from δ to z, we obtain,

$$u_z = u_{\delta} + 3\delta\tau_0 (\ln z/\delta - z/H)/\rho \,\bar{c} Lr \qquad (12)$$

From integration of Eq. (7) from z = 0 to $z = \delta$ ($\tau_0 = \tau_z$, $K = \mu$),

$$u_{\delta} = 3\tau_{0}\delta/\rho\,\bar{c}L. \tag{13}$$

^{*}This is equivalent to assuming a unidirectional mean velocity, negligible Coriolis acceleration, and a uniform horizontal pressure gradient.

Thus,

$$u_z = u_{\delta} [1 + (\ln z/\delta - z/H)/r]$$
 (14)

Inasmuch as the discussion is restricted to the region where z is of the order of a few meters, while H will be of the order of 500 meters, z/H of Eq. (14) will be insignificant with respect to $\ln z/\delta$ and the former term may be neglected. Thus,

$$\mathbf{u}_{\chi} = \mathbf{u}_{\kappa} \left[1 + \left(\ln \alpha / \delta \right) \mathbf{r} \right] . \tag{15}$$

Equation (15) is analogous to the wind profile equation derived from mixing length concepts, that is,

$$u_{z} = u_{*}[A + (\ln u_{*} z/\nu)/k]$$
 (16)

where $u_* = \sqrt{\tau/\rho}$, k is von Karman's constant (k = 0.40), and A is a constant. It is interesting to convert Eqs. (15) and (16) to identical form, inasmuch as A and k have been evaluated from empirical studies.

From Eqs. (5) and (13),

$$\mathbf{u}_{\delta} = \mathbf{R}_{c} \nu / \delta = \mathbf{u}_{\star}^{2} \delta / \nu.$$
 (17)

Substituting in Eq. (15)

$$\mathbf{u}_{\mathbf{z}} = \mathbf{u}_{\mathbf{z}} \left[\mathbf{A} + (\ln \mathbf{z} \mathbf{u}_{\mathbf{z}} / \delta) \mathbf{k} \right]$$
(18)

which is identical to Eq. (16) when

$$\mathbf{A} = v_{\mathbf{v}} \delta / \nu [1 - (\ln u_{\mathbf{v}} \delta / \nu) / r]$$
⁽¹⁹⁾

and

$$\mathbf{k} = \mathbf{\nu} \mathbf{r} / \mathbf{u}_{\star} \delta \,. \tag{20}$$

Using Nikuradse's (Sutton⁵) data for flow near a smooth surface, A = 5.5 for k = .40; hence, r = 4.65.

More recent work by Laufer at the Bureau of Standards affirms the Nikuradse data and leads to the same r value.

Substituting this value in Eq. (15),

$$u_z = u_{\delta} [1 + (\ln z/\delta)/4.65], z > \delta$$
 (21)

for flow near a smooth bounding surface.

Within the laminar sublayer ($z \le \delta$), u is given from Eq. (17) and using $\mu = 1.8 \times 10^{-4}$ gm/cm sec, $\rho = 1.2 \times 10^{-3}$ gm/cm³,

$$u_{\delta} = 20.3/\delta$$
. (22)

Figure 9.2 shows Eqs. (21) and (13) for several τ values, plotted as velocity versus the logarithm of elevation. The turbulent and laminar regimes are separated by the line along which $u_{\delta} \delta = 20.3$.

The applicability of Eq. (21) is limited to small elevations and smooth surfaces. We can rigorously define elevation but not a smooth surface. Aerodynamically speaking, a smooth surface means a surface that does not physically protrude through the laminar sublayer. However, since the thickness of this layer depends upon the velocity, a surface consisting of No. 4 sandpaper could be a smooth surface; and, under other flow conditions, a pane of glass could be a rough surface.

While a satisfactory theoretical treatment of the effect of surface roughness has yet to be developed, it is reasonable to think of the roughness elements as sinks of momentum which in total are equivalent to a "drag velocity." Hence, for the postulated type of flow over a rough surface, Eq. (21) can be modified to

$$u_x = u_{\delta} [1 + (\ln z/\delta)/4.65] - u_{s},$$
 (23)

where u_s is the drag velocity corresponding to momentum transferred to surface roughness elements, assuming no modification of the roughness elements by the flow. Further, the length δ must then represent, not the thickness of an actual sublayer, but more generally, the thickness of any layer which would give a distortion r. Since it is impossible to determine the sink strength of a surface theoretically or to

1

<u>9</u>

. .

measure u_s directly, it is necessary to eliminate the "drag velocity" by solving Eq. (23) simultaneously for more than one level.

In the presence of a vertical gradient of potential temperature, the modification of the flow pattern can be significant, as the density, mean free path, and root mean square velocity of the gas will change with elevation. That is, a buoyancy term will be present. This will be true in the laminar as well as in the turbulent region. For the lower layers of the atmosphere to which this discussion is restricted, the effects of buoyancy can be large, varying velocities and transfer rates through one or two orders of magnitudes. Fortunately, however, these effects do not appreciably influence the logarithmic nature of the profiles in the layers below one or two meters, hence need not be considered. Actually, this requires that z be no greater than the elevation for which u vs ln z is linear.

In general, the argument presented implies that turbulent transfer is not a function of an exchange coefficient varying with lateral or vertical displacement but a rate of distortion of laminar flow area which will vary from case to case, but will remain constant for a given flow pattern.

In order to apply the development to measurements of momentum transfer to the surface, we require the difference in velocity between a height z and 2z. From Eq. (23)

$$u_{2z} - u_z = (u_{\delta} \ln 2)/r$$
. (24)

Substituting Eq. (23) in (13) and recalling that r = 4.65, then the total momentum flux at the surface (or any elevation, z, since Eq. (23) is essentially based on constancy of shearing stress with height) is given by

$$\tau_{z} = 1/3 \rho \left(u_{2z} - u_{z} \right)^{2}.$$
 (25)

Inasmuch as this equation will be used again in the evaluation of the convective and evaporative fluxes of heat, it will be worthwhile to repeat the meaning of the various terms entering this equation. These are listed below:

- u_{z} = mean wind speed at elevation z,
- u_{δ} = mcan speed at the top of the laminar sublayer (fictional for flow over a rough surface),
- r = 4.65, increase in surface area due to turbulent distortion of a single layer of mean thickness δ ,
- δ = thickness of layer producing a constant distortion r (for flow over smooth surfaces, the thickness of the laminar sublayer).

9.3 The Flux of Sensible Heat

The rate of vertical transfer of heat (q_c) per unit time and unit area within a gas is proportional to the density of the medium, the specific heat, and the gradient of potential temperature, or for nonturbulent flow,

$$q_{e} = \nu_{e} \rho c_{p} dT/dz, \qquad (26)$$

where ρ is density, c_p is the specific heat at constant pressure, T is potential temperature, and ν_c is a constant of proportionality related to the product of molecular mean free path and root-mean-square velocity, and generally referred to as the thermal diffusivity. It has the same units as kinematic viscosity, cm²/sec in the cgs system.

If air is in turbulent motion, transfer of heat is still expressible by Eq. (26) but with a dependency on the scale of motion within the fluid. That is, heat is transferred by parcels of air as well as by individual molecules.

As in the case of flux of momentum, consider a flow of air over a smooth boundary with hypothetical, equally spaced surfaces separating layers of the moving air. For laminar flow, each surface will be parallel to every other surface, or each surface will have the same area. For turbulent flow, however, each surface will have a different area depending on the degree of turbulence. The first of this hypothetical group of surfaces will be parallel to the solid surface itself, if it is located at the top of the laminar layer, which is at a distance δ above the solid boundary. Surface number two, at a mean distance δ above number one, will be distorted to a degree depending on the scale of motion between the two surfaces. Surface number three (at a mean distance δ above surface two) will be distorted according to the scale of motion between it and surface one, or between it and number two, plus the distortion between surfaces one and two.

The area of a surface at a given height, z, is a measure of the opportunity for energy transfer. This area A_n , divided by the area of surface number one (or the area of the boundary itself, A_0), will be equal to rn where r is the fractional increase in area due to turbulent distortion and n is the number of surfaces, each a mean distance δ apart, between the boundary and elevation z. Thus,

$$\mathbf{A}_{n} = \mathbf{A}_{0} \mathbf{r} \mathbf{z} / \delta \,. \tag{27}$$

Hence, Eq. (26) may be written as

$$q_{c} = K_{c} \rho c_{p} dT/dz, \qquad (28)$$

where

$$\mathbf{K}_{\mathbf{c}} = \mathbf{v}_{\mathbf{c}}$$
 for $\mathbf{z} \leq \delta$ (laminar flow),

and for turbulent flow (over smooth surfaces) as,

$$q = v_{c} rz \rho c_{n} / \delta dT / dz. \qquad (29)$$

Restricting the application of Eq. (29) to small values of z, constancy of ν_c , ρ , and c_p may be assumed. This, in effect, means negligibility of any buoyancy terms.

For the same conditions given in the preceding section for stress varying linearly with elevation, we assume a linear variation of q with elevation, or

$$q_{e} = q_{o} (1 - \pi/H),$$
 (30)

where H is the thickness of the turbulent layer, or geostrophic wind level.

Substituting Eq. (30) in (29), separating variables, and integrating from the top of the laminar layer to an elevation z,

$$T_{z} = T_{\delta} [1 + (\ln z/\delta - z/H)/r],$$
 (31)

where

$$\mathbf{T}_{\delta} = \mathbf{q}_{c} \delta / \rho \, c_{p} \, \nu_{c} \,. \tag{32}$$

For small values of z, the term z/H will be negligible in comparison with $\ln z/\delta$ and may be omitted. Thus,

$$T_{z} = T_{\delta} \left[1 + (\ln z/\delta)/r \right], \qquad (33)$$

for flow over smooth surfaces.

For flow over aerodynamically rough surfaces, we parallel the previous view concerning momentum. That is, we will regard roughness elements to act as sources or sinks of heat, according to the temperature differences between the elements and the ambient, and postulate a potential temperature equivalent to the magnitude of the sources or sinks. In this view, Eq. (32) may be modified to

$$T_z = T_{\delta} [1 + (\ln z/\delta)/r] + T_g.$$
 (34)

Generally, T_s will be unknown, but it is not involved when Eq. (34) is applied to potential difference between two levels. For the particular levels z and 2z,

$$T_{2z} - T_z = T_{\delta} (\ln 2)/r.$$
 (35)

Combining Eqs. (17), (24), (32), and (35), we obtain

$$q_{c} = c_{p} r^{2} \rho \nu_{c} (T_{2z} - T_{z}) (u_{2z} - u_{z}) / R_{c} \nu (\ln 2)^{2}, \qquad (36)$$

for evaluation of the flux of sensible heat.

Using the values

$$\rho = 1.2 \times 10^{-3} \text{ gm/cm}^{3}$$

$$c_{p} = 0.24 \text{ cal/gm deg C},$$

$$\nu_{c} = 0.21 \text{ cm}^{2}/\text{sec},$$

$$\nu = 0.15 \text{ cm}^{2}/\text{sec},$$

$$r = 4.65, \text{ and}$$

$$R_{c} = 135,$$

in Eq. (36)

$$q_{c} = .124 \times 10^{-3} (u_{2z} - u_{z}) (T_{2z} - T_{z})$$
 (37)

with q_c in cal/cm² sec, velocity in cm/sec, and temperature in degrees Centigrade.

9.4 The Flux of Water Vapor

Evaporation of a fluid is a measure of the difference of exchange rates of molecules of the fluid between the surface and the surrounding medium. For the case in which molecules escaping from the surface of the fluid are influenced only by their concentration and the molecular properties of the surrounding medium (for example, still air over water), the evaporation is given by,

$$\mathbf{E} = \sigma \mathrm{d} \, \rho' / \mathrm{d} \mathbf{z} \,, \tag{38}$$

where σ is the diffusion coefficient, and ρ' is the density of the fluid vapor. While σ will vary slightly with temperature, it may be considered constant for purposes of this discussion. Its value for 15°C is .250 cm²/sec.

If the air is in turbulent motion, Eq. (38) requires modification to allow for non-molecular transfer. As in the previous cases of transfer of momentum and heat, we will generalize the laminar flow

case to include turbulent flow by introducing a factor to allow for the increased area of contact between the turbulently distorted layers, or

$$\mathbf{E} = \sigma \mathbf{r} \, \mathbf{z} / \delta \, \mathrm{d} \rho' / \mathrm{d} \mathbf{z} \,, \tag{39}$$

Using the same reasoning that has been applied for the wind and temperature profiles with respect to variations in E with height, surface roughness, and thermal buoyancy, the evaporation is given as

$$E = \sigma (u_{2Z} - u_{Z}) (\rho'_{2Z} - \rho'_{Z})/3, \qquad (40)$$

where E will be given in gm/cm^2 sec for ρ' in gm/cm^3 , and u in cm/sec.

In order to compute the flux of latent heat by evaporation, Eq. (40) must be multiplied by the latent heat of vaporization of water for the particular temperature concerned. Using 20° C as an average temperature and converting absolute humidity to an equivalent vapor pressure by use of

$$\rho' = eM/RT \tag{41}$$

where

M = 18, molecular weight of water,

R = 8.31×10^{-7} erg deg, universal gas constant,

 $T = 293^{\circ}K$,

c = vapor pressure (millibars), and

 q_{e} = evaporative flux of heat,

we can write approximately,

$$q_{e} = .240 \times 10^{-3} (u_{2z} - u_{z}) (e_{2z} - e_{z}),$$
 (42)

when $q_{\rm c}$ is given in cal/cm² sec.

9.5 Soil Heat Flux

Inasmuch as transfer of heat energy within the soil is by conduction, the equation for heat flux in the soil is given by the Fourier relation,

$$\partial T/\partial t = \nu_c \nabla^2 T$$
 (43)

where T = temperature, and $\nu_c = \text{thermal diffusion coefficient}$. If $\partial^2 T/\partial x^2 = \partial^2 T/\partial y^2 = 0$, using Eq. (26) to define the heat flux, and considering z to increase positively with height,

$$q_0 = q_z + \int_z^0 \rho c_p (\partial T/\partial t) dz.$$
 (44)

Since it is desirable to determine the surface heat flux from soil temperature difference with time, q_z must equal zero. That is, measurements must cover the range from the surface to a point where $\partial T/\partial z = 0$. Hence,

$$\mathbf{q}_{0} = \int_{z}^{0} \rho c_{p} (\partial \mathbf{T} / \partial t) dz.$$
 (45)

9.6 Computation of Surface Heat Budgets

During the 70 gas releases of Project Prairie Grass, personnel of the Texas A&M Research Foundation made measurements of net radiation as well as of wind velocity, vapor pressure, air temperature, and soil temperature at several levels. These data have been used in the energy balance equation as a measure of the applicability of the expressions developed for evaluating the fluxes of sensible and evaporative heat.

The systems of measurement employed in the study are described in Chapter 7 of this report and need not be repeated here. The method of analysis of the data as pertinent to the various flux computations, however, is given below.

Referring to Eq. (37), evaluation of $\Delta u = (u_{2z} - u_z)$ and $\Delta T = (T_{2z} - T_z)$

is all that is required to evaluate the flux of sensible heat. These values, of course, are obtainable from profile measurements of wind speed and air temperature. Specifically, the mean values of u and T at 12.5, 25, 50, 100, 200, 400, 800, and 1600 centimeters were measured for a 20- to 30-minute interval surrounding the gas release intervals and plotted versus the logarithm of elevation. Inasmuch as the developed relationships apply in the region where u is linear with ln z, the portions of the profiles significant to the study are straight lines, and the double-level variation is merely the abscissa increment between any two successive levels along the profile.

To minimize plotting and reading errors, the increments were read between four levels and divided accordingly. Of course, not all profiles were strictly linear. In such cases the "best sight" fit to a linear profile was used with greatest weight given to the lowest levels where deviation from linearity was a minimum.

In the u evaluation, extrapolation of the profile to u = 0 gives the roughness parameter z_0 , as can be seen from

$$u = (u_{\star} \ln z/z_{o})/k$$
, (46)

which is another form of Eq. (16). A value of 0.6 cm was found to be the z_0 value for the measuring station location. This value represents the average value of the ln z versus u intercepts of 16 profiles that were essentially linear at all levels. Hence, all wind profiles were drawn as straight lines from the point z = 0.6 cm, u = 0, through the lower four points of u versus the logarithm of z.

The increment of vapor pressure $\Delta e = (e_{2z} - e_z)$ was obtained similarly from measurements of vapor pressure at the same elevations used for wind speed and air temperature.

The soil heat flux at the surface is given by Eq. (45). Both ρ and c_p vary with depth but so slightly, for the interval considered, that they may be treated as constant. For the type of soil in question (O'Neill loam, upland phase), $\rho c_p = 0.28$, as determined from six

different soil tests performed during the period covered by the data.

Thus, the value of soil heat flux is proportional to the area between profiles of temperature versus depth at the beginning and the end of the sampling period. The above, of course, is based on the assumption that $\partial T/\partial z = 0$ at some level z.

Soil temperatures were measured at 3.12, 6.25, 12.5, 25, 50, and 100 centimeters. If a maximum or minimum occurred at a depth of less than 100 centimeters, then the integral is represented by the area between the two profiles from the surface to the critical depth. If ne maximum or minimum temperature occurred, then the integral was evaluated to 100 centimeters, provided the temperature at that depth did not vary significantly with time during the gas release period. In-asmuch as surface temperature was not measured, this point on the profile was obtained from a graph of surface temperature versus time of day for that location as given by an analog computer 4 from local input data.

Table 9.1 gives a summary of the analysis for 48 release periods for which complete data were available. The fluxes in this table are given in kilocalories per square centimeter per second. To facilitate comparison of these fluxes with values determined by the University of Wisconsin group, the fluxes are presented in calories per square centimeter per minute in Table 9.2.

The line of best fit* of the data of Table 9.1 is y = .99 x, where y represents the net radiation values and x is the negative of the sum of the fluxes of latent heat, sensible heat, and soil heat. The average error (that is, between the net radiation values and the sum of the fluxes) is 0.43×10^{-3} cal/cm² sec. If release No. 10, which is obviously suspect, is omitted, the line of best fit is y = 0.97 x and average error is 0.36×10^{-3} cal/cm² sec.

^{*}Determined by the method of least squares. The second significant figure in the equation of best fit should not be taken to imply an accuracy of 1 percent, but is given only as a means of comparison with other equations based on different methods of evaluating heat fluxes.

Gas	Δu	Δ0	∆8	q _c	q _e	q _g	Σ_{q_i}	R _n	$R_n + \Sigma q_i$
	e m			Kcal	Kcal	Keal	Kcal	Kcal	Kcal
Rel.	<u> </u>	°C	mb	2	2	2	2	2	2
<u>No.</u>	sec			cm ⁻ sec	cm ⁻ sec	cm ⁻ sec	cm ⁻ sec	cm ⁻ sec	cm ⁻ sec
2	23	~ .28	42	80	-2.32	.07	- 3.05	2,90	.15
7	54	-1.07	33	- 7.16	-4.28	-1.58	-13.02	12.80	.22
8	54	51	20	- 3.41	-2,59	.23	- 5.77	5.70	.07
9	84	53	23	- 5.52	-4.64	-1.18	-11.34	11.40	06
10	57	- ,90	13	- 6.36	-1.78	-1,39	- 9.53	12.80	- 3.27
10	40	70	09	- 3.47	80	-1.11 	- 0.44	5.00	.44
10	44	- 1,03	20	- 5.30	- 4.04	~ 2,30	- 20.00	Ω 10	.00
20	112	00	- 05	- 11 53	-1.75	-1.00	- 14 30	13 70	60
21	72	00	01	- 89	- 17	. 22	.94	90	~ .04
$\tilde{2}\tilde{2}$	83	.15	02	1.54	40	.28	1.42	- 1.40	02
25	34	52	48	- 2.19	-3.92	.03	- 6.08	6.20	12
26	79	63	30	- 6.17	-5,69	-1.06	-12,92	12.60	.32
27	73	82	18	- 7.42	- 3 .15	-2.68	- 13.25	12,30	.95
30	83	70	25	- 7.20	-4.98	-1.52	-13.70	12.90	.80
31	99	38	14	- 4.66	-3.33	95	- 8.94	9.20	26
32	20	. 33	06	.82	~ .29	.99	1.52	- 1.30	22
33	90	- ,48	~.50	- 5.36	-0.40	.78	-11.06	10.90	.16
22	110	00	~. 15	- 1.00	-3.00	30	-11,01	11.30	20
25	10	.12	02	.00	46	.10	.55		- 00
36	16	23	~ 06	46	- 23	.61	.84	85	.00
38	48	.10	.00	.60	.00	.35	.95	85	10
39	$\overline{22}$.26	02	,71	11	.78	1.38	- 1.35	03
40	20	.23	04	.57	19	.70	1.03	- 1.14	.06
41	42	. 16	01	.83	10	.51	1.24	- 1.23	01
42	70	.15	01	1.30	17	.26	1.39	- 1.92	.53
43	65	83	17	- 6.69	-2.65	63	- 9.97	10.80	83
44	71	~ .85	07	- 7.98	-1.19	-1.35	-10.02	9.70	.32
40 AG	70	20	03	- 1.74	00	.00	- 1.00	1,40	.10
40 ΛΩσ	28	- 77	- 34	- 3.63	- 03	-1.59	- 8 27	7 00	1 27
48	91	- 51	54	- 5.75	-2.40	-1.01	- 9.16	8.10	1.06
49	82	78	- 15	- 7.73	-2.95	-1.67	-12.35	12.90	55
50	81	90	- 13	- 9.04	-2.53	-1.33	-12.90	12,80	.10
51	82	67	- 13	- 6.81	-2.56	52	- 9.89	8.80	1.09
52	55	-1.25	-,19	- 8.52	-2.51	68	-11.71	11.00	.71
53	21	.43	03	1.12	15	.98	1.95	- 1.50	45
54	46	.17	.00	.97	.00	. 67	1.64	- 1.70	.06
55	69	.15	.00	1.28	.00	. 55	1.83	- 1.50	33
56	55	.10	.04	.09	. 54	.04	1.07	- 1.40 1.90	97 14
57 50	00 90	13	02	- 1.37 a <i>n</i>	- ,41 	.39 ED	- 1,99 1 98	1.30 - 1.40	NU 11
09 60	20 57	.40	01	111	00	.00	1,50	- 1.40	- 13
61	90 90	- 70	01	- 8 33	_1 84	-1.21		11 90	- 52
62	63	- 37	-, 17	- 2.89	-2.57	60	- 6.06	7.20	-1.14
63	Ĩ	.83	.47	.31	.34	.95	1.60	- 1.10	50
64	3	.43	.18	.16	.13	.96	1.25	50	75

Table 9.1. Heat budget data collected by the Texas A&M Research Foundation

Gas	d ^C	q _c	۹ _s	R _n
5.1	cal	cal	cal	cal
Release No.	cm ² min	cm ² min	cm ² min	cm ² min
2	048	139	.004	.174
7	430	257	095	.768
8	205	155	.014	.342
9	331	278	071	.684
10	382	-,107	~.003	,100
10	~.208	002	007	.000
10	326	- 105	-,145	.000
20	- 602	- 080	- 086	.900
21	053	- 010	013	- 054
22	.092	024	.017	084
25	131	- 235	.002	.372
26	370	341	064	.756
27	445	189	161	.738
30	432	299	091	.774
31	280	200	057	.552
32	.049	017	,059	078
33	322	389	.047	.654
34	450	238	021	.678
358	.039	025	.046	042
35	.009	.000	.049	~.055
30	.028	~.014	.037	001
30	.030	.000	.021	051
39	.043	- 011	042	- 068
40 A1	.054	- 006	031	- 074
42	078	- 010	.016	115
43	401	- 159	~.038	.648
44	- 449	071	081	.502
45	104	030	.040	.084
46	.064	~.038	.080	084
48s	.218	186	092	.420
48	345	144	061	.486
49	464	177	100	.774
50	542	152	080	.768
51	409	154	031	.528
52	-,011	-,151	041	.000
53 54	.007	009	.039	000
54	.030	.000	033	- 090
56	041	.032	.038	084
57	082	025	.020	.078
59	.050	-,004	.035	084
60	.068	008	.031	084
61	500	-,110	073	.714
62	173	154 ′	036	.432
63	.019	.020	.057	066
64	.010	.008	.058	030

	Table 9.2.	Ileat budget	data collect	ed by the	Texas A&M	Research	Foundation
--	------------	--------------	--------------	-----------	-----------	----------	------------

Figure 9.3 is a scatter diagram of the data of Table 9.1.

A comparison of Eq. (40) with the Thornthwaite-Holzman evaporation formula shows that the latter relation differs from the former by a constant factor. The equations are, respectively,

$$q_{le} = \sigma/3\nu\Delta u\rho'$$

$$q_{2e} = (pk^2 \Delta u \Delta h)/(ln 2)^2$$
(46)
(47)

where Δh is the difference in specific humidity between elevations z and 2z, and all other symbols have the meanings previously used. Replacing h in Eq. (47) by the ratio of absolute humidity to air density

$$q_{le}/q_{2e} = \sigma/\nu (ln 2)^2 / 3k^2$$
 (48)

That is,

$$q_{le} \doteq \sigma / \nu q_{2e} \tag{49}$$

At 20°C, the ratio of σ/ν is equal to 1.6 or

$$q_{1e} = 1.6 q_{2e}$$
 (50)

Hence, the evaporation amount and the flux of latent heat, as computed by the developments in this paper, are approximately 50 percent greater than the corresponding values obtained by the Thornthwaite-Holzman equation.

The sensible heat flux, according to the developments of this paper, also differs from the usual computations based on equivalence of the eddy conduction of heat and momentum by approximately 50 percent. That is,

$$q_{\rm lh} = K_{\rm H} c_{\rm p} \rho \, d\theta / dz \tag{51}$$

where K_H is the eddy coefficient for heat. Assuming that $K_m = K_{II} = ku_* z$, where the subscript m refers to momentum, then

$$q_{1h} = ku_* z c_p \rho d\theta / dz$$
 (52)

Comparing this with Eq. (29)

$$q_{2h} = v_c r(z/\delta) \rho c_p d\theta / dz$$

and using Eq. (20) to evaluate ku_* ,

$$q_{\rm lh}/q_{\rm 2h} = \nu/\nu_{\rm c} = \kappa_{\rm m}/K_{\rm H}$$
, (53)

which is the Prandtl number for air (.711). Hence,

$$q_{2h} = 1.4 q_{1h},$$
 (54)

or, as noted above, the sensible heat flux based on the reasoning of this paper is approximately one and one-half times the flux computations based on equivalence of the Austauch values for heat and momentum. Figure 9.4 is a scatter diagram of the O'Neill data based on the latter concept.

The supposition that the exchange coefficients for heat and momentum are equal or nearly so probably dates from the Reynolds' analogy, that is,

$$\tau/\rho = (\nu + K) \, du/dz = K_m \, du/dz \tag{55}$$

and

$$-q/c_{\rm p}\rho = (\nu_{\rm c} + K) \, \mathrm{d}\theta / \mathrm{d}z = K_{\rm H} \, \mathrm{d}\theta / \mathrm{d}z \,. \tag{56}$$

Assuming that ν and ν_c represent insignificant contributions to the coefficients, K_H and K_m should be nearly equal.

The development used in this paper is equivalent to the postulate that

$$\tau/\rho = K \, du/dz = K_m \, du/dz \,, \tag{57}$$

and

$$-q/\rho c_{p} = \nu_{c} K d\theta/dz = K_{H} d\theta/dz, \qquad (58)$$

hence, using Eqs. (9) and (29),

· . ·

$$K_{\rm m}/K_{\rm H} = \nu/\nu_{\rm c}.$$
 (59)

It is not intended to imply that the equivalence of the eddy coefficients for momentum and heat has been universally accepted in the past. Swinbank⁶ from experiments conducted in Australia says "... there is a certain notable consistency about the manner in which K_H exceeds K_m ... Not only is this order of the coefficients maintained from one occasion to another, but also, broadly, the proportionality among them." From five measurements of K_m and K_H , his average ratio is

$$K_{\rm H}/K_{\rm m} = 1.8$$
, (60)

which is certainly of the magnitude of the ratio of ν_c to ν .

Data obtained by Rider⁴ at Cardington, England, also supports this value of the ratio of K_m and K_H , although Rider did not interpret the results as support for the non-equivalence of the two coefficients. From averaging of nine evaluations of K_H and K_m (at 75 centimeters) from observed energy balance computations, Rider finds as an average ratio

$$K_{\rm m}/K_{\rm H} = .70.$$

While this value is indeed near unity, it is remarkably near the Prandtl number (.711) for air.

While detailed profiles of wind, temperature, and humidity have been utilized in verifying the turbulent transfer equations, the equations themselves require measurements at only two levels. Since measurement of a detailed profile requires a large number of highly accurate instruments and a comparable amount of technical time and attention, it would seem important to determine the degree of accuracy with which the various terms in the energy budget would have balanced had only two levels been available. Further, the data available should be sufficient to determine the optimum levels at which measurements could have been made. The matter of optimum levels must require a compromise which will minimize three possible sources of error. First, the lowest level needs to be far enough above the surface that irregularities in that surface do not cause an appreciable uncertainty in determining the height of that level. Second, the difference in height between the two levels needs to be sufficiently great (in terms of doubled levels) so that errors caused by instrument inaccuracies and sampling errors are not too great. Third, the top level needs to be as low as possible so as to avoid the effect of buoyancy.

To study the combined effect of these three error sources, the data of the previous section have been treated in the following way. Values of Δu , $\Delta \theta$, and Δe have been obtained from the 21 pairs of levels; 25 to 50 cm, 25 to 100 cm, 25 to 200 cm, 25 to 400 cm, 25 to 800 cm, 25 to 1600 cm, 50 to 100 cm, 50 to 200 cm, 50 to 400 cm, 50 to 800 cm, 50 to 1600 cm, 100 to 200 cm, 100 to 400 cm, 100 to 800 cm, 100 to 1600 cm, 200 to 400 cm, 200 to 800 cm, 200 to 1600 cm, 400 to 800 cm, 400 to 1600 cm, and 800 to 1600 cm. The number of Δu 's, $\Delta \theta$'s and Δe 's, obtained in this manner (per pair of levels) that fall within 10 percent of the corresponding profile determinations are shown in Table 9.3.

As can be seen from this table, the levels at 25 and 100 cm appear to give the most satisfactory representation of the entire profiles. This is further substantiated by Table 9.4 which lists the best fit equations and average error for the four best level pairs, as well as that obtained from use of the profiles to determine Δu , $\Delta \theta$, and Δe .

9.7 Conclusion

The method developed in this paper appears to be satisfactory for calculating the turbulent transport of sensible and latent heat over the range of conditions represented by the data available.

However, since it differs from earlier methods by approximately 50 percent and since the test data are restricted to a summer season with exclusively southerly winds, it would appear desirable that it be tested further, preferably by other workers in the field.

Level Pair	Δu	Δθ	Δe	%	Level Pair	Δu	Δθ	Δe	%
(cm)	cm/sec	°C	mb		(cm)	cm/sec	°C	mb	
25-50	17	19	19	38	100-200	15	12	10	26
25-100	25	25	18	47	100-400	15	14	8	26
25-200	28	20	17	45	100-800	8	8	15	22
25-400	24	18	11	37	100-1600	7	8	12	19
25-800	12	17	11	28	200-400	12	9	9	21
25-1600	12	15	15	29	200-800	6	10	12	19
50-100	18	13	8	27	200-1600	3	6	14	16
50-200	17	13	13	30	400-800	4	5	6	īŏ
50-400	19	17	11	33	400-1600	4	4	6	10
50-800	10	11	12	23	800-1600	4	3	Ğ	ĝ
50-1600	9	8	8	17					

Table 9.3. Percentage of double-level values within 10 percent of
profile values

Table 9.4. Statistical analysis of heat budget balance

Method	Line of Best Fit*	Average Error (cal/cm ² sec)	Levels Employed
CLASSICAL DISTORTED AREA DISTORTED AREA DISTORTED AREA DISTORTED AREA DISTORTED AREA	y = 1.37X y = .92X y = 1.0 X y = 1.0 X y = 1.0 X y = 1.0 X y = .99X	$\begin{array}{c} 1.60 \times 10^{-3} \\ 1.14 \times 10^{-3} \\ 1.06 \times 10^{-3} \\ 1.25 \times 10^{-3} \\ 1.40 \times 10^{-3} \\ .43 \times 10^{-3} \end{array}$	Profiles 25-50 cm 25-100 cm 25-200 cm 25-400 cm Profiles

*Line of regression

REFERENCES

- 1. Blasius, H., Z. Math. u. Physik 56, 1908.
- Halstead, M. H., "The Fluxes of Momentum, Heat, and Water Vapor in Micrometeorology." <u>Publications in Cliniatology</u> 7, No. 2, The Johns Hopkins University Laboratory of Climatology, Seabrook, New Jersey, 1954.
- 3. Halstead, M. H., et al., "A Preliminary Report on the Design of a Computer for Micrometeorology." Scientific Report No. 1, Project 93, Texas A&M Research Foundation, College Station, Texas, 1956.
- 4. Rider, N. E., "Eddy Diffusion of Momentum, Water Vapor, and Heat Near the Ground." Proc. Roy. Soc. A246, 481-501, 1954.
- 5. Sutton, O. G., <u>Micrometeorology</u>, McGraw-Hill, New York, 198 and 80, 1953.
- Swinbank, W. C., "The Measurement of the Vertical Transfer of Heat, Water Vapor, and Momentum by Eddies in the Lower Atmosphere, with Some Results." <u>Geophysical Research</u> <u>Papers No. 19</u>, Geophysics Research Directorate, AF Cambridge Research Center, 363, 1952.

CHAPTER 10

HEAT BUDGET DETERMINATIONS MADE BY THE UNIVERSITY OF WISCONSIN GROUP

V. E. Suomi and P. M. Kuhn University of Wisconsin

10.1 Instrumentation

The instrumentation used in heat budget determinations during Project Prairie Grass was, with two exceptions, the same as that used by the University of Wisconsin during the Great Plains Turbulence Field Program in 1953.¹ The exceptions are as follows:

a. In 1953 the thermocouples in the psychrometers were wired to give the dry bulb temperature difference and the difference in the wet bulb depressions. During these experiments the thermocouples were wired to give the dry bulb temperature difference and the wet bulb temperature difference so that the vapor pressure difference is given by the relation

$$\Delta \mathbf{e} = (\mathbf{K} + \mathbf{k}) \Delta \mathbf{T}_{\mathbf{w}} - \mathbf{k} \Delta \mathbf{T}_{\mathbf{d}}$$
(1)

where k is the psychrometric constant and K is the slope of the vapor pressure vs. temperature curve at the mean wet bulb temperature.

Every 10 minutes the positions of the two psychrometers were reversed but the connection to the recorder was not. This has the effect of doubling the sensitivity and yet eliminating dead zone and zero errors. Therefore, the vapor pressure and temperature gradients obtained during the Prairie Grass experiments are more accurate than those obtained in 1953. This is especially true during those times that the gradient is small.

b. Soil heat flow was obtained by measuring the change in the heat content of the layer 0-5 cm and the heat flux through the -5 cm

level. The change in mean temperature of the 0-5 cm layer was measured using 12 space-integrating thermometers similar to those used in 1953. Instead of a manual balancing of a Wheatstone bridge, the out-of-balance current was recorded on the 12-point Brown recorder. The out-of-balance current depends on battery voltage as well as resistance; however, the former was held constant by employing mercury alkaline batteries. The heat flow through the -5 cm layer was measured using 5 heat flux plates connected in series. The soil term G listed in the tables in Section 10.2 is the sum of the change in the heat content of the layer 0 to -5 cm and the heat flux through the -5 cm level.

10.2 Heat Budget Data

The heat budget values listed in Table 10.1 are 20-minute averages centered, in each case, on the period of gas release. Estimated values are shown in parentheses. Missing values, due to instrument failure, are denoted by dashes. Positive signs indicate fluxes toward the airearth interface; negative signs indicate fluxes away from the interface.

Gas Release Number	Date	Time (CST)	I	R _N	L	E	G
3	7/5	2200		10			
4	7'/6	0100		10			
5	$\frac{7}{6}$	1400	1.30	1.08			
6	$\frac{1}{7}/6$	1700	.73	.50			
7	$\frac{1}{7}/10$	1400	1 35	.82	39	26	12
Ŕ	7/10	1700	75	36	- 23	- 12	.01
ŭ	7/11	1000	1 06	61	- 30	- 18	- 13
10	7/11	1200	1 23	76	- 38	- 24	14
11	7/14	0800	72	39	- 21	- 12	05
12	$\frac{1}{7}$	1000	1 15	73	- 38	- 21	- 14
13	7/22	2000	1 .03	- 08	01	- Î	.06
14	7/99	2000		- 07	.01	01	05
15	7/93	0800	70	38	- 19	- 08	- 10
16	7/23	1000	1 15	.00	- 36	- 18	- 16
17	7/22	2000	05	- 06		·01	05
10	7/20	2000	.00	- 09		, U A	.04
10	7/25	1100	1 10	00	<u> </u>	- 16	- 14
19	7/25	1200	1.10	.05		- 28	- 06
20	7/20	23 00	1.50	_ 05	52	01	02
21	7/96	0000	0	- 07	.02	01	05
44 02	7/20	2100	0	- 00	01	02	.02
20	7/20	2300	0	- 08	.04	.02	02
6 1 95	0 /1	1900	79	00	_ 10	- 23	- 04
20	0/1	1900	96	.40	- 20	- 20	- 08
20	0/4	1400	.00	64	- 10	- 37	- 08
21	0/4	1400	.01	- 09		-,01	00
28	8/3	0000	0	08			01
29	8/3	1200	1 00	00	- 24	. 30	- 10
30	8/3	1500	1,44	.0 1	-,54	35	10
31	8/3	1000	.09	.00	40	01	03
32	8/0	2000	.02	(09)	20		.04
33	8/7	1300	1,09	.03	39	-,00	00
34	8/1	1500	1,10	.84	-,4 4	-,30 01	~,05
35	8/11	2130	0	00	.02	.01	.03
36	8/11	2330	Ő	-,U1	•01	U	,00
37	8/12	0300	0	05			.02
38	8/12	0500	,01	-,07		~~	.02
39	8/13	2230	Ő	U U	UI	02	.03
40	8/14	0030	0	-,01	01	02	.04
41	8/14	0300	Õ	01	01	01	.02
42	8/14	0500	0	0	01	01	.02

Table 10.1Heat budget data* collected by the University
of Wisconsin

Gas Release Number	Date	Time (CST)	I	R _N	L	E	G
43	8/15	1200	1.11	.93			
44	8/15	1400	1.13	.93	~ ~		
45	8/15	1200	.41	.25	-		
46	8/15	1845	.05	~.03			.04
47	8/20	1000	.85	.45	21	14	- 11
48	8/21	0900	.39	.21	11	05	04

Table 10.1 Heat budget data* collected by the University of Wisconsin (cont)

All heat budget entrics are in langleys per minute.

Ι represents insolation

RN represents net radiation

L represents convective heat transfer

E represents evaporation G represents soil heat transfer () denotes estimated value

-- denotes missing data due to instrument failure

REFERENCE

1. Lettau, H. H. and Davidson, B. <u>Exploring the Atmosphere's First</u> <u>Mile</u>. Pergamon Press, New York, 1957, Volume 1, Chapters 2, 3, and 4.

CHAPTER 11 OPTICAL MEASUREMENTS OF LAPSE RATE

R. G. Fleagle University of Washington*

11.1 Introduction

Detailed and very accurate observations of temperature structure in the lowest 50 cm of the atmosphere have been made above a cold water surface by an optical method.¹ These observations reveal a minor anomaly in the temperature profile at a height of about 10 cm of air (equivalent to an optical path length of 10^{-4} gm cm⁻² of water vapor) which is consistent with simple numerical calculations based on extrapolated radiative absorption coefficients for water vapor. At this height above a cold surface, the air cools by radiation at several degrees Centigrade per hour; and, this cooling is reflected in the observed anomaly in the temperature profile.

Optical observations were incorporated in Project Prairie Grass to determine the detailed temperature structure above a warm land surface. The method used was essentially that described in reference 1, but certain modifications in detailed technique were necessary. The instrument used was a field artillery range finder operated in the vertical position. In lapse conditions the two light paths from instrument to target diverge from their respective straight-line directions as shown in Figure 11.1, whereas in inversions the light paths <u>converge</u> from their respective straight-line directions. The instrument is mechanically

* Personnel of the Texas A&M Research Foundation, under the direction of Professor Maurice Halstead, constructed the optical targets and made the time series observations.

Max Scoggins, General Electric Company, Richland, Washington, helped in installation of the equipment and in making the profile observations.

limited to measuring converging angles; consequently, in lapse conditions it was necessary to use targets separated by a vertical distance less than the separation of the lenses. The separation used in lapse conditions was 90 or 95 cm, whereas the separation of lenses is 100 cm. For this reason, in lapse conditions the upper path sloped slightly with respect to the lower path, but not enough to affect the measurements appreciably. From Figure 11.1 and Eq. (1) of reference 1, it follows that

$$h_{1}' = \frac{h_{1}x'}{x} = \frac{xx'(n-1)}{2nT} \left[\frac{g}{R} + \left(\frac{\partial T}{\partial z} \right)_{1} \right]$$
(1)

$$h_{2}' = \frac{h_{2}x'}{x} = \frac{xx'(n-1)}{2nT} \left[\frac{g}{R} + \left(\frac{\partial T}{\partial z} \right)_{2} \right]$$
(2)

where n represents index of refraction for air; T, absolute temperature; z, height coordinate; x, horizontal distance between instrument and target; and x', apparent distance to point of convergence of tangent lines (instrumental reading). Also, Figure 11.1 shows that

$$h_2' - h_1' = (Z - L) \frac{x'}{x} - Z$$
 (3)

where L represents the vertical separation at the target lines and Z the vertical separation of the lenses. Substitution of Eqs. (1) and (2) in Eq. (3) gives

$$\left(\frac{\partial \mathbf{T}}{\partial \mathbf{z}}\right)_{\mathbf{2}} - \left(\frac{\partial \mathbf{T}}{\partial \mathbf{z}}\right)_{\mathbf{1}} = \frac{2\mathbf{n}\mathbf{T}}{\mathbf{x}(\mathbf{n}-1)} \quad \left[\frac{\mathbf{Z}-\mathbf{L}}{\mathbf{x}} - \frac{\mathbf{Z}}{\mathbf{x}'}\right]$$
(4)

For L = Z, Eq. (4) reduces to Eq. (5) of reference 1. Nine targets, each consisting of two (or more) horizontal black lines on white backgrounds were mounted at varying distances from the instrument. The black lines are indicated as target lines in Figure 11.1. Flashlight bulbs were installed at a vertical separation of 100 cm for night observations. Heights of the lower black line, equal to height of the lower lens, were chosen as

indicated in the accompanying data. In order to minimize effects of inhomogeneities in terrain, targets were placed as close as was feasible to a radial line running outward from the instrument. For the first 50 yards the land was extremely flat, the main obstructions to vision being small tufts of grass. On July 11, the grass was cut to lawn height along the light path out to about 100 yards permitting observations at a mean height of about 6 cm above the soil. Between 50 and 300 yards the land was flat except for a few areas of small scale roughness. Between 300 and 500 yards a ridge in the terrain may have influenced the 500 yard (50 cm) readings. However, the portion of the light path near the target is less important than the portion near the lenses, so that the effect of inhomogeneous terrain probably was small compared with the effect of variations in time.

11.2 Observations

The differences in lapse rates at the heights of the upper and lower lenses computed from Eq. (1) are tabulated in Tables 11.1, 11.2, and 11.3. Five of the nine profiles are shown in Figure 11.2. On July 10 at 1715 CST, prior to grass cutting, the anomaly was unmistakable at about 16 cm. On July 11 and 12, after the grass was cut, the anomaly was present at a height of about 12 cm; but the height of the anomaly above the effective radiating surface was comparable to the earlier observations.

In order to develop the temperature profile from the differences in lapse rate, the lapse rate at one height must be known. The lapse rate at 150 cm was approximated by extrapolating the curves of the type shown in Figure 11.2 linearly to 150 cm and assuming that this value represents the lapse rate at this height. Although this assumption may be grossly in error, the lapse rate is in any case small enough in magnitude at this height that subsequent calculations are not significantly affected. Numerical integration then gives the temperature profiles shown in Figure 11.3. The anomaly is evident on all but the inversion profile, and in this case the data reveal a slight anomaly at about 25 cm height.

A time series of observations at 12 cm (50 yard range) was made on 25 July, 26 July, and 2 August. On 2 August four observations were taken during each 5 minutes for 25 minutes out of each hour between 1155 and 1620 CST. These data are tabulated and are shown in Figure 11.4. They show that the variations encountered in 25 minutes are as large as one-fourth to one-half of the difference on lapse rate, itself. It must be concluded that the profiles shown in Figures 11.2 and 11.3 are subject to error from time variation in lapse rate. However, the reality of the anomaly is not in doubt because the anomaly appeared consistently and because the anomaly in lapse rate exceeds the variation in time by roughly an order of magnitude.

REFERENCE

1. Fleagle, R. G., "The temperature distribution near a cold surface." J. Meteor. 13, 160-165, 1956.

Lower Lens Height	Distance								
(cm)	(yd)								
		1715 10 July	1110 11 July	1845 11 July	2155 11 July	1130 12 July	1550 12 July	2135 12 July	
100 50 50 20 18 17 15 14 12 12 10	500 500 200 125 75 50 75 30 50 20 30	.006 .015 .025 .041 .060 .076 .013 .402	+.021 to .024 .040 to .048 .059 to .069 .073 to .082 .120 to .159 .121	+.005 .011 .024 .042 .050 .00	008 006 .00 .00 025 048 066	.00 +.050 .074 to .090 .110 .170 .105	+.011 .017 .029 .040 .045 .016	027 110 600 to +.004 +.007 +.018 380 .00	
8	25 20		1.29	.027 .096	080 092	. 399 . 438	.096 .204	-1.20 48 to -2.1	

Table 11.1 Values of $\Delta(\partial T/\partial z)$ Found by Optical Method*

Date	Time	Lower Lens Height	Distance	Δ(8 T/8z)
	(CST)	(cm)	(yd)	(°C/cm)
21 July	1300	6	20	+.280
• • • • • •	1309	12	50	.100
	1425	12	50	.255
23 July	0800	12	50	.073
	0803	0	20	.261
	0805	8	25	.140
	0808	10	30	,098
	0810	12	50	.110
	0813	15	75	.064
	0815	20	125	,050
	0819	30	200	.034
	0822	50	300	.020
	0905	8	25	.200
	0909	10	30	.160
	0913	12	50	.127
	0917	15	.75	.098
	0921	20	125	
	0925	30	200	.047
	0955	12	50	,145
	1007	12	50	,138
	1015	12	50	,174
	1200	12	50	, 150
	1210	12	50	. 188
	1355-1400	12	50	.158, .171, .171, .175, .200
	1510	12	50	,160, .160, .135
	1555	12	50	.130, .138, .128
	1655	12	50	.105, .097, .103
	1755	12	50	.063,.065,.058
31 July	1130	6	20	.200

10.00

• (

1

Table 11.2 Values of $\Delta(\partial T/\partial z)$ Found by Optical Method*
Table 11.3 Time Series of $\Delta(\partial T/\partial z)$ at Height of 12 cm

9 H.M.

1 1

İ

1

ţ

بے بیبہ

Date	Time (CST)	5, 2, 2, 2,	T, az) /cm)		Date	Time (CST)		^ (aT/ (`C/ci	(22) (1)		Date	Time (CST)		А (ЭТ	/č.2) (m)	
A July	00000000000000000000000000000000000000	- + 0055 034 0355 0334 090 091	0003 00255 0021 00255 00255 00255 00255 00255 00255 00255 0025 0000 0005 0000 0005 0000 0000 0000 0000 0000 0000 0000 0000	1102280122000 1102288118881 1102288118881	24 July 25 July	2215 2225 2225 2225 2255 2215 0115 02155 0115 02155 0155 0155 00000000	097 133 133 133 133 133 157 157 157 157 157 150 150 150 150	124 196 137 138 138	1120 1120 1128 1126 1126 1126	.130 .257 .152	25 Jul	1315 1315 1415 1415 1415 1415 1415 1515 1655 1715 1715	045 093 093 094 093 095 095 095 095 095 095 095 095 095 095	1117 1177 1177 1177 1177 1177 1177 117		
		106 118 144 144 144 155 154		11104 11104 11105 1105 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11000		00000000000000000000000000000000000000	- 130 - 112 - 105 - 004 - 004 - 006 - 009 - 010 - 010 - 010 - 010 - 010 - 010 - 010 - 000	0000 000 000 000 000 000 000 000 000 0	138 075 002 002 002 003 005 005 005 005 005 005 005 005 005	113 100 100 100 100		18222222244 191754 1927544 1927554 1927554 1927554 1927554 1927554 1927554 1927554 1927555 192755 192755 192755 1927555 1927555 1927555 1927555 1927555 1925	053 017 017 017 0107 107 107 107 107 107 10	12986666666	630 010 010 010 010 010 010 010 010 010 0	072 066 111
	11111111111111111111111111111111111111	032 043 052 052 052 052 052 052 052 052	0052 0055 0056 0056 0056 0056 0056 0056	10000000000000000000000000000000000000		0855 0855 0955 0955 1055 1115 1215 1215 1215 1215 1215	0673 0673 0673 0673 0673 0673 1288 1238 1238	061 061 092 092 092 092 092 092 092 092 092 092	068 055 058 058 055 058 058 058 058 058 05		25 July	2120 2120 2120 2120 2120 2120 2120 212	0.11 0.53 0.53 0.53 0.54 0.54 0.58 0.1 0.58	0021 0022 0022 0022 0022 0022 0022 0022	002220222	047 0559 0538 0538 053 053 053 053 053 053 053 053 053 053
	0355 0355 0355 0355 0355 0355 0355 0355	000000000000000000000000000000000000000	222 2000 222 2000 222 2000 222 2000 222 2000 222 2000 222 2000 222 2000 222 20000 2000 20000 2000 20000 20000 2000 2000 2	81988888888888888888888888888888888888												

of each pair of observations differ significantly form one mother. This indicates an error in one or both types of observation. An error in positioning of one of the target lights of two millimeters would result in an error 0.1C cm⁻¹ in the lupse rate measurements. An error in positioning of this magnitude easily may have occurred, so that all nighttime observations may be in error by roughly -0.1C cm⁻¹.

•
•
;

i

134

· · ·)

Figure 11.1 Light paths and related geometry.

Figure 11.2 Optical observation of $\Delta(0~T/\partial z),$ O'Neill, Nebraska, 10-12 July 1956.

CHAPTER 12

RAWINSONDE DATA

P. A. Giorgio Geophysics Research Directorate Air Force Cambridge Research Center

The table in this chapter contains rawinsonde measurements made by the 6th Weather Squadron (Mobile), Tinker AFB, Oklahoma. A rawinsondc ascent was made at the test site for all gas releases except those numbered 35s and 48s. For each ascent, GMD-1A equipment was used and tabular data computed according to the instructions contained in the USWB Circular P and Air Weather Service Addenda. The computations were reviewed by an independent group using the same techniques.

Values of pressure, height, temperature and relative humidity are given for the significant and mandatory levels. The pressure is given in whole millibars, the height in meters above the ground (elevation of site above mean sea level is 603 meters), the temperature in tenths of degrees centigrade and the relative humidity in percent.

Values of the wind arc given for standard heights. The height is given in meters above the ground, the direction in degrees (360 degree compass) to the nearest ten degrees, and the speed to the nearest tenth of a meter per second.

	Gas Release 3 July 1956	No. 1 1050C			Gas Roleas 3 July 195	e No, 2 6 1450C	
р (mb)	Z (m)	Т (°С)	п.н (%)	p (mb)	Z (m)	Т (°С)	R.H. (%)
945 934 900 860 850 800 744 730 706 706 700 694 638 600	0 420 906 1416 2522 3767	$\begin{array}{c} 22.5\\ 20.0\\ 17.6\\ 14.4\\ 13.8\\ 11.1\\ 7.9\\ 5.5\\ 5.8\\ 4.7\\ 5.5\\ 1.6\\ 1.1 \end{array}$	65 67 78 91 93 93 94 81 45 52 58 61 70	945 933 900 850 844 800 771 729 700 679 655 620 609 609 604 600	0 423 912 1423 2530 3778	24.0 21.8 19.0 14.7 14.3 11.5 9.4 7.5 5.4 3.9 3.5 - 1.6 - 1.5 0.0 - 0.1	66 61 72 86 88 93 96 100 100 100 100 100 100 100 100 27 89 82
		Winds			,	Winds	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 350 630 920 1200 1470 1770 2050 2320 2630 2920 3190 3470 3750 4020	120 140 160 190 200 190 220 250 250 230 210 190 190 190	1. 2.7 2.2 3.0 3.9 4.1 3.5 2.6 3.2 3.4 3.2 3.0 2.9 2.1 3.2	SFC	02 370 690 960 1250 1530 2120 2410 2710 3030 3320 3620 3930	140 120 140 160 160 190 230 250 270 260 250 270	1.6 2.0 2.6 3.1 2.3 2.2 2.7 3.9 8.8 10.6 9.0 10.3

Table 12.1

	Gas Release 5 July 1956-	No. 3 2150C			Gas Releas 6 July 1956	e No. 4 0050C	
P (mb)	Z (m)	Т (°С)	гс. н. (%)	P (mb)	Z (m)	Т (^С)	п.н. (%)
948 940 900 882 850 837 805 800 762 725 700 695 672 636 600	454 948 1464 2578 3823	19 8 24.8 21.9 20.5 18.1 17.1 14.5 14.1 11.9 9.0 6.5 5.9 4.0 0.8 - 3.1	85 61 62 53 50 58 58 56 45 62 62 62 62 64 54 55	$\begin{array}{c} 947\\ 926\\ 900\\ 880\\ 851\\ 850\\ 800\\ 731\\ 700\\ 661\\ 626\\ 611\\ 600\\ \end{array}$	446 941 1459 2578 3831	19.1 25.8 23.4 21.6 19.0 19.0 15.6 10.6 8.2 4.1 0.9 0.9 - 0.1	94 74 61 52 63 56 45 45 45 44 42 57 35 35
		Winds			ļ	Winds	I
	Z (m)	ddd (deg)	ff (m/8ec)		Z (m)	ddd (deg)	fí (m/sec)
SFC	02 250 520 810 1080 1380 1630 1920 2460 2710 2980 3230 3490 3730	140 140 160 180 140 270 290 290 290 290 300 290 300 280	1 3 2 3 0 1.9 1.8 2 2 0 6 0.6 4 5 5.0 5.2 5.0 5.2 5.0 5.2 6.0 8 2	SF C	02 380 630 910 1170 No Data 2990 3280 3600 3850	180 100 180 170 160 200 200 310 300	2 5.4 4.3 3.8 3.2 9.9 8.1 9.5 10.8

	Gas Roloase 6 July 1956	No. 5 1350C			Gas Releas 6 July 1955	e No. 6 1650C	
P (mb)	Z (m)	т (°С)	R.H. (%)	Ք (mb)	Z (m)	Т (°С)	R.H. (%)
946 932 900 885 850 850 850 800 720 700 660 632 600	0 440 938 1462 2591 3849	31.1 27.5 24.1 22.0 21.5 17.8 11.5 9.4 4.9 2.8 0.0	34 38 43 44 33 34 47 67 71 76 47 40	944 900 866 850 822 800 734 700 660 600	0 425 920 1449 2579 3843	31.5 20.8 23.1 20.8 20.2 13.1 10.0 6.0 2.5	34 42 50 39 45 38 42 50 34
	Z (m)	Winds ddd (deg)	ff (m/sec)		Z (m)	Winds ddd (deg)	ff (m/sec)
SFC	02 280 550 850 1 130 1 470 1800 2100 2400 2750 3050 3380 3700 4020	160 170 190 200 210 220 220 230 240 230 230 230 230	-3 7.4 6.0 6.2 5.8 5.9 7.7 10 10.6 9.8 13.9 16.0 15.6	SFC	02 300 700 Signal F No Data	170 180 180 Ailure	5 11.8 13.4

	Gas Release 10 July 1956	No. 7 1350C			Gas Releas 10 July 195	o No. 8 56 1650C	
P (mb)	Z (m)	Т (°С)	R.H. (%)	թ (mb)	Z (m)	Т (°С)	R. H. (%)
946 938 904 900 850 850 800 732 702 700 666 655 633 600	0 439 935 1433 2564 3817	31.0 20.8 24.5 24.1 19.5 14.6 7.4 5.5 5.4 4.1 5.4 4.1 5.1 3.8 i.0	30 28 35 37 49 59 76 61 60 23 mb mb mb	945 930 900 850 837 821 800 705 700 674 655 644 600	0 433 931 1451 2571 3824	31.6 28.9 25.9 20.9 19.4 18.6 16.7 8.0 7.3 4.5 3.5 4.5 1.1	30 30 35 42 45 52 55 66 65 59 32 21 mb
	l	Winds			-, <u>-</u>	Winds	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 310 670 1050 1435 1780 2130 2460 2800 3130 3450 3789 4120	$ \begin{array}{r} 190\\ 210\\ 210\\ 220\\ 260\\ 300\\ 310\\ 310\\ 310\\ 300\\ 300\\ 300 \end{array} $	$\begin{array}{c} 4.1\\ 6.1\\ 5.1\\ 4.7\\ 3.4\\ 5.6\\ 8.5\\ 9.4\\ 9.5\\ 9.6\\ 9.5\\ 10.1\end{array}$	SFC	$\begin{array}{c} 02\\ 330\\ 690\\ 1060\\ 1410\\ 1710\\ 2400\\ 2600\\ 2940\\ 3200\\ 3460\\ 3720\\ 4000\\ \end{array}$	190 170 200 220 230 250 290 310 330 320 320 320 320 320	4.1 4.7 5.8 7.2 6.4 6.8 8.3 9.4 7.8 6.7 8.4 7.8 7.1 7.4

Table	12.1	(Continued)
-------	------	-------------

	Gas Releas 11 July 195	e No, 9 6 0950C			Gas Relea 11 July 19	30 No. 10 56 1150(1
P (mb)	Z (m)	т (°С)	R.H. (''\u0)	p (mb)	Z (m)	Т (°С)	R.H. (%)
941 930 900 890 890 803 803 809 716 700 635 600	390 888 1414 2548 3812	$\begin{array}{c} 27.2 \\ 24.9 \\ 22.2 \\ 21.4 \\ 23.4 \\ 32.4 \\ 20.5 \\ 20.5 \\ 20.2 \\ 12.5 \\ 10.9 \\ 4.4 \\ 0.7 \end{array}$	52 48 52 54 57 53 48 47 35 40 64 64 66	$\begin{array}{c} 941\\ 925\\ 900\\ 850\\ 846\\ 832\\ 800\\ 768\\ 714\\ 700\\ 663\\ 600\\ \end{array}$	0 394 892 1415 2545 3804	30.8 26.5 24.4 10.9 19.4 20.5 18.6 16.5 10.9 9.7 6.1 0.2	44 47 52 63 64 57 50 43 50 43 50 43 50 43 50 65
	· · · · · · · · · · · · · · · · · · ·	Winds				Winds	L
	Z (m)	ddd (deg)	ff (m+sec)		Z (m)	ddd (deg)	ff (m/sec)
S¥ C	$\left \begin{array}{c} 02\\ 350\\ 640\\ 910\\ 1220\\ 1520\\ 1830\\ 2120\\ 2410\\ 2720\\ 3000\\ 3240\\ 3510\\ 3750\\ 4000\\ \end{array}\right $	140 210 220 210 210 230 230 230 260 290 290 290 290	$\begin{array}{c} 2 \\ 4, 6 \\ 10, 0 \\ 8, 2 \\ 7, 5 \\ 8, 8 \\ 7, 0 \\ 7, 2 \\ 8, 0 \\ 6, 9 \\ 6, 3 \\ 8, 5 \\ 11, 0 \\ 12, 1 \\ 14, 2 \end{array}$	SF($\begin{array}{c} 02\\ 280\\ 580\\ 900\\ 1220\\ 1600\\ 2300\\ 2670\\ 3000\\ 3330\\ 3690\\ 4070 \end{array}$	220 230 210 210 220 240 250 260 270 280 290	3.6 60 59 6.0 8.0 7.8 6.8 6.7 7.5 9.5 11.2 13.2

	Gas Release 14 July 195	NO. 11 6 0750C			Gas Releas	ie No. 12 56 0950C	•
P (mb)	Z (m)	Т (°С)	к.н. (%)	P (mb)	Z (m)	т (^С)	R.H. (%)
944 933 902 900 850 818 800 727 700 664 624 600	0 417 916 1442 2570 3829	24.5 22.4 22.8 22.7 21.7 20.8 19.4 12.2 9.4 5.3 3.4 1.2	66 05 08 48 34 36 42 52 63 34 48	944 930 900 896 850 843 800 752 700 544 324 604 600	0 421 920 1448 2577 3836	30.0 26.0 22.9 22.5 23.1 23.1 23.1 19.9 15.8 10.3 4.4 3.2 1.4 1.1	48 56 67 68 64 35 30 32 49 60 42 60 59
·····		Winds				Winds	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	íí (m/sec)
SFC	02 300 630 940 1200 2000 2980 3350 3730 4080	180 100 210 210 210 210 210 230 230 280 290 300	4.6 11.8 14.7 12.0 10.0 6.8 4.7 4.0 3.5 3.5 6.5 8.5 8.5 10.6	SFC	02 300 680 1030 1780 2130 2470 2850 3270 3530 3850	190 200 200 210 210 220 250 280 310 290	3.6 11.0 12.6 12.5 10.3 6.5 5.0 4.4 4.4 5.2 9.4 9.8

	Gas Releas 22 July 19	ie No. 13 56 1950C			Gas Releas 22 July 19	6 No. 14 56 2150(
P (mb)	Z (m)	Т (°С)	R.H. (%)	P (mb)	Z (m)	Т (^С)	R.H. (%)
949 940 900 850 800 747 700 685 685 645 634 622 601 600	0 459 950 1462 2566 3807	21.9 22.8 19.0 15.0 11.8 7.1 4.4 3.4 - 0.4 1.0 - 0.1 - 0.6 - 0.6	69 59 65 73 82 92 80 70 80 80 80 34 22 mb	950 940 900 898 800 802 800 700 654 631 620 600	0 467 957 1468 2569 3807	16.4 22.2 19.8 10.7 15.7 11.5 11.4 4.0 0.2 0.5 0.6 $- 0.8$	89 64 58 57 70 86 85 77 72 49 21 mb
	+	Winds	<u></u>		<u> </u>	Winds	ł
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 350 700 1020 1340 1660 1960 2270 2670 2850 3200 3520 3520 3840	170 180 180 180 180 180 180 260 310 320 320 340 340	1.0 4.6 4.6 5.0 4.0 3.0 1.8 1.1 2.9 4.7 6.0 7.6 9.3	SFC	02 290 610 900 1210 1500 2100 2390 2060 2030 3210 3500 3800	160 170 180 230 260 270 300 310 310 310 310 310 330	1.0 4.8 4.5 3.0 2.9 1.3 2.1 5.0 7.5 8.2 7.8 7.0 8.3

	Gas Release 23 July 1950	No. 15 3 0750C			Gas Releas 23 July 195	e No. 16 6 0950C	
P (mb)	Z (m)	т (°С)	R. H. (%)	թ (mb)	Z (m)	Т (°С)	R. 11. (%)
949 940 924 900 897 853 850 800 728 700 608 644 600	458 948 1402 2569 3820	21.0 19.4 21.1 20.8 20.7 17.0 16.8 13.0 7.2 6.8 6.7 4.0 0.0	64 66 67 59 58 66 65 48 19 mb mb mb mb	948 935 900 850 841 810 800 769 728 715 708 700 681 658 600	0 454 945 1458 2564 3812	$\begin{array}{c} 26.5\\ 23.3\\ 20.8\\ 10.7\\ 15.9\\ 14.4\\ 13.6\\ 10.9\\ 7.1\\ 6.7\\ 6.4\\ 6.4\\ 8.4\\ 3.9\\ 0.5\\ \end{array}$	48 54 60 70 33 34 38 50 50 27 26 22 46 37
		Winds				Winds	
	2 (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 300 600 910 1500 1800 2090 2380 2080 3290 3580 3850	230 230 240 230 250 330 360 350 350 350 350 350 350	2 1 § 4 2.8 1 H 1.0 0.9 2.0 4.7 7.8 9.5 10.7 10.9 10.0 8.9	SFC	02 300 610 950 1300 1050 1989 2200 2010 2200 2010 3230 3570 3880	180 200 190 190 180 360 610 010 010 010 010 010 350	2.1 2.6 2.0 1.1 4.2 7.3 10.6 12.5 13.5 13.2 12.4 10.2

-	Gas Release 23 July 1956	No. 17 3 1950C			Gas Releas 23 July 19	e No. 18 56 2150C	
Р (mb)	Z (m)	т (°С)	R.H. (%)	P (mb)	Z (m)	т (°С)	R. H. (%)
943 928 900 850 804 800 700 600	0 414 916 1441 2571 3820	28.0 29.0 27.0 23.1 19.5 19.1 9.8 - 0.7	39 32 35 40 43 45 64 85	943 920 900 898 850 841 800 700 084	0 411 911 1435 2564 2755	23.6 27.6 26.0 25.9 23.1 22.8 18.9 9.0 7.2	54 35 33 39 39 47 64 67
		Winds			i	Winds	,,,,
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ll (m/sec)
SFC	02 310 620 930 1280 1620 2000 2330 2670 3010 3350 3700 4060	170 190 200 250 250 270 310 320 320 320 320 320 320 320 320	2.1 9.8 1.5 12.5 13.6 12.0 10.4 10.8 13.0 15.8 16.8 18.1 18.9	SFC	02 300 650 1000 1310 1070 2000 2310	180 200 320 240 280 290 300	2.1 13.1 15.2 13.6 15.0 14.5 14.5

	Gas Release 25 July 195	No. 19 8 1050C			Gas Releas 25 July 19(B No. 20 6 1250C	
P (mb)	Z (m)	Т (°С)	R.H. (%)	P (mb)	22 (m)	т (°С)	R. H. (%)
945 932 900 878 850 823 800 711 700 678 600	0 429 923 1447 2577 3844	28.8 25.8 22.8 20.5 20.8 19.1 11.9 11.1 9.5 2.4	38 41 47 51 26 21 24 38 36 28 30	942 917 900 870 850 838 804 804 800 700 687 610 600	0 406 904 1430 2565 3827	31.0 30.6 25.1 22.0 22.3 21.2 20.9 11.5 10.6 2.6 1.8	30 33 35 29 27 18 23 24 38 24 31 34
		Winds				Winds	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	lf (m/sec)
SFC	02 320 620 900 1130 1820 2000 2280 2480 2480 2480 2700 2880 3080 3260 3430	160 170 180 190 210 220 250 300 310 300 300 290 280 250	3.6 6.3 7.6 8.8 9.0 6.6 2.3 2.0 1.4 2.0 2.3 2.4 3.0 4.5 5.0 4.0	SFC	02 360 700 1020 1370 2050 2420 2770 3140 3600 3630 3900	160 180 180 200 240 250 260 270 270 270 270 270 270	6,7 12.8 11.2 9.6 6.8 5.5 5.1 4.8 5.7 7.0 7.4 7.8 10.0

.

ļ

Gas Release No. 21 25 July 1956 2150C			Gas Release No. 22 25 July 1956 2350C				
P (mb)	Z (ni)	т (°С)	н.н. (Ъ)	P (mb)	Z (m)	т (°С)	R.H. (%)
938 911 900 889 861 850 844 806 806 800 728 700 678 632 620	0 367 875 1408 2557 3563	29.0 27.1 28.3 29.6 28.5 25.5 24.8 24.8 24.8 24.2 16.8 14.0 11.6 4.7 3.0	41 39 34 30 27 27 27 25 26 35 41 44 59 70	937 910 900 896 850 800 749 700 638 600	0 355 850 1390 2532 3800	26.5 25.5 26.3 20.8 25.2 23.4 19.0 13.4 5.7 2.0	45 45 43 42 30 27 29 38 50 55
		Winds	.			Winds	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 160 370 540 780 1030 1300 2020 2380 2020 2380 2050 3150 3340 3550	180 200 220 250 250 260 200 205 200 270 270 270 260	4.1 8.0 11.3 12.3 14.4 17.0 14.0 15.0 20.8 17.5 9.0 12.0 19.5 19.5	SFC	02 300 660 930 1220 1500 1800 2080 2080 2030 3180 3450 3750 4080	170 190 200 210 240 260 250 250 250 250 250 250 250 250 250 25	4.6 20.0 25.0 24.6 25.3 22.0 16.0 16.0 16.8 21.0 19.5 17.0 17.0 17.0 11.4

	Gas Release	• No. 23		Gas Release No. 24				
	29 July 1956	2050C	1		29 July 1956	3 2250C		
P (mb)	2 (m)	т ("С)	R. H. (%)	p (mb)	Z (m)	т (°С)	R. H. (%)	
944 900 860 850 838 804 800 776 700 696 685 614 600	0 417 911 1432 2507 3837	23.9 21.7 19.4 19.5 19.1 17.5 17.6 18.6 11.0 11.4 10.1 3.9 2.2	$\begin{array}{c} 70\\ 78\\ 84\\ 82\\ 80\\ 76\\ 70\\ 47\\ 45\\ 44\\ 54\\ 63\\ 65\\ 65\\ \end{array}$	945 936 900 897 854 850 815 800 774 750 700 684 659 600	0 424 919 1443 2576 3842	22.2 22.4 19.9 19.7 20.9 19.5 18.5 16.3 16.3 16.3 16.9 11.1 9.6 7.0 1.0	80 80 85 85 75 75 65 69 72 64 66 67 57 72	
			.			Winds		
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 200 600 890 1480 1736 2020 2520 2820 3100 3360 3030 3030 3030	120 130 120 090 050 020 030 030 020 010 010 360 360 360	4.6 13,1 15,0 11,5 11,5 11,1 7,8 5,0 4,1 3,7 5,3 6,4 6,0 6,5 6,0	SFC	02 290 600 930 1270 1620 2270 2270 2200 2916 3230 3590 3880	130 150 160 210 230 250 260 260 260 260 270 270	$\begin{array}{c} 3.8\\ 13.3\\ 14.4\\ 13.7\\ 14.2\\ 12.4\\ 10.2\\ 8.1\\ 6.1\\ 5.3\\ 5.3\\ 5.7\\ 6.0\\ \end{array}$	

<u>9</u>.

	Gas Release	No. 25		Gas Release No. 26			
1 Aug 1956 1257C					2 Aug 1956	1150C	
р (mb)	Z (m)	Т (°С)	R.H. (%)	P (mb)	2 (m)	т (°С)	R. H. (%)
946 934 900 878 850 800 700 694 636 620 620 600	0 436 927 1443 2550 3819	24.7 22.4 10.7 18.0 16.6 13.9 8.2 7.8 3.8 3.4 1.8	60 70 78 84 84 83 83 83 83 70 78	042 922 900 883 850 800 790 705 700 648 600	0 404 901 1424 2555 3822	$\begin{array}{c} \textbf{30.3}\\ \textbf{25.4}\\ \textbf{23.6}\\ \textbf{22.1}\\ \textbf{20.7}\\ \textbf{18.4}\\ \textbf{18.0}\\ \textbf{10.6}\\ \textbf{10.1}\\ \textbf{5.9}\\ \textbf{2.4} \end{array}$	58 64 70 73 64 62 78 78 85 83
		Winds				Winds	
	Z (m)	ılrid (deg)	ff (m/sec)		(m)	ddd (deg)	ff (m/sec)
SFC	02 350 680 960 1200 1450 1780 2120 2420 2720 3080 3460 3670 3990	180 190 200 210 210 220 220 220 220 220 220 22	2.1 4.5 6.1 5.6 5.9 6.9 7.2 7.1 4.0 11.1 9.3 5.7 5.5	SFC	02 230 500 770 1030 1500 1910 2210 2520 2820 2820 3130 3420 3730 4030	170 180 190 200 210 210 210 210 210 230 230 230 230 230	3.6 9.7 11.2 11.0 11.5 12.5 13.5 13.5 13.5 13.5 13.5 13.5 14.7 16.0 17.0 17.0 18.0 19.0

27	Gas Release 2 Aug 1956	No. 27 1350C	Gas Release No. 28 3 Aug 1956 0035C				
p (mb)	Z (m)	т (°С)	R.H. (%)	p (mb)	Z (m)	т (°С)	R. H. (%)
941 934 900 850 850 813 800 700 868 600	0 398 898 1421 2551 3817	32.2 29.6 26.0 22.0 18.5 18.6 10.5 7.7 2.6	48 52 56 60 65 56 69 73 72	040 925 900 802 878 850 810 800 721 700 630 630 600	0 385 889 1416 2551 3818	25.9 28.0 26.6 26.1 26.8 24.2 21.0 20.0 13.1 11.1 4.1 1.9	69 59 55 54 51 51 51 54 74 78 90 89 89
		Winda				Winds	
	E (m)	ddd (deg)	fi (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 180 580 680 1200 1600 1600 2100 2420 2420 2420 2420 3329 3620 3620 3620 3620 3620	170 180 180 200 210 210 210 210 220 220 230 210 210 210 210 210 210 210 210	5.1 9.2 7.0 8.6 12.0 13.9 14.0 15.6 17.0 18.5 18.5 18.5 18.5 18.5 19.5 19.5 19.5	SFC	02 300 590 830 1090 1320 1580 870 800 2490 2490 2770 3020 3300 3550 3820	170 200 210 210 210 210 220 220 220 220 210 21	3.1 13.2 18.4 22.2 21.3 20.5 20.1 21.5 24.0 20.0 18.5 18.5 18.5 18.7 18.7 17.0

6 4 2010	Gas Release 3 Aug 1956	No. 29 0150C			Gas Releas 3 Aug 1056	e No. 30 1250C	
р (mb)	2 (m)	1' (°C)	R.H. (L)	P (mb)	Z (m)	т (°С)	R. H. (%)
941 928 900 893 870 850 800 787 700 668 601 600	0 303 895 1422 2557 3824	25.5 26.6 25.4 25.1 23.8 20.4 19.4 10.9 7.5 1.9 1.8	61 56 54 53 48 50 54 55 72 80 79 80	941 932 900 850 846 800 757 732 700 630 607 600	0 401 906 1432 2564 3634	34.6 31.6 28.7 23.9 23.5 10.1 14.8 14.3 11.5 4.8 3.7 3.0	36 42 49 56 57 63 70 60 60 62 88 66 66
		Winds			, ye iyaa aaraaaan ahaa ayaa	Winds	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	tt (m/sec)
SFC	02 300 620 950 1270 1600 2210 2530 2850 3150 3470 3780 4100	180 200 210 210 220 220 220 220 220 210 21	4.3 16.0 20 0 23 0 23 8 21.0 19.0 19.0 18.0 15.5 16.2 17.0 19.0 19.0	SFC	02 290 580 880 1450 2480 2480 2480 2480 2480 2480 3040 3040 3500 3610 4100	190 190 190 200 200 210 210 210 210 210 220 220 22	5.1 9.5 11.7 11.8 8.4 8.6 13.4 18.5 18.5 18.5 19.0 21.0 20.0 20.5 20.8

	Gas Release 3 Aug 1956	No. 31 1450C		Gas Release No. 32 6 Aug 1956 1950C				
P (mb)	Z . (m)	Т (°С)	R.H. (%)	P (mb)	Z (m)	Т (°С)	Р. Н. (%)	
941 932 900 850 738 700 617 600	0 400 906 1433 2565 3833	34.0 31.5 28.8 24.2 19.7 13.6 10.5 3.5 2.7	37 40 46 60 80 76 68 72	945 933 900 850 800 783 770 758 700 647 600	0 929 1450 2576 3834	24.3 27.0 21.0 17.3 16.0 15.0 14.4 9.2 4.1 0.3	36 35 38 43 49 41 51 60 67 53	
		Winde				Winds		
	2 (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 320 690 1010 1690 2000 2300 2620 2930 3390 3620 3940	200 200 210 210 210 210 210 210 220 220	5.1 9.7 9.0 10.1 12.0 12.0 11.8 12.9 13.6 15.9 15.5 13.5 15.0	SFC	02 300 630 980 1300 1680 2030 2400 2720 3080 3470 3840	130 170 160 150 140 130 130 140 160 220 260	2.1 11.0 14.5 17.0 16.2 16.2 13.1 8.8 8.8 9.6 12.2	

	Gan Release 7 Aug 1956	No. 33 1258C		Gas Release No. 34 7 Aug 1956 1455C				
P (mb)	Z (m)	Т' (°С)	R.H. (%)	P (mb)	Z (m)	т (°С)	R. H. (%)	
944 900 894 804 800 700 677 640 600	0 422 921 1444 2570 3832	28.8 24.2 23.6 23.3 22.2 18.0 9.0 6.9 5.5 1.8	48 49 38 40 48 66 70 51 43	944 928 900 868 850 800 798 700 620 600	0 422 918 1440 2569 3833	30.5 26.0 23.6 20.7 20.3 18.7 18.6 10.3 3.3 1.0	38 46 53 55 42 41 48 55 57	
		Winds				Winds		
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 300 600 960 1320 1700 2080 2450 2830 3170 3470 3800	170 170 170 180 180 180 150 150 150 150 200 230	4.6 13.3 15.2 14.5 14.5 14.0 8.4 5.3 7.2 8.0 7.8 7.3	SFC	02 340 620 960 1290 1630 1930 2210 2500 2800 3060 3330 3620 3900	170 150 160 170 180 200 210 220 230 240 240 240 340	4,6 13,0 15,4 16,5 13,8 11,9 11,0 12,1 14,1 13,7 12,0 9,5 6,8 6,1	

·	Gaa Releaso 11 Aug 1956	2 No. 35 2122C		Gae Release No. 36 11 Aug 1956 2328C			
P (mb)	Z (m)	Т (°С)	R.H. (%)	թ (mb)	Z (m)	т (°С)	R. II. (%)
945 938 900 850 806 800 700 682 656 600	0 423 920 1436 2549 3799	20.0 24.8 15 0 5.4 4.0 1.3	62 50 - 67 90 77 24 mb	043 930 900 860 850 738 700 693 677 650 618 600	0 406 900 1418 2537 3794	18.8 23.5 21.8 19.5 15.7 11.3 7.6 6.8 6.3 6.3 6.0 3.4 1.3	79 74 66 68 74 83 70 68 24 mb 24 30
	• •• •• ••	Winds	he			Winds	
	Z (m)	ddd (deg)	fl (m/sec)		Z (m)	ddd (deg)	fí (m/sec)
SFC	02 300 630 940 1240 1580 2250 2510 2700 3000 3280 3480 3710	170 160 180 200 220 240 250 260 260 260 260 270 280 290 300	1.6 6.1 7.0 8.6 9.8 10.0 11.5 11.4 11.2 13.1 16.2 17.8	SFC	02 350 600 880 1170 1420 2000 2000 2030 2030 2030 3270 3589 3000	180 180 100 200 240 250 260 260 260 260 260 270 280 366 300	1.6 11.3 10.0 8.0 7.0 9.0 13.0 15.7 15.0 13.3 12.0 13.8 16.2

I

	Cas Release No. 37 12 Aug 1956 0250(*				Gas Releas 12 Aug 195	e No. 38 6 0450C	
P (mb)	2 (m)	Т (°С)	п.н. (%)	P (mb)	Z (m)	Т (°С)	RrH. (%)
912 912 900 883 850 823 800 726 700 700 677 622 600	0 308 894 1413 2538 3794	20.0 22.8 22.2 21.3 19.3 17.6 16.0 11.0 9.0 7.6 2.0 - 0.1	75 77 71 61 62 60 81 69 64 23 30 41	942 905 900 886 850 800 735 712 700 673 656 633 600	0 395 891 1411 2534 3787	20,0 22,5 22,5 20,5 20,3 16,9 12,1 10,5 9,1 6,0 5,0 3,5 0,2	81 55 45 45 59 78 59 50 68 34 33 33
		Winds	[<u></u>	Winds	L
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (dog)	ff (m/sec)
SFC	02 300 630 950 1240 1520 1830 2140 2410 2700 3000 3300 3300 3300 3040 3960	180 190 200 220 230 250 270 270 270 260 260 260 260	3.1 14.9 15.8 12.3 13.4 15.4 14.8 12.5 11.2 10.0 9.0 7.6 7.4 6.8	SFC	02 330 680 1020 1370 1670 2300 2600 2900 3220 3480 3760 4000	180 180 190 200 210 230 240 250 260 240 240 230 230	3.6 14.0 18.3 19.7 17.5 12.5 10.0 8.8 8.5 10.0 9.0 9.0 10.0 13.0 14.6

	Gas Release 13 Aug 1086	No. 39 2220C		Gas Release No. 40 14 Aug 1956 0020C				
р (mb)	Z (m)	Т' (°С)	R.H. (%)	Р (mb)	Z (m)	T (°C)	R. H. (%)	
948 937 930 886 850 850 850 850 860 761 700 680 637 600	0 -157 955 1477 2599 3849	20.5 25.4 27.4 25.9 24.6 21.9 17.9 14.5 8.6 6.4 2.5 0.2	41 38 35 30 28 36 48 56 69 71 26 24	948 940 932 900 850 805 800 763 760 670 670 628 609 800	0 457 955 1476 2598 3849	20.6 25.5 27.6 25.1 21.0 17.0 16.9 1.5.0 8.4 5.8 0.1 0.0 - 0.6	62 49 40 42 40 50 50 40 40 53 24 mb	
	Winds			Wi		Winds	L	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 420 850 1200 260 2780 3170 3580 4000	160 150 200 230 280 290 300 300 310	2.6 10.3 9.0 10.3 12.0 13.0 14.0 14.6 16.0	SFC	02 300 600 900 1230 1570 2160 2470 2760 3000 3400 3700 3700 3990	200 200 210 210 230 270 300 310 320 320 320 320 320 320	2.0 12.8 14.2 13.6 12.3 10.2 9.5 9.3 11.4 14.0 15.5 16.5 15.5 12.5	

L

	Gas Release 14 Aug 19	• No. 41 56 0250C			Gus Roleas 14 Aug 19	e No. 42 56 04500	2
р (mb)	Z (m)	т (°С)	п.н. (%)	P (mb)	Z (m)	т (°С)	R.H. (%)
947 933 915 900 850 840 800 793 700 696 600	0 448 946 1470 2597 3850	20.0 24.2 26.0 25.3 22.8 22.2 18.9 18.2 9.3 8.9 - 2.3	64 60 40 36 36 52 55 55 59 65	947 920 900 869 850 841 800 702 733 711 700 674 614 600	0 448 948 1473 2603 3858	21.7 26.6 26.0 24.9 22.0 22.0 20.0 19.5 12.7 11.1 10.0 7.1 - 0.8 - 2.0	55 31 30 41 46 53 54 67 53 52 51 73 69
		 Winds	·		<u></u>	Winds	
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	fi (m/sec)
SFC	02 280 530 830 1130 1450 1780 2100 2430 2430 2430 2430 2430 3050 3400 3680 4000	180 210 220 220 240 260 270 280 290 290 300 310 310	3.1 13.2 14.2 14.0 12.2 11.0 10.8 12.0 12.8 14.0 14.2 15.0 15.0 16.5	SFC	02 340 690 1020 1330 1680 2000 2330 2030 2030 2040 3270 3590 3910	210 230 240 260 270 270 270 280 290 290 300	4.8 20.9 20.6 16.3 17.1 16.5 14.0 12.4 11.0 12.0 12.0 14.0 15.5

	Gas Release 15 Aug 195	No. 43		Gas Rolease No. 44 15 Aug 1956 1350C				
P (mb)	Z (m)	Т (°С)	п.н. (%)	р (mb)	Z (m)	т (°С)	R. H. (%)	
945 931 900 850 846 832 800 762 740 740 740 705 700 685 630 630	0 436 937 1462 2598 3863	34.5 30 4 22.9 22.4 23.3 20.1 17.2 10.1 12.0 11.8 10.7 4.2 0.9	24 26 30 35 18 24 40 41 50 53 47 53 69	943 930 900 874 850 806 800 746 718 700 695 658 600	0 418 922 1448 2585 3853	36.8 31.9 29.1 26.8 24.5 20.6 20.1 16.5 13.3 11.9 11.6 8.5 1.2	19 22 25 27 30 35 57 52 54 43 40 37 64	
	Winds				Winds			
	Z (m)	ddd (dog)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 280 570 750 1130 1430 1720 2050 2390 2000 3000 3000 3000 3000 3000 300	160 160 150 200 220 250 260 260 260 260 260 260	1 5 5.0 4.2 5.0 5.8 4.4 5.7 7.0 8.7 9.8 10.7 11.2 11.2 11.2	SFC	02 280 570 880 1210 1555 1020 2300 2050 3000 3380 3720 4080	150 150 160 170 200 230 25 250 240 240 250 250 250	4.1 6.0 8.5 9.2 8.3 7.7 8.4 10.2 11.9 11.5 10.2 9.2 10.1	

Table 12.1 (Continued)

	15 Aug 19:	10,45 10 1658C			Gas Releat 15 Aug 19	1 6 NO, 40 156 <u>1</u> 8350	2	
p (mb)	Z (m)	т ("С)	R.H. (%)	P (nib)	Z (m)	т (°С)	R. H. (況)	
940 930 900 862 850 800 700 600	0 392 899 1429 2569 3839	$\begin{array}{c} 36 & 5 \\ 33.6 \\ 31.0 \\ 27.8 \\ 26.6 \\ 22.0 \\ 12 & 0 \\ 2 & 6 \end{array}$	21 22 26 30 31 40 59 77	939 919 900 850 842 800 778 700 687 656 600	9 379 888 1420 2564 3834	33.5 33.2 31.6 26.0 22.3 20.4 12.9 11.6 7.6 1.9	24 22 26 31 37 41 44 62 65 63 71	
	Woult,				Winds			
	Z (m)	ddd (deg)	ft (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 310 620 980 1300 1610 1870 2180 2470 2760 3020 3550 3809 4000	$\begin{array}{c} 160\\ 160\\ 160\\ 190\\ 210\\ 230\\ 240\\ 240\\ 240\\ 240\\ 240\\ 240\\ 260\\ 260\\ 260\\ \end{array}$	$egin{array}{c} 4&1\\ 7&4\\ 9&0\\ 9&5\\ 9&5\\ 12&6\\ 11&3\\ 11&2\\ 13&5\\ 13&5\\ 13&9 \end{array}$	51.6	02 300 600 900 1210 1570 1896 2210 2590 2910 3340 3570 3880	146146140160210220230240240240250260	$\begin{array}{c} 4.6\\ 11.2\\ 12.7\\ 12.3\\ 13.5\\ 12.9\\ 12.8\\ 14.0\\ 14.6\\ 14.6\\ 13.6\\ 13.6\\ 13.0\end{array}$	

	Gas Releas 20 Aug 19	e No. 47 56 1005C	•	****	Gas Rolease No. 48 21 Aug 1956 0850C			
р (mb)	Z (m)	т (°С)	R.II. (%)	P (mb)	Z (m)	т (°С)	R. H. (%)	
955 945 945 945 842 840 754 729 708 700 604 666 645 645 600	0 502 979 1477 2550 3768	$ \begin{array}{c} 19.0\\ 16.5\\ 13.1\\ 9.1\\ 8.4\\ 4.9\\ 0.9\\ -0.4\\ -1.8\\ -1.1\\ -0.5\\ -3.1\\ -3.3\\ -6.5\\ \end{array} $	50 40 51 63 65 56 75 43 39 34 24 nib nib	947 930 903 808 850 849 824 812 800 792 756 716 700 686 610 600	0 433 915 1420 2532 3787	18.8 15.8 13.5 14.5 12.3 10.5 10.9 11.8 12.3 11.6 8.5 8.0 7.7 1.6 0.5	59 63 69 62 48 51 22 mb mb mb mb mb mb	
					Winds			
	Z (ni)	dciđ (đeg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 320 690 1050 1420 1800 2150 2530 2900 3270 3020 3990	250 230 250 260 010 350 320 320 340 340 340 340	3.1 3.7 2.5 0.8 2.7 2.8 3.9 6.5 8.9 9.5 10.0 11.4	SFC	02 330 680 1030 1730 2050 2380 2730 3050 3400 3710 4030	180 210 230 250 260 290 290 290 290 300 300	5.7 9.0 10.8 12.3 11.0 9.7 9.0 11.2 14.0 16.0 16.5 16.8 16.0	

	Gas Rolease No. 49 21 Aug 1950 1050C				Gas Release No. 50 21 Aug 1956 1350C			
P (mb)	- Z (m)	т (°С)	R.H. (%)	p (mb)	Z (m)	т (°С)	R. H. (%)	
946 912 900 874 860 850 800 796 782 767 739 715 700 608 600	0 430 914 1424 2533 3789	23.8 17,1 10.5 14.9 15.3 14.8 11.2 11.0 9.6 1.6 8.8 9.8 8.6 1.4 0.5	44 48 54 56 65 66 20 nub mb mb mb mb mb	943 937 900 895 850 826 800 793 704 742 700 600	0 408 901 1417 2533 3790	29.0 25.7 22.3 21.9 19.0 17.4 14.1 13.3 11.9 11.9 11.9 8.8 0.9	38 40 48 49 35 37 37 20 mb mb mb	
	Winds				Winds			
	Z (m)	ddd (deg)	fi (m/sec)		2 (m)	ddd (deg)	ff (m/sec)	
SFC	02 330 700 1950 1400 2120 2480 2480 2480 3130 3480 3800	180 210 230 260 260 270 280 290 290 290 290	5.7 7.8 10.3 12.2 13.8 13.3 13.2 13.2 14.5 15.3 16.5 17.5	SFC	02 230 480 700 950 1200 1480 1750 2010 2290 2870 2870 3110 3320 3020 3910	200 200 220 240 250 270 280 290 300 300 300 300 300 300 300 300	5.1 8.0 8.0 9.7 11.0 12.0 13.5 16.0 14.8 13.5 16.0 17.5 18.5 17.0	

164

1

į

Gas Release No. 51 21 Aug 1956 1520C				Gas Release No. 52 24 Aug 1956 1105C				
р (mb)	Z (m)	Т (°С)	п.н. (Х)	P (mb)	Z (m)	Т (°С)	R. H. (%)	
942 932 900 850 818 800 770 733 722 700 695 600	0 403 899 1417 2530 3784	31.0 26.7 23.9 19.4 16.4 14.6 11.6 8.3 8.3 7.6 7.5 0.8	33 36 41 50 57 60 60 54 22 mb mb mb	052 932 900 850 848 800 793 740 713 700 688 676 600	0 485 971 1482 2593 3842	$\begin{array}{c} 25.0\\ 20.7\\ 18.2\\ 14.1\\ 13.9\\ 13.3\\ 13.1\\ 8.5\\ 8.9\\ 7.4\\ 6.5\\ 5.5\\ 5.5\\ -2.7\end{array}$	22 20 33 39 40 60 60 25 42 30 41 54	
	Winds				Winds			
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	diid (deg)	ff (m/sec)	
SFC	02 320 680 1010 1370 1710 2050 2400 2780 2080 3400 3720 4030	240 240 250 250 260 270 280 300 300 300 310 310	4.6 0.5 13.0 13.5 12.8 10.4 9.5 11.8 12.0 13.2 14.5 15.6 17.0	SFC	02 400 760 1460 1460 2490 2600 3020 3400 3760	140 110 110 340 320 310 310 330 330 330	3.1 61 5.0 2.8 3.6 5.9 7.2 8.5 8.4 8.1 9.2	

	Gas Releas 24 Aug 195	e No. 53 56 1950C		Gas Release No. 54 24 Aug 1956 2150C				
P (mb)	Z (m)	т (°С)	R.H. (%)	р (mb)	Z (m)	т (°С)	R.H. (%)	
948 940 900 850 825 800 774 700 686 600	0 941 1455 2572 3822	18.0 22.7 21.0 17.2 15.1 14.4 13.8 8.0 7.0 - 1.4	44 41 35 42 45 42 38 41 42 63	949 918 904 850 850 772 700 600	0 950 1406 2583 3833	20.0 20.8 20.0 19.8 17.3 14.6 13.6 8.7 - 2.0	51 42 35 43 50 32 42 67	
		Winds			Winds			
	:Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)	
Equipmen No Soundi	Fallure 98			SFC	02 380 730 1080 1450 1760 2100 2460 2800 3160 3520 3900	150 160 190 210 240 270 280 300 310 320 320	3.1 12.5 13.2 9.2 4.9 2.0 3.0 5.9 7.3 8.9 10.2 11.6	

	Gas Helease 25 Aug 195	NO, 55 6 0055C		25 Aug 1956 0250C					
p (mb)	Z (m)	Т (°С)	R.H. (%)	р (mb)	Z (m)	Т (°С)	R.H. (%)		
948 904 900 862 850 756 710 700 700 694 615 600	0 446 938 1456 2576 3825	17.0 20.0 19.9 19.0 18.4 15.0 11.9 9.2 8.2 7.3 - 0.5 - 2.1	00 43 48 49 52 56 41 50 54 70 70	948 900 850 815 800 761 726 700 600	0 444 936 1457 2579 3829	15.0 20:0 19.4 18.8 17.2 13.3 10.7 8.2 - 2.1	68 47 40 50 51 58 44 50 74		
	Winds					Winds			
<u>_</u>	2 (m)	ddd (deg)	ff (m/ s ec)		Z (m)	dddi (deg [.])	ff (m/sec)		
SFC	02 360 700 1350 1680 1980 2280 2600 2900 3230 3600 3020	150 100 189 200 210 220 230 240 250 260 270 260 270 300	8.2 14.3 12.0 10.2 9.2 6 0 4.0 4.0 5.8 5.7 7.0 7.7 7.4	SFC	02 200 500 1600 1900 2370 2700 3100 3550 3900	160 170 200 220 230 240 240 250 270 290	6.9 11.8 14.6 12.9 8.1 7.5 3.6 8.5 7.9 6.0 6.5		

	Gas Release 25 Aug 195	No. 57 6 1720C	Gas Release No. 58 25 Aug 1956 1920C					
P (mb)	Z (m)	т (°С)	R.H. (%)	P (mb)	Z (m)	т (°С)	R.H. (%)	
940 900 850 800 784 738 700 600	0 390 897 1425 2657 3819	34.5 30.5 25.2 19.9 18.0 15.0 11.1 0.4	18 22 30 42 23 31 50	939 932 900 850 800 762 744 700 610 600	0 379 884 1410 2546 3812	29.2 31.5 29.0 25.0 20.6 17.1 15.5 11.3 20.0 1.0	25 25 27 30 33 30 23 35 52 55	
	Winds				Winds			
	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	fi (m/sec)	
SFC	02 430 870 1250 2650 3000 3300 3620 3950	200 200 210 210 220 230 240 250 200 270	9.8 13.0 14.0 17.8 17.5 15.8 14.0 10.2 9.0 8.0	SFC	02 360 730 1110 1500 2200 2200 2200 2030 3020 3350 3750 4030	180 200 210 220 220 240 240 250 250 260 200	2.1 12.8 14.5 14.0 15.0 15.0 11.9 11.1 10.4 8.9 9.5	

Gas Release No. 59 25 Aug 1956 2220C					Gas Roleas 26 Aug 195	e No, 60 66 0020C		
P (mb)	Z (m)	т (°С)	R.H. (%)	P (mb)	2 (m)	т (°С)	R.II. (%)	
939 913 900 855 850 800 716 700 648 600	0 379 886 1417 2654 3818	25.5 31.0 30.2 27.4 26.9 21.9 12.9 11.3 6.1 0.3	38 23 24 25 32 45 43 37 57	938 907 900 860 850 800 784 720 700 600	0 375 882 1413 2552 3818	25.5 29.1 29.0 27.4 26.6 22.0 20.6 14.0 11.8 0.4	35 20 35 25 35 28 29 42 42 72	
	Winds				Winds			
	Z (m)	död (deg)	ff (m/вес)		Z (m)	ddd (deg)	ff (m/sec)	
SFC	02 400 780 1170 1570 2350 2350 2730 3160 3600 4000	190 200 210 220 230 240 240 240 250 260	2.6 15.8 16.6 15.3 15.0 14.0 11.3 11.0 10.8 8.0 6.6	SFC	02 440 850 1200 1850 2270 2750 3150 3490 3850	210 220 220 220 220 220 220 210 210 210	6.2 22.5 24.1 19.2 21.8 14.2 15.3 11.2 7 9 8.1 9.0	

(1.3)

Table 12.1 (Continued)

h ..
	Gas Release 27 Aug 195	No. 61 6 1050C			Gas Release 27 Aug 195	9 No. 62 6 1350C	
P (mb)	Z (m)	т (°С)	п.н. (%)	P (mb)	Z (m)	т (°С)	R. H. (%)
934 916 900 888 874 850 800 735 700 634 600	0 330 832 1358 2492 3754	31.8 28.0 26.0 24.5 26.2 24.3 20.2 14.4 10.9 3.8 - 0.1	26 30 30 27 29 32 39 47 62 62	934 924 900 869 850 800 744 700 035 600	0 329 831 1357 2488 3749	20.0 28.0 20.9 25.4 23.9 10.6 14.5 10.3 3.8 0.2	37 30 30 32 38 43 54 71 75
	2	Winds			Z	Winds	11
SFC	(m) 02 517 660 990 1200 1600 1900 2180 2490 2490 2490 3070 3370 3650 3950	(deg) 180 200 210 220 210 210 210 220 230 230 230 230 240	(m/sec) 5.7 9.7 11.8 8.0 7.0 8.7 8.0 9.0 9.2 7.3 7.5 8.0 9.7 10.5	SFC	(m) 02 280 550 800 1050 1250 1500 1730 1950 2200 2500 2500 2500 2500 3096 3350 3700 4000	(deg) 180 210 200 200 220 220 220 220 22	(m/scc) 1.6 6.5 4.2 3.0 4.4 5.6 5.9 8.0 9.5 10.5 12.0 11.2 11.7 12.0 10.5

	Gas Rolease 27 Aug 198	No. 63 56 1950C			Gas Releas 27 Aug 19	19 No. 64 56 22200	2
P (mb)	Z (m)	т (°С)	п.н. (%)	р (mb)	Z (m)	т (°С)	R. H. (%)
931 923 900 853 850 800 773 700 654 600	0 302 807 1335 2473 3739	24.5 30.7 29.0 25.4 25.1 21.3 19.1 11.8 6.9 1.1	47 34 34 32 31 31 31 31 30 45	932 921 900 894 858 850 800 742 700 600	0 309 816 1346 2484 3747	19.6 29.1 29.6 20.7 27.3 26.6 22.0 16.5 11.9 6.0	67 40 30 28 28 29 29 35 41
		Winds				Winds	L
······	Z (m)	ddd (deg)	ff (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 230 480 720 960 1290 1620 1610 2100 2370 2660 2940 3200 3450 3680 3970	240 230 210 210 210 210 210 210 210 220 220 230 240 260 280 280	1.0 3.4 5.0 6.1 7.7 6.0 3.7 3.2 3.5 3.5 3.5 2.4 1.8 2.5 3.8 4.0	SFC	02 300 720 1080 1400 2110 2450 2790 3100 3490 3880	Ca 230 230 230 230 240 240 240 240 240 230	m 3.0 4.6 8.0 7.7 5.8 5.3 4.4 3.3 4.6 5.8

	Gas Release 29 Aug 195	Nui 65 8 1920C			Gas Releas 29 Aug 19	e No. 66 56 2120C	~
р (mb)	Z (m)	Т (°С)	п.н. (%)	भ (mb)	Z (m)	т (°С)	R. H. (%)
933 900 850 800 786 700 658 800	0 315 812 1331 2447 3696	20.5 24.9 19.9 15.8 14.4 7.1 3.4 - 1.2	28 32 40 50 52 42 30 24	933 916 900 859 848 800 750 700 650 600	0 316 814 1336 2460 3711	21.0 25.6 24.9 22.1 22.0 18.0 13.4 8.4 3.0 - 2.0	42 37 33 23 28 34 46 58 56
		Winds	······ ,			Winds	
	Z (m)	ddd (deg)	ff (m/ s ec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 360 700 1440 1830 2200 2530 2900 3220 3580 3900	180 180 190 200 220 240 260 260 270 270	3.1 11.8 13.6 13.0 11.0 11.0 11.5 11.2 12.2 12.2 10.0	SFC	02 380 750 1100 1420 2150 2460 2750 3130 3520 3920	180 190 220 220 230 250 250 260 260 270	3.6 15.3 17.4 14.5 14.1 13.9 10.2 9.1 9.6 12.0 14.1 15.0

	Gas Release 30 Aug 195	No. 67 6 0020C			Gas Releas 30 Aug 19	e No. 68 56 02200	
P (mb)	2 (m)	т (°С)	п.н. (%)	P (mb)	Z (m)	` Т (°С)	R. II. (%)
932 911 900 878 850 830 800 700 886 600	0 304 801 1323 2444 3687	21.0 24.6 20.8 21.1 20.5 17.8 7.9 6.4 - 2.4	47 37 40 45 34 21 30 46 49 59	931 916 900 850 830 800 700 672 635 600	0 295 791 1312 2434 3685	21.0 24.2 23.6 21.3 20.4 17.7 8.0 5.2 2.2 - 1.8	45 40 37 30 27 30 43 47 43 50
		Winds			·	Winds	
	Z (m)	ddd (deg)	íf (m/sec)		Z (m)	ddd (deg)	ff (m/sec)
SFC	02 380 730 1030 1680 2000 2300 2020 2050 3230 3530 3530 3900	180 190 200 210 220 220 210 2	3, 1 16, 0 16, 5 16, 8 17, 3 16, 4 13, 6 13, 0 11, 0 7, 0 5, 0 6, 0 7, 3	SFC	02 400 800 1160 1530 1920 2290 2640 3020 3380 3770	180 210 220 210 200 200 210 240 260	4.6 14.6 15.3 12.8 13.8 12.7 10.2 9.7 7.7 6.4 8.3

CHAPTER 13 AIRPLANE OBSERVATION DATA

P. J. Harney Geophysics Research Directorate Air Force Cambridge Research Center

13.1 Introduction

The aircraft soundings taken at O'Neill, Nebraska at the times of the diffusion experiments are tabulated on the following pages. The data were recorded on an AFCRC Aerograph (Kollsman KS-4). In addition, altitude was read from a calibrated sensitive altimeter by an observer who also noted air conditions.

The pattern for the sounding which was regularly followed consisted of horizontal passes at constant airspeed and altitude along the north mile of the site section for altitudes up to 1000 ft. Then a box climb was made with observations on each side in level flight for 30 seconds. Unless clouds intervened, this was continued to 7000 ft above the site itself (9000 ft mean sea level indicated altitude). A spiral descent followed with one observation at either 1000 ft or 300 ft and a final traverse at an altitude similar to the initial run.

13.2 Tabulated Data

The first column, Z_p , gives the pressure altitude obtained from altimeter readings. The height of the lowest level was adjusted to match the pilot's intention to fly by his own calibrated altimeter and by visual reference to 50-foot instrument towers nearby. The other levels were corrected for scale and installation errors but can be as much as 25 feet too high due to a lack of up-to-date information on these errors and on the airport elevation.

The P_{mb} column is the pressure in millibars obtained by converting altimeter readings through use of a standard altitude table.

The T column is the temperature in °C read from a thermistor bead in a stagnation type probe on a boom on the wing. The value represents an average for the traverse when the trace was changeable and a value at the end of the traverse when a drift of temperature was noted. The value represents a free air temperature because it has been corrected for dynamic heating using a recovery factor of 0.85, found to be typical for the equipment used. The accuracy was of the order ± 0.2 °C. Part of this spread was due to a modification to make the recorder more sensitive, which allowed the indicator to hunt through this range during the time of high ambient temperatures.

A column marked # refers to the behavior of the temperature trace. The code used is similar to the one used for pressure tendency reports. The first figure indicates the trend shown by the trace during the traverse, which lasted about 30 seconds. (The time taken to cover the one mile at 100 knots indicated air speed.) The second figure is the amount of change (plus or minus) indicated by an oscillating trace or the amount of temperature shift as indicated by the drifting of the trace. The significant values are given in the legend prefacing the table.

The RH column lists the estimated relative humidity obtained from a carbon-element electric hygrometer. The calibration curve used was that for a batch of pre-production elements. This was checked against apron values of a sling psychrometer before and after the flights. Comparison was made with the daily radiosonde upper air observations (lithium chloride elements) and the calibration curve was shifted to match the deviation of the overall average. As is customary, allowance was made for a small temperature shift; also in this RH column an allowance was made for the increase in probe pressure of 15 mb. The same element was used throughout because no deterioration nor regular shift could be proven in the field. The accuracy is of the order of 5 percent.

The VP column for vapor pressure in millibars and the DP column for dew point in $^{\circ}$ C are slide rule values. They are computed without allowance for the above mentioned probe-pressure effect. The gradient

values are considered good due to the fast response of the humidity element at these high temperatures. The accuracy of the absolute values is limited as noted above.

The TIME shown for each sounding is generally that of the time of gas release for convenient reference. The sounding actually started with the first pass; this first pass almost always corresponded with the start of the ground meteorological observations which was 5 minutes before gas release time. The first traverse followed the radiosonde balloon release by 5 minutes. The top level of a complete sounding was reached about 30 minutes and the final run about 45 minutes after the first traverse.

13.3 Remarks

Aircraft observations were not made for tests 23, 24, 31, 32, 33, and 34. At these times the aircraft was at Omaha for engine change and installation of additional instruments. An extra run of note was made and this is included as Field Test No. 48S.

The aircraft used was a standard USAF L-20, instrumented by the Research Airborne Engineering Branch of the Hanscom Air Force Base, Bedford, Mass. The crew consisted of Lt. George A. Sexton, Lt. E. E. Clark, pilots, and A/1c John I. Knutila, A/1c Joseph H. Driever, crew chiefs.

The thermistor used was modified for a response time of about three seconds and calibrated by James H. Meyer of the Lincoln Laboratory. The calibration used with the carbon element was provided by Alfred Spatola of the Cloud Physics Section of GRD.

Table 13.1 Aircraft Observations

LEGEND

Code for the # symbol

First Figure Temperature Behavior

- 2 Unsteady or oscillating trace, may include a jump or a hump.
- 3 Drift to warmer temperature which is maintained.
- 8 Drift to colder temperature which is maintained,

dash Smooth trace, no temperature change.

Second Figure	Temperature Oscillation	Temperature Drift
none	± 0.2°C	less than 0.5°C
2	± 0.3	0.5
4	± 0.5	1.0
5	± 0,6	1.2
6	± 0.8	1.5

~~~~~~

Abbreviations used are those of the airways teletype code and contractions whose meaning is evident.

The observer's initials are listed because non-meteorological aides made frequent flights on which their observations are sparse. The pilots alternated in flying and no difference in techniques was noted.

| F                                   | TELD TE.                                  | /I NO.                               | 1  |                                    | 3 JULY                               | 7 1956                               | 1100 CST                                                       |          |
|-------------------------------------|-------------------------------------------|--------------------------------------|----|------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------|----------|
| z <sub>p</sub><br>(ft)              | P<br>(mb)                                 | Т<br>('С)                            | #  | RH<br>(%)                          | e<br>(mb)                            | Т <sub>d</sub><br>(°С)               | Remarks                                                        |          |
| 50<br>100<br>180<br>390<br>610      | 043.5<br>941.5<br>939.0<br>932.0<br>924.0 | 21,0<br>21,3<br>21,1<br>20,4<br>19,2 | 22 | 97<br>95<br>91<br>01<br>94         | 24.4<br>24.4<br>23.0<br>22.0<br>21.2 | 20.7<br>20.6<br>19.7<br>19.0<br>18.4 |                                                                |          |
| 830<br>1000<br>1520<br>2015<br>2400 | 917.0<br>911.0<br>893.5<br>876.0<br>965.0 | 19,1<br>18,6<br>17,3<br>16,3<br>15,1 |    | 98<br>>100<br>>100<br>>100<br>=100 | 21.0<br>21.4<br>19.7<br>18.5<br>17.2 | 19.0<br>18.6<br>17.3<br>16.3<br>15.1 | Ocnl bump lower levels<br>In clear<br>isase of clouds-in wisps |          |
| 900<br>130<br>50<br>50              | 911.5<br>940.5<br>943.5<br>943.5          | 17.5<br>20.6<br>21.1<br>21.2         |    | >100<br>>100<br>96<br>£15          | 20.0<br>24.3<br>24.4<br>24.4         | 17.5<br>20.6<br>20.7<br>20.7         | Second pass O                                                  | our P.H. |

| F                                                                                                                | FIELD TEST NO. 2                                                                                                                                                                                   |                                                                                                                              |                          |                                                                                             | 3 JUL                                                                                                                                | Y 1956                                                                                                                       | 1500 CST                                                                                                                                                                                                 |           |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>(ft)                                                                                           | P<br>(mb)                                                                                                                                                                                          | т<br>(°С)                                                                                                                    | *                        | 1111<br>(K)                                                                                 | e<br>(mb)                                                                                                                            | T <sub>rl</sub><br>("C)                                                                                                      | Romarks                                                                                                                                                                                                  |           |
| 50<br>85<br>160<br>430<br>630<br>840<br>1025<br>1515<br>2025<br>3020<br>3545<br>4005<br>5040<br>1000<br>60<br>60 | 943.0<br>941.5<br>939.0<br>931.0<br>923.0<br>916.0<br>909.5<br>803.5<br>876.5<br>876.5<br>876.5<br>876.5<br>876.5<br>876.5<br>876.0<br>844.5<br>828.0<br>812.0<br>782.5<br>910.5<br>943.0<br>943.0 | 23.5<br>23.4<br>22.6<br>21.9<br>21.1<br>20.7<br>19.0<br>18.2<br>17.0<br>15.7<br>14.4<br>13.0<br>11.7<br>18.8<br>21.4<br>22.3 | 82<br><br>82<br>32<br>22 | 82<br>83<br>85<br>85<br>89<br>92<br>90<br>100<br>-100<br>-100<br>-100<br>-100<br>-100<br>94 | 24.0<br>24.1<br>24.1<br>23.2<br>22.6<br>21.6<br>22.0<br>21.2<br>20.4<br>10.4<br>17.8<br>16.4<br>15.6<br>13.7<br>21.7<br>25.4<br>25.4 | 20,4<br>20,5<br>10,9<br>19,6<br>18,8<br>10,0<br>18,5<br>17,8<br>17,0<br>15,7<br>14,4<br>13,6<br>11,7<br>18,8<br>21,4<br>21,4 | Bump<br>Steady<br>Ocal bump<br>In clds<br>Thru hole in clds<br>Thru thin clds<br>Between clds<br>First bump about 1200°<br>Descending 500°/minute<br>Abrupt descent to here<br>Traverse after 30 seconds | Obsr P.H. |
|                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                              | ļ                        | 1                                                                                           |                                                                                                                                      |                                                                                                                              |                                                                                                                                                                                                          |           |

# See Legend

١

No. 1 & 2

| F                                                                       | FIELD TEST NO. 3                                                                       |                                                                              |                      | 5 JUL                                              | Y 1956                                                                       | 1100 CST                                                                                         |           |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| Zp<br>(ft)                                                              | P<br>(mb)                                                                              | т<br>(°С)                                                                    | *                    | RH<br>(%)                                          | e<br>(mb)                                                                    | ʻT <sub>d</sub><br>(°C)                                                                          | Remarkø – |
|                                                                         |                                                                                        | 22.4                                                                         |                      | 95                                                 | 25.7                                                                         | 21.5                                                                                             |           |
| 220<br>160<br>390<br>600<br>840<br>1010<br>1520<br>2010<br>2505<br>3025 | 940.0<br>942.0<br>934.5<br>927.0<br>919.0<br>913.0<br>896.5<br>880.0<br>864.0<br>847.5 | 26.0<br>25.8<br>25.2<br>24.5<br>24.0<br>24.3<br>23.0<br>21.9<br>20.6<br>19 1 | 21<br>62<br>82<br>82 | 58<br>60<br>63<br>65<br>66<br>67<br>67<br>72<br>67 | 10.7<br>20.2<br>19.6<br>10.7<br>10.7<br>20.0<br>10.1<br>17.9<br>17.6<br>15.0 | $ \begin{array}{c} 17.3\\17.7\\17.2\\17.2\\17.2\\17.2\\17.6\\16.8\\15.7\\15.5\\13.0\end{array} $ |           |
| 3505<br>4045<br>5025<br>220                                             | <b>832.5</b><br><b>815.5</b><br>786.0<br>940.0                                         | 18.0<br>16.5<br>14.7<br>23.9                                                 | 32                   | 65<br>60<br>64<br>73                               | <b>13.8</b><br>11.5<br>11.0<br><b>21.8</b>                                   | 11.7<br>9.0<br>8.4<br>18.9                                                                       | Obsr P.H. |

Table 13.1 (Continued)

| F                            | IELD TES                         | ST NO.                       | 4  |                      | 6 JUL                        | Z 1956                       | 0100 CST                                            |  |  |
|------------------------------|----------------------------------|------------------------------|----|----------------------|------------------------------|------------------------------|-----------------------------------------------------|--|--|
| Z <sub>p</sub><br>(ft)       | P<br>(mb)                        | Т<br>(°С)                    | *  | RH<br>(%)            | c<br>(mb)                    | T <sub>d</sub><br>(°C)       | Remarkø                                             |  |  |
|                              |                                  | 20.6                         |    | 02                   | 21.8                         | 18,9                         | Equip Osc ±0.2°C per 10 sec-taxiing                 |  |  |
| 180<br>405<br>615<br>820     | 941.0<br>933.6<br>926.0<br>919.5 | 25,9<br>26,1<br>25,4<br>24,8 | 21 | 80<br>80<br>60<br>80 | 20.2<br>20.4<br>19.6<br>19.0 | 17.7<br>17.8<br>17.2<br>16.7 | Tmp max on Sdg                                      |  |  |
| 1010<br>1500<br>1995<br>2495 | 913.0<br>896.5<br>880.0<br>860.5 | 24.4<br>23.4<br>22.0<br>20.6 | 22 | 59<br>60<br>59<br>69 | 18.5<br>17.4<br>15.8<br>16.9 | 17,3<br>15,3<br>13,8<br>14,9 |                                                     |  |  |
| 3505<br>3505<br>3090<br>5025 | 848.0<br>832.0<br>817.0<br>785.5 | 17.8<br>16.0<br>14.4         |    | 75<br>74<br>71<br>58 | 16.8<br>15.2<br>13.6<br>9.8  | 14.8<br>13.3<br>11.5<br>6.7  | Pireps slight turbe                                 |  |  |
| 190                          | 941.0                            | 23.6                         | 44 | 82                   | 23,8                         | 20,3                         | Pireps slight turbe<br>Sharp 2° inversion Obsr J.D. |  |  |
|                              |                                  |                              |    |                      |                              |                              |                                                     |  |  |

# See Legend

No. 3 & 4

| F                                    | IELD TES                                  | T NO,                                | 5                          |                            | 6 JUL                                | Y 1956                               | 1400 CST             |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------------|--------------------------------------|----------------------|
| Zp<br>(ft)                           | P<br>(mb)                                 | т<br>(°С)                            | #                          | RH<br>(%)                  | e<br>(mb)                            | T <sub>d</sub><br>(°C)               | Remarks              |
| 60<br>75                             | 944.0<br>943.5                            | 29,4<br>29,4                         |                            | 47<br>47                   | 19.2<br>19.3                         | 16.9<br>17.0                         | Ocnl gust all levels |
| 170<br>375<br>630<br>820<br>990      | 940.0<br>933.0<br>924.5<br>918.0<br>912.0 | 29,3<br>28,5<br>27,8<br>27,2<br>26,2 | 22<br>22<br>22             | 47<br>48<br>49<br>50<br>53 | 19.2<br>18.8<br>18.6<br>18.2<br>18.3 | 16.9<br>16.5<br>16.3<br>16.1<br>16.1 | Flumpy below         |
| 1500<br>2000<br>2505<br>3005<br>3405 | 895.0<br>878.5<br>862.5<br>846.5<br>831.0 | 25,3<br>23.8<br>22.3<br>21.2<br>20,1 | 82<br>82<br>22<br>22<br>22 | 52<br>54<br>56<br>49<br>49 | 17.0<br>16.3<br>15.5<br>12.6<br>11.5 | 1,50<br>14,3<br>13,6<br>10,4<br>9,1  | One gust             |
| 4030<br>5045                         | 814.5<br>784,0                            | 18.2<br>17.4                         |                            | 49<br>52                   | 10,9<br>10,4                         | 8.2<br>7.6                           |                      |
| 300<br>35                            | 935,5<br>945,0                            | 26.5<br>28.5                         | 32<br>32                   | 63<br>52                   | ·22.1<br>20.0                        | 19,1<br>17,5                         | Obsr J.D.            |

| F                                    | IELD TES                                  | T NO.                                | 3_       |                            | 6 JUL                                | ¥ 1956                               | 1700 CST    |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------|----------------------------|--------------------------------------|--------------------------------------|-------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | т<br>(°С)                            | *        | RH<br>(%)                  | e<br>(mb)                            | T <sub>d</sub><br>(°C)               | Romarka     |
| 50<br>75                             | 942<br>941                                | 30,3<br>30,7                         | 22       | 43<br>46                   | 18.5<br>20,3                         | 17.3<br>17.8                         |             |
| 165<br>375<br>635<br>805             | 938<br>930.5<br>922<br>916                | 30,2<br>29.0<br>29.0<br>28.3         | 82       | 46<br>46<br>46<br>46       | 19.8<br>18.4<br>18.6<br>17.8         | 17.3<br>16.2<br>16.4<br>15.7         |             |
| 1005<br>1515<br>1905<br>2500<br>3020 | 909.5<br>892.5<br>876.5<br>860.5<br>843.5 | 27.8<br>26.7<br>25.3<br>23.3<br>22,8 | 82<br>82 | 48<br>46<br>50<br>54<br>50 | 18.1<br>16.3<br>16.4<br>15.6<br>14.2 | 15.9<br>14.3<br>14.4<br>13.6<br>12.2 |             |
| 3560<br>4000<br>5010                 | 827.0<br>813.0<br>783.0                   | 21.2<br>20.5<br>18.3                 |          | 46<br>42<br>49             | 11.5<br>10.3<br>10.4                 | 9.1<br>7.4<br>7.4                    |             |
| 275<br>85                            | 934,0<br>941,0                            | 27.7<br>30,0                         | 33       | 54<br>47                   | 20.3<br>20.0                         | 17.7<br>17.5                         | . Obsr J.D. |
|                                      |                                           |                                      |          |                            |                                      |                                      |             |

# See Legend

No. 5 & 6

| F                                    | FIELD TEST NO. 7                                 |                                      |                      |                            | 10 .101,                             | Y 1956                               | 1400 CST         |
|--------------------------------------|--------------------------------------------------|--------------------------------------|----------------------|----------------------------|--------------------------------------|--------------------------------------|------------------|
| $\frac{z_{\rm p}}{({\rm ft})}$       | P<br>(mb)                                        | т<br>(°С)                            | ¢)                   | ास<br>(%)                  | e<br>(mb)                            | T <sub>d</sub><br>(°C)               | Remark <b>s</b>  |
| 50<br>90                             | 944 5<br>943.0                                   | 30,1<br>29,6                         | 22                   | 38<br>39                   | 16,3<br>16,3                         | 14.3<br>14,3                         | Obrep sounding   |
| 180<br>390<br>590<br>820             | 940.0<br>933.0<br>926.0<br>916.0                 | 29.2<br>28.6<br>27.8<br>27.2         | 23<br>22             | 40<br>39<br>41<br>42       | 16,0<br>15,3<br>15.5<br>16,4         | 14,1<br>13,4<br>13,5<br>13,4         | Rough alofi      |
| 1000<br>1520<br>2015<br>2505<br>3005 | 912.0<br>894.5<br>878.5<br>862.5<br>846.5        | 26,9<br>25,3<br>23,8<br>21,8<br>20,5 | 22                   | 42<br>45<br>47<br>50<br>52 | 14.8<br>14.4<br>13.8<br>13.0<br>12.6 | 12.8<br>12.4<br>11.8<br>10.9<br>10.4 |                  |
| 3515<br>4035<br>5645<br>6085<br>7090 | 830.5<br>814.5<br>784.0<br>753.5<br><b>725.0</b> | 18.9<br>17.3<br>14.6<br>12.3<br>9.8  | 82<br>82<br>82<br>82 | 56<br>50<br>62<br>66<br>68 | 12.4<br>11.9<br>10.4<br>9.6<br>8.4   | 10.2<br>9.6<br>7.6<br>6.4<br>4.5     | Turbulance noted |
| 290<br>90                            | 936.0<br>943,0                                   | 26.4<br>29.1                         | 32<br>32             | 45<br>41                   | $15.6 \\ 17.0$                       | 13.6<br>15.0                         | Obsr J.D.        |

| F                                    | IELD TES                                  | T NO. E                                  | }        |                            | 10 JUL                               | Y 1956                               | 1400 CST                                                                              |
|--------------------------------------|-------------------------------------------|------------------------------------------|----------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | Т<br>(°С)                                | *        | RUH<br>(%)                 | e<br>(mh)                            | Т <sub>d</sub><br>(°С)               | Remarks                                                                               |
| 50<br>90                             | 943.0<br>941.5                            | 30.5<br>30,1                             | 22<br>23 | 39<br>39                   | 17,1<br>16,7                         | 15,0<br>14,7                         | Ocul bumps and drafts<br>Drafts                                                       |
| 180<br>395<br>640<br>830             | 938.5<br>931.0<br>922.5<br>916.0          | 29.8<br>29.3<br>28.2<br>27.8             | 23<br>82 | 41<br>42<br>43<br>42       | 17.4<br>17.3<br>16.4<br>15.8         | 15,2<br>15,2<br>14,4<br>13,8         | Ocrl bumps                                                                            |
| 1000<br>1500<br>2015<br>2525<br>3035 | 910.5<br>894.0<br>877.0<br>860 5<br>844.0 | 27.0<br>25.7<br>23.8<br>22.1<br>20.5     | 22       | 44<br>45<br>48<br>50<br>54 | 15.5<br>14.7<br>14.2<br>13.4<br>13.4 | 13.6<br>12.7<br>12.1<br>11.3<br>11.3 | Ocnl yaw<br>Smoother                                                                  |
| 3545<br>4045<br>5065<br>6075<br>7090 | 828.0<br>813.0<br>782.0<br>752.5<br>723.5 | 19,0<br>(17.0<br>(14,6<br>(11.9<br>(0.3) |          | 59<br>59<br>68<br>73<br>79 | 13 2<br>13 0<br>11.6<br>15.3<br>9.5  | 11.0<br>10.8<br>9.1<br>7.4<br>6.2    | Bumps<br>Yawing<br>Smooth, some cirat bases<br>Cloud bases these altitudes<br>Wallowy |
| 320<br>95                            | 937.0<br>941.5                            | 29.1<br>30.7                             | 32<br>22 | 30<br>39                   | 15.8<br>17.9                         | 13.8<br>15.2                         | Obsr P.H.                                                                             |
|                                      |                                           |                                          | Ĺ        | İ                          |                                      |                                      |                                                                                       |

# See Legend

No. 7 & 8

181

,

| FI                                     | ELD TES                                            | T NO. 9                                      |                                  |                                  | 11 JU                                        | LY 1956                                      | 1000 CST                               |
|----------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------|
| 2.p<br>(ft)                            | P<br>(mb)                                          | Т<br>(°С)                                    | *                                | RH<br>(%)                        | e<br>(mb)                                    | т <sub>d</sub><br>(°С)                       | Remarks                                |
| 50                                     | 939.0                                              | 25,9                                         | 23                               | 62                               | 21.2                                         | 18.4                                         | Bumpy                                  |
| 100<br>105<br>395<br>610<br>825<br>990 | 937.5<br>935.0<br>927.5<br>920.0<br>912.5<br>907.0 | 25.6<br>25.3<br>24.7<br>23.9<br>23.1<br>23.2 | 23<br>22<br>22<br>22<br>22<br>22 | 62<br>65<br>67<br>70<br>72<br>72 | 20.8<br>21.2<br>21.0<br>21.1<br>20.4<br>19.3 | 18.2<br>18.4<br>18.3<br>18.4<br>17.8<br>16.9 | Drafis<br>Bumps lift                   |
| 1490<br>2025<br>2515<br>3015<br>3495   | 890.5<br>875.0<br>857.0<br>841.5<br>820,5          | 21, 1<br>21, 4<br>22, 4<br>21, 5<br>20, 9    | 23<br>16<br>23<br>22             | 73<br>73<br>66<br>68<br>65       | 18.4<br>18.8<br>18.3<br>17.6<br>15.4         | 16.2<br>16.5<br>16.1<br>15.5<br>14.4         | Slow osc<br>Steady<br>Hazy vsb 8 to 10 |
| 4035<br>5025<br>6035<br>7080           | 809.5<br>780.0<br>750.5<br>721.5                   | <b>20.6</b><br>18.0<br>16.1<br>13.1          |                                  | 54<br>50<br>4?<br>48             | <b>13.2</b><br><b>11.0</b><br>8.7<br>7.4     | 11.1<br>8.4<br>5.0<br>2.6                    | Ac clds 5000' above<br>Hazy            |
| 280<br>55                              | 931.5<br>939.0                                     | 25.2<br>26.6                                 | 34<br>23                         | 70<br>60                         | 22.7<br>21.3                                 | 19,5<br>18,5                                 | Obsr P.H.                              |
|                                        |                                                    |                                              | }                                |                                  |                                              |                                              |                                        |

| 1200 CST                 |                   | Y 1950                                       | 11 JUI                               |                            | FIELD TEST NO. 10          |                                      |                                           |                                      |  |  |
|--------------------------|-------------------|----------------------------------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--|--|
| Remarks                  |                   | Т <sub>d</sub><br>(°С)                       | e<br>(mb)                            | RH<br>(%)                  |                            | Т<br>("С)                            | p<br>(mb)                                 | Z <sub>p</sub><br>(fl)               |  |  |
|                          |                   | 18.7<br>18.8                                 | 21.5<br>21.8                         | 55<br>50                   | 22<br>23                   | 28.4<br>29.2                         | 939.0<br>937,5                            | 45<br>90                             |  |  |
|                          |                   | 18.5<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8 | 21.2<br>21.7<br>21.8<br>21.7<br>21.8 | 56<br>60<br>63<br>66<br>66 | 22<br>22<br>23<br>22       | 27.8<br>26.9<br>26.3<br>25.4<br>25.5 | 934.0<br>926.5<br>919.0<br>912.5<br>907.0 | 185<br>405<br>635<br>820<br>990      |  |  |
| gh below<br>smooth above | Pireps<br>Relativ | 18.2<br>17.0<br>15.8<br>14,3                 | 20,8<br>19,3<br>18,0<br>16,3         | 70<br>72<br>74<br>70       | 22<br>22<br>22<br>14       | 23.6<br>21.9<br>20.4<br>10.7         | 890.5<br>873.5<br>857.5<br>845.1          | 1490<br>2005<br>2553<br>3015         |  |  |
|                          |                   | 13.0<br>10.3<br>9.8<br>6.3<br>5.6            | 15.0<br>12.5<br>11.4<br>9.5<br>9.1   | 62<br>54<br>54<br>53<br>60 | 32<br>22<br>22<br>22<br>22 | 20,3<br>19,7<br>18,1<br>15,6<br>12,9 | 825.5<br>810.0<br>780.0<br>750.5<br>722.0 | 3613<br>4015<br>5015<br>6025<br>7040 |  |  |
| Obsr J.I                 |                   | 19.0<br>19.2                                 | 21.9<br>22.3                         | 58<br>55                   | 22<br>32                   | 27.7<br>29.0                         | 930,5<br>938,5                            | 290<br>60                            |  |  |

# See Legend

No. 9 & 10

| F                                    | IELD TES                                  | T NO. 11                             |                | ¥                          | 14 JUL                           | Y 1958                          | 0800 CST                                            | ·    |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------|----------------------------|----------------------------------|---------------------------------|-----------------------------------------------------|------|
| z <sub>p</sub> ,<br>(ft)             | P<br>(mb)                                 | т<br>(°С)                            | 9              | RII<br>(%)                 | c<br>(mb)                        | т <sub>d</sub><br>(°С)          | Remarks                                             |      |
| 40<br>90                             | 942.5<br>941.0                            | 23,5<br>32,4                         | 23<br>23       | 83<br>88                   | 24.2<br>24.2                     | 20.6<br>20.5                    | Bump                                                |      |
| 190<br>380<br>640                    | 937.5<br>931.0<br>922.0                   | 23.1<br>22.4<br>21.8                 | 22<br>22<br>22 | 83<br>83<br>85             | 23.7<br>22.7<br>22.4             | 20.2<br>19.5                    | Drafts                                              |      |
| 840                                  | 915.5                                     | 22.4                                 | 23             | 84                         | 23.0                             | 19,8                            | Bumps                                               |      |
| 1040<br>1520<br>2010<br>2405         | 908.5<br>892,5<br>878.5                   | 23.1<br>22.8<br>23.6                 | 23<br>32       | 76<br>82<br>50             | 21.8<br>22.8<br>14.8             | 18,8<br>19,6<br>12,8            | Steadier<br>Smooth                                  |      |
| 3025                                 | 814.0                                     | 22.4                                 | 46             | 42<br>42                   | 15.2                             | 9.0                             |                                                     |      |
| 3495<br>4035<br>5035<br>6035<br>7080 | 829.0<br>812.5<br>782.5<br>753.0<br>723.5 | 22.2<br>20.8<br>17.7<br>15.5<br>12.5 |                | 42<br>39<br>46<br>46<br>43 | 11.4<br>9.7<br>9.4<br>8.1<br>6.3 | 8.8<br>6.5<br>6.2<br>4.0<br>0.4 | Oscillation<br>Smooth<br>Oscillation bumps at 1300' |      |
| 290<br>50                            | 934.0<br>942.5                            | 23.8<br>23.9                         | 32<br>83       | 85<br>80                   | 25.2<br>23.8                     | 21, 3<br>20, 3                  | Obsr                                                | р.н. |

Table 13,1 (Continued)

| F                                                                                                                   | IELD TES                                                                                                                                                       | T NO. 12                                                                                                                             | 2                                                                          |                                                                                                    | 14 .111                                                                                                                          | Y 1956                                                                                                                                    | 1000 CST                                                                                                                        |    |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----|
| $\mathbf{z}_{\mathbf{p}}$ (ft)                                                                                      | P<br>(mb)                                                                                                                                                      | т<br>(°С)                                                                                                                            |                                                                            | RH<br>(%)                                                                                          | o<br>(mb)                                                                                                                        | т <sub>d</sub><br>(°С)                                                                                                                    | Remark <b>a</b>                                                                                                                 |    |
| 75<br>100<br>360<br>620<br>800<br>1510<br>2005<br>3495<br>3015<br>3495<br>4030<br>5035<br>6035<br>7040<br>280<br>70 | 941.0<br>939.5<br>931.5<br>922.5<br>916.5<br>916.5<br>876.5<br>876.5<br>876.5<br>810.0<br>844.0<br>829.0<br>812.5<br>782.6<br>753.0<br>724.6<br>934.0<br>941.5 | 27.8<br>27.2<br>26.7<br>25.9<br>25.4<br>24.9<br>24.4<br>24.6<br>23.0<br>23.1<br>21.9<br>21.1<br>18.4<br>16.1<br>13.0<br>27.6<br>29.2 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | 86<br>66<br>70<br>73<br>77<br>78<br>72<br>52<br>50<br>39<br>38<br>35<br>39<br>40<br>48<br>44<br>50 | 24 8<br>24.3<br>24.0<br>24.7<br>25.4<br>25.4<br>24.8<br>22.2<br>16.4<br>11.1<br>10.0<br>8.8<br>8.4<br>7.3<br>7.1<br>16.4<br>20.8 | $\begin{array}{c} 21,0\\ 20,6\\ 21,0\\ 20,9\\ 21,4\\ 24,0\\ 19,1\\ 14,4\\ 12,9\\ 8,5\\ 7,0\\ 5,0\\ 4,4\\ 2,1\\ 14,4\\ 18,2\\ \end{array}$ | Bumpy<br>Lifts begin<br>Gusts at end<br>Vecasional bumps<br>Smooth<br>Steady<br>Yaw<br>Steady<br>Bumps at 1900<br>Bump Obsr P.1 | 1. |

# See Legend

No. 11 & 12

Ţ

i

| F                                    | ELD TES                                          | T NO. 13                             | }      |                                    | 22 JUL                               | Y 1956                               | 2000 CST                                                    |
|--------------------------------------|--------------------------------------------------|--------------------------------------|--------|------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------|
| Zp<br>'ft)                           | P<br>(mb)                                        | т<br>(°С)                            | #      | RU<br>(%)                          | e<br>(mb)                            | Т <sub>d</sub><br>(°С)               | Rema <b>rks</b>                                             |
| 45<br>80                             | 947.0<br>945.5                                   | 23.3<br>22.8                         | 82     | 62<br>65                           | 18, 1<br>18, 2                       | 16.0<br>16.0                         | SC vesperalis 9000'<br>Sun low at the horizon               |
| 180<br>400<br>620<br>830             | 942.5<br>935.0<br>927.0<br>920.0                 | 23.1<br>23.0<br>21.8<br>21.2         | <br>32 | 59<br>59<br>62<br>65               | 17.0<br>16.9<br>16.6<br>16.5         | $15.0 \\ 14.0 \\ 14.6 \\ 14.5$       | Smooth<br>Very smooth<br>One lift; sunset                   |
| 1000<br>1505<br>2000<br>2500<br>3020 | 914.5<br>897.5<br>881.0<br>805.0<br>848.0        | 20.9<br>19.6<br>18.0<br>16.0<br>35.1 | 82     | 67<br>71<br>72<br>72<br>73         | 16.9<br>16.5<br>15.0<br>13.6<br>12.8 | 14.0<br>14.5<br>13.1<br>11.8<br>10.6 | Very light turbe<br>Smooth                                  |
| 3505<br>4045<br>5030<br>6070<br>7080 | 833.0<br>816.5<br><b>786.5</b><br>756.0<br>727.0 | 13.7<br>12.6<br>10.4<br>8.1<br>6.3   |        | 77<br>90<br><b>97</b><br>100<br>96 | 12,2<br>13,3<br>12,4<br>11,3<br>9,4  | 10.0<br>11.2<br>10. i<br>8.1<br>6.0  | R H Osc<br>Smooth<br>Cloud base 5800<br>Top about 6500 vrbl |
| 285<br>180                           | 938.5<br>942.5                                   | 22.3<br>22.6                         | 22     | 62<br>60                           | 17.0                                 | 15.0<br>14.8                         | Obsr P.H.                                                   |

| F                                    | ELD TES                                   | T NO. 1                                 | 1          |                            | 22 3 111                             | Y 1956                               | 2200 CST                   |
|--------------------------------------|-------------------------------------------|-----------------------------------------|------------|----------------------------|--------------------------------------|--------------------------------------|----------------------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | т<br>(°С)                               | #          | 111<br>(%)                 | c<br>(mb)                            | т <sub>а</sub><br>(°С)               | Rema <b>rks</b>            |
| 170<br>355<br>600<br>820<br>985      | 943.5<br>937.0<br>928.5<br>921.0<br>015.5 | 21.7<br>22.4<br>21.3<br>21.4<br>21.0    | 212<br>221 | 57<br>54<br>60<br>50       | 15.0<br>14.8<br>15.8<br>15.2<br>14.3 | 13.0<br>12.9<br>13.8<br>13.2<br>12.3 |                            |
| 1500<br>1985<br>2485<br>2985<br>3495 | 898.5<br>882.5<br>866.0<br>850.0<br>834.0 | 19.6<br>18.1<br>16.7<br>15.0<br>14.4    | 22         | 62<br>73<br>81<br>83<br>90 | 14.4<br>15.4<br>15.6<br>14.4<br>15.0 | 12.4<br>13.4<br>13.6<br>12.4<br>13.0 | Light turbe<br>Light turbe |
| 4005<br>4990<br>6025<br>7020<br>260  | 818.0<br>788.0<br>758.0<br>729.5<br>940.0 | 13. t<br>11. 3<br>9. 4<br>6. 9<br>22. 3 |            | 00<br>82<br>75<br>87<br>54 | 15.0<br>11.2<br>9.0<br>8.8<br>14.8   | 13.1<br>8.7<br>5.4<br>5.1<br>12.8    | Ocnl bump abovo            |
| 170                                  | 043.5                                     | 22,3                                    | 22         | 53                         | 14.5                                 | 12.5                                 | Obsr J.D.                  |
| 1                                    |                                           |                                         |            |                            |                                      |                                      |                            |

# See Lagend

No. 13 & 14

| F                                           | IELD TES                                  | T NO. 1                                   | 3        |                            | 23 JUL                               | X 1950                               | 0800 CST                               |
|---------------------------------------------|-------------------------------------------|-------------------------------------------|----------|----------------------------|--------------------------------------|--------------------------------------|----------------------------------------|
| z <sub>p</sub><br>((t)                      | р<br>(mb)                                 | Т<br>(°С)                                 | #        | RU<br>(%)                  | c<br>(mb)                            | т <sub>d</sub><br>(°С)               | Remarks                                |
| 50<br>75                                    | 947.0<br>942.5                            | 19.4<br>19.2                              | 22<br>22 | 84<br>83                   | 19.2<br>18.8                         | 16.8<br>10.5                         |                                        |
| 185<br>305<br>635<br>845                    | 942.0<br>935.0<br>926.5<br>919.5          | 19.0<br>18.9<br>20.1<br>20.3              | 22       | 84<br>84<br>80<br>81       | 18.8<br>18.6<br>19.1<br>19.6         | 16.5<br>16.4<br>16.8<br>17.2         | Occasional II turbe                    |
| 1005<br>1525<br>2020<br>2500<br>3030        | 014.0<br>897.0<br>880.5<br>865.0<br>848.0 | 20, 1<br>20, 0<br>18, 8<br>17, 1<br>15, 9 | ~        | 82<br>65<br>69<br>78<br>84 | 19.6<br>15.8<br>15.2<br>15.5<br>15.3 | 17.2<br>13.6<br>13.2<br>13.5<br>13.3 | Hazy level not sharp                   |
| 3520<br>4050<br><b>5040</b><br>6060<br>7085 | 832.5<br>816.0<br>786.0<br>756.0<br>727.0 | 15.2<br>13.9<br>11.7<br>9.4<br>7.8        |          | 59<br>47<br>42<br>36<br>32 | 10.4<br>7.5<br>5.9<br>4.3<br>3.5     | 7.5<br>2.8<br>-0.4<br>-4.1<br>-6.5   | Above smoky layer<br>Few Ac on horizon |
| 285<br>60                                   | 938.5<br>946,5                            | 20.4<br>21.3                              | 32       | 84<br>75                   | 20, 3<br>19, 3                       | 17.8<br>14.9                         | A few little bumpe<br>Obsr P.H.        |

Table 13.1 (Continued)

| F                                    | IELD TES                                  | ST NO. 1                             | 6                          |                            | 23 JUI.                              | Y 1956                               | 1000 CST                             |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Zp<br>(ft)                           | p<br>(inb)                                | Т<br>(°С)                            | *                          | R11<br>(%)                 | o<br>(mb)                            | т <sub>d</sub><br>(°С)               | Remark <b>a</b>                      |
| 50                                   | 946,5                                     | 24.4                                 | 24                         | 62                         | 19.4                                 | 17.0                                 |                                      |
| 100<br>190<br>400<br>610<br>830      | 944,5<br>938,0<br>934,0<br>927,0<br>919,5 | 24.4<br>24.1<br>23.3<br>22.6<br>21.9 | 24<br>22<br>22<br>82<br>22 | 63<br>62<br>65<br>64<br>72 | 19.2<br>18.8<br>18.9<br>17.8<br>19.3 | 16.9<br>16.8<br>16.6<br>15.7<br>17.0 |                                      |
| 1010<br>1500<br>2005<br>2495<br>3015 | 913.5<br>897.0<br>880.5<br>864.5<br>848.0 | 21.5<br>20.3<br>18.8<br>17.9<br>16.0 | 22<br>22<br>22<br>         | 76<br>73<br>74<br>78<br>78 | 19.7<br>17.6<br>16.2<br>15.5<br>14.6 | 17.3<br>15.5<br>14.2<br>13.5<br>12.5 | Obreps humpy to here                 |
| 3495<br>4035<br>5025                 | 833.0<br>816.0<br>785.0                   | 11.8<br>14.7                         | 22                         | 71<br>42<br>34             | 12.2<br>7.3                          | 9.9<br>2.2                           | A light layer of<br>scattered clouds |
| 6045<br>7050                         | 756.0<br>727.0                            | 10.3<br>8.0                          |                            | 54<br>74                   | 6.9<br>8.1                           | 1.8                                  |                                      |
| 300<br>50                            | 937.5<br>946.0                            | 24.4<br>25.8                         | 32<br>32                   | 58<br>50                   | 18, 1<br>16, 7                       | 16.9<br>14.7                         | Obsr J.D.                            |

# See Legend

No. 15 & 18

i.

| HELD TES                                  | T NO. 17                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 JUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y 1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000 CST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P<br>(mb)                                 | •т<br>(°С)                                                                                                                                                                           | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1211<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e<br>(mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | т <sub>d</sub><br>(°С)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rema <b>rks</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 941.0<br>940.0                            | 29.0<br>28.8                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.6<br>14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12,6<br>12,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 93%.5<br>920.0<br>921.5<br>914.5<br>909.5 | 29.3<br>29.5<br>29.4<br>28.0<br>28.2                                                                                                                                                 | 22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35<br>33<br>29<br>31<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.4<br>13.7<br>12.0<br>12.2<br>10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.4<br>11.6<br>9.6<br>10.0<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 892.8<br>875.5<br>859.0<br>844.0          | 26.9<br>25.5<br>24.8<br>23.2                                                                                                                                                         | 22<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32<br>34<br>36<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.9<br>11.3<br>11.2<br>10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.5<br>8.8<br>8.7<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pireps temp 72°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 827.5<br>812.5<br>781.5<br>752.5<br>723.5 | 21.7<br>20.3<br>17.5<br>14.9<br>11.8                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39<br>44<br>49<br>52<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2<br>10.4<br>9.9<br>8.9<br>8.9<br>8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3<br>7.6<br>6.8<br>5.4<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Very igt turbe Pireps 53°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 933.0<br>930.5                            | 28.4<br>28.4                                                                                                                                                                         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3.7<br>14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 6<br>12, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Оbя                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r J, D,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                           | P<br>(mb)<br>941.0<br>940.0<br>940.0<br>936.5<br>920.0<br>921.5<br>914.5<br>909.5<br>875.5<br>875.5<br>859.0<br>844.0<br>827.5<br>812.5<br>762.5<br>762.5<br>762.5<br>762.5<br>762.5 | P         'T           (mb)         (°C)           941.0         29.0           940.0         28.8           936.5         29.3           920.0         29.5           921.5         29.4           909.5         28.2           892.6         26.9           875.5         25.5           859.0         24.8           944.0         33.2           892.5         21.7           812.5         20.3           761.5         17.5           752.5         14.0           723.5         11.8           930.5         28.4           930.5         28.4 | P       'T       #         (mb)       ('C)       #         941.0       29.0       940.0       28.8         936.5       29.3          920.0       29.5       22         921.5       29.4       22         909.5       28.2       22         892.5       26.9       22         892.5       26.9       22         875.5       25.5       859.0       24.8         844.0       23.2       23         827.5       21.7       812.5       20.3         761.5       17.5       752.5       14.9         723.5       11.8       933.0       28.4         930.5       28.4       22 | P       'T       #       RH         (mb)       (°C)       (%)         941.0       29.0       37         940.0       28.8       37         936.5       29.3        35         920.0       29.5       22       33         921.5       28.4       22       31         909.5       28.2       33       33         892.6       26.9       22       32         875.5       25.5       34       36         859.0       24.8       12       36         944.0       23.2       38       37         909.5       28.0       23       31         909.5       28.1       33       38         892.6       26.9       22       32         875.5       25.5       34       36         844.0       23.2       38       38         827.5       21.7       39       44         781.5       17.5       49       52         723.5       11.8       60       60         930.5       28.4        35         930.5       28.4       22 <td< td=""><td>P       'T       #       RH       <math>c</math>         (mb)       (°C)       (%)       (mb)         941.0       29.0       37       14.6         940.0       28.8       37       14.4         936.5       29.3        35       14.4         936.5       29.3        35       14.4         920.0       29.5       22       33       13.7         927.5       29.4       29       12.0       12.2         909.5       28.2       33       10.7       12.2         909.5       28.2       33       10.7         802.5       26.9       22       32       11.9         875.5       25.5       34       11.3       11.2         944.0       23.2       38       10.7       10.7         802.5       26.9       22       32       11.9         875.5       25.5       34       11.3       11.2         944.0       23.2       38       10.8       10.2         812.5       20.3       44       10.4       10.4         752.5       14.9       52       89       12.5</td><td>P       'T       #       IIII       e       T<sub>d</sub>         (mb)       (°C)       (%)       (mb)       (°C)         941.0       29.0       37       14.6       12.6         940.0       28.8       37       14.4       12.4         936.5       29.3        35       14.4       12.4         936.5       29.3        35       14.4       12.4         920.0       29.5       22       33       13.7       11.6         921.5       29.4       29       12.0       9.6         945.5       28.2       33       10.7       10.5         802.6       26.0       22       32       11.9       9.5         875.5       25.5       34       11.3       8.8         859.0       24.8       12       36       11.2       8.7         644.0       23.2       38       10.8       8.2         827.5       21.7       39       10.2       7.3         812.5       20.3       44       10.4       7.6         752.5       11.6       60       # 4       4.5         930.5       28.4</td><td>P       'T       #       IIII       <math>e</math>       T<sub>d</sub>       Remarks         (mb)       (°C)       (%)       (mb)       (°C)       Remarks         941.0       29.0       37       14.6       12.6       Remarks         940.0       28.8       37       14.4       12.4       12.4         936.5       29.3        35       14.4       12.4         920.0       20.5       22       33       13.7       11.6         921.4       29.5       22       33       10.7       10.5         921.4       28.6       22       31       12.2       10.0         909.5       28.2       33       10.7       10.5         802.5       26.9       22       32       11.9       9.5         875.5       25.5       34       11.2       8.7         644.0       23.2       38       10.8       8.2         827.5       21.7       30       10.2       7.3         812.5       20.3       44       10.4       7.6         723.5       11.8       60       8.9       5.4         723.5       13.6       17.5       <td< td=""></td<></td></td<> | P       'T       #       RH $c$ (mb)       (°C)       (%)       (mb)         941.0       29.0       37       14.6         940.0       28.8       37       14.4         936.5       29.3        35       14.4         936.5       29.3        35       14.4         920.0       29.5       22       33       13.7         927.5       29.4       29       12.0       12.2         909.5       28.2       33       10.7       12.2         909.5       28.2       33       10.7         802.5       26.9       22       32       11.9         875.5       25.5       34       11.3       11.2         944.0       23.2       38       10.7       10.7         802.5       26.9       22       32       11.9         875.5       25.5       34       11.3       11.2         944.0       23.2       38       10.8       10.2         812.5       20.3       44       10.4       10.4         752.5       14.9       52       89       12.5 | P       'T       #       IIII       e       T <sub>d</sub> (mb)       (°C)       (%)       (mb)       (°C)         941.0       29.0       37       14.6       12.6         940.0       28.8       37       14.4       12.4         936.5       29.3        35       14.4       12.4         936.5       29.3        35       14.4       12.4         920.0       29.5       22       33       13.7       11.6         921.5       29.4       29       12.0       9.6         945.5       28.2       33       10.7       10.5         802.6       26.0       22       32       11.9       9.5         875.5       25.5       34       11.3       8.8         859.0       24.8       12       36       11.2       8.7         644.0       23.2       38       10.8       8.2         827.5       21.7       39       10.2       7.3         812.5       20.3       44       10.4       7.6         752.5       11.6       60       # 4       4.5         930.5       28.4 | P       'T       #       IIII $e$ T <sub>d</sub> Remarks         (mb)       (°C)       (%)       (mb)       (°C)       Remarks         941.0       29.0       37       14.6       12.6       Remarks         940.0       28.8       37       14.4       12.4       12.4         936.5       29.3        35       14.4       12.4         920.0       20.5       22       33       13.7       11.6         921.4       29.5       22       33       10.7       10.5         921.4       28.6       22       31       12.2       10.0         909.5       28.2       33       10.7       10.5         802.5       26.9       22       32       11.9       9.5         875.5       25.5       34       11.2       8.7         644.0       23.2       38       10.8       8.2         827.5       21.7       30       10.2       7.3         812.5       20.3       44       10.4       7.6         723.5       11.8       60       8.9       5.4         723.5       13.6       17.5 <td< td=""></td<> |

| F                                    | IELD TES                                  | T NO. I                                      | 8                          |                            | 23 JUI                               | Y 1956                              | 2200 CS'I'                                                                                                           |
|--------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------|----------------------------|--------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| z <sub>p</sub><br>(ft)               | p<br>(mb)                                 | т<br>(°С)                                    | "                          | 111<br>(%)                 | e<br>(mb)                            | т <sub>d</sub><br>(°С)              | Remarks                                                                                                              |
| 160<br>345<br>605<br>815<br>985      | 939.0<br>932.5<br>923.5<br>910.5<br>911.0 | 27.6<br>27.9<br>27.9<br>27.9<br>27.7<br>27.7 | 32<br>22<br>32<br>82<br>22 | 39<br>35<br>36<br>33<br>33 | 14.3<br>13.3<br>13.4<br>12.4<br>12.1 | 12.2<br>11.2<br>11.2<br>10.2<br>9.8 | (St Cu drifted out,<br>wind varied with<br>cloud cover)                                                              |
| 1475<br>1980<br>2490<br>2970         | 894.5<br>878.0<br>861.5<br>840.0          | 26,4<br>25,6<br>24,4<br>23,4                 | <br>22                     | 32<br>36<br>39<br>30       | 11.1<br>11.7<br>11.8<br>11.3         | 8,6<br>9,3<br>9,4<br>4,8            | Fat hump<br>Lat turbe continuous<br>Bumps not gusts<br>(Pireps alt changes rather<br>than airspeed changes<br>noted) |
| 3510<br>4010<br>5010<br>6010<br>7030 | 829.0<br>813.5<br>783.5<br>754.0<br>725.5 | 21.8<br>20.3<br>17.4<br>14.6<br>11.5         | 82<br>22<br>22             | 42<br>46<br>54<br>61<br>65 | 11. t<br>10.0<br>10.8<br>10.3<br>9.0 | 8.6<br>8.2<br>8.2<br>7.4<br>5.5     | Bunne small but pitching<br>Choppy<br>Wallowy<br>Up & down drafts                                                    |
| 265<br>165                           | 935.5<br>939.0                            | 26.4<br>26.7                                 | 62                         | 42<br>43                   | 14.4<br>15 0                         | 12,4<br>13,1                        | Smooth below about 1200'<br>Obsr 12.H.                                                                               |
|                                      | }                                         |                                              |                            |                            |                                      |                                     |                                                                                                                      |

# Sue Legend

No. 17 & 18

| ŀ                                                  | ield tes                                                                 | T NO. 1                                              | )                                |                                        | 25 JUL                                          | ¥ 1956                                                      | 1100 CST                                                        |           |
|----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-----------|
| z <sub>p</sub><br>(ft)                             | P<br>(mb)                                                                | т<br>(°С)                                            | #                                | RU<br>(%)                              | e<br>(mb)                                       | т <sub>d</sub><br>(°С)                                      | Remarks                                                         |           |
| 50<br>75                                           | 943.0<br>942.0                                                           | 27.0<br>26.7                                         | 23<br>22                         | 40<br>40                               | 14.2<br>14.0                                    | 12, 1<br>11, 9                                              | Cirrus clouds sun out<br>Bouncy                                 |           |
| 175<br>390<br>620<br>850                           | 939.0<br>931.5<br>923.5<br>916.0                                         | 26.4<br>25.7<br>25.2<br>24.5                         | 22<br>22<br>22                   | 41<br>42<br>43<br>45                   | 14,0<br>13,9<br>13 8<br>14 0                    | 12.0<br>11.9<br>11.8<br>12.0                                | Bumps<br>Drafts                                                 |           |
| 1000<br>1500<br>2015<br>2505<br>3025               | $\begin{array}{c} 908.5 \\ 894.0 \\ 877.0 \\ 861.0 \\ 844.5 \end{array}$ | 24.0<br>22.4<br>21.0<br>20.5<br>20.3                 | 22<br>23<br>22<br>24<br>22       | 45<br>50<br>53<br>35<br>25             | 13-5<br>13.5<br>13.4<br>8.4<br>6.0              | $     11.4 \\     11.4 \\     11.4 \\     4.5 \\     -0.3 $ | Boancing<br>Less drafty<br>R II data doobtful this              |           |
| 3515<br>4035<br>5035<br>6045<br>7080<br>300<br>100 | 929, 5<br>#13, 5<br>783, 0<br>753, 5<br>724, 0<br>934, 5<br>941, 5       | 20.0<br>20.0<br>18.2<br>16.2<br>13.5<br>26.8<br>28.4 | 22<br>22<br>12<br>22<br>22<br>22 | 25<br>25<br>28<br>31<br>36<br>43<br>40 | 5.9<br>5.9<br>6.0<br>5.7<br>5.7<br>15.1<br>15.4 | -0.5<br>-0.5<br>-0.3<br>-0.4<br>-0.9<br>13.1<br>13.4        | Smooth<br>Slow osc<br>Dumps at 2560'<br>Lift at 800<br>Big bump | Obsr P.H. |
|                                                    |                                                                          |                                                      |                                  |                                        | -                                               |                                                             |                                                                 |           |

| F                                    | IELD TES                                  | 51° NO. 2                                 | ()                   |                            | 25 JUL                                                                    | ¥ 1956                               | 1300 CST                         |
|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------|----------------------------|---------------------------------------------------------------------------|--------------------------------------|----------------------------------|
| Z <sub>p</sub><br>(ft)               | p<br>(mb)                                 | т<br>(′С)                                 | H                    | 11H<br>(%)                 | e<br>(mb)                                                                 | т <sub>đ</sub><br>(°С)               | Hemarka                          |
| 75                                   | 939.5                                     | 32.8<br>29.4                              | 23                   | 31                         | 12.7                                                                      | 10.6                                 | Humidify element<br>Inspected    |
| 175<br>375<br>595<br>805             | 936-0<br>929-0<br>931.5<br>914-5          | 29.3<br>28.6<br>27.7<br>27.0              | 20<br>32<br>22<br>22 | 20<br>31<br>33<br>35       | 11.8<br>12.1<br>12.4<br>12.4                                              | 9.4<br>9.8<br>10-1<br>10.6           |                                  |
| 1015<br>1505<br>2000<br>2480         | 907-5<br>891-0<br>875-0<br>859.5<br>842-5 | 26, 2<br>25, 1<br>23, 2<br>21, 8<br>21, 8 | 22<br>22<br>22<br>22 | 36<br>35<br>35<br>43<br>28 | $ \begin{array}{c c} 12.4 \\ 11.3 \\ 10.2 \\ 11.1 \\ 7.4 \\ \end{array} $ | 10, 2<br>U, 8<br>7, 2<br>8, 5<br>2 6 |                                  |
| 3490<br>4010<br>5020<br>6030<br>7045 | 827.5<br>811.5<br>781.0<br>751.5<br>723.0 | 22.0<br>21.4<br>19.4<br>17.0<br>13.8      | 24<br>23<br>22       | 25<br>25<br>28<br>28<br>28 | 6.6<br>6.8<br>6.4<br>5.6<br>5.8                                           | 1,0<br>0,6<br>0,6<br>1,1             |                                  |
| 275<br>85                            | 932.5<br>939.0                            | 30.0<br>30.5                              | 33<br>82             | 25<br>24                   | 10.5<br>10.8                                                              | 7.7<br>8.0                           | Turbe below 3000 ft<br>Obsr J.D. |
|                                      |                                           |                                           |                      |                            |                                                                           |                                      |                                  |

# See Legend

NO. 19 & 20

ć

| F                                                                | IELD TES                                                                      | st no. (                                             | 21             |                                        | 26 JULY                                         | 7 1956                                                                     | 2100 CST                                                                                                                                                          |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|----------------|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 <sub>p</sub><br>(ft)                                           | P<br>(mb)                                                                     | х<br>(°С)                                            | 1              | ки<br>(%)                              | ę<br>(mb)                                       | Т <sub>сі</sub><br>(°С)                                                    | Remarks                                                                                                                                                           |
| 175<br>390<br>609<br>850<br>1020<br>1490<br>2015<br>2495<br>2995 | 932.0<br>924.5<br>917.5<br>909.0<br>903.5<br>888.0<br>870.5<br>855.0<br>639.5 | 28.6<br>29.5<br>28.8<br>27.7<br>27.6<br>26.9         | 32<br>22<br>32 | 34<br>32<br>29<br>28<br>24<br>25       | $13.3 \\ 13.2 \\ 11.5 \\ 10.4 \\ 8.9 \\ 8.9$    | $ \begin{array}{c} 11,2\\ 14,1\\ 9,0\\ 7,6\\ 5,3\\ 5,3\\ 5,3 \end{array} $ | Rough<br>Ling to N<br>Smooth suddenly<br>Steady                                                                                                                   |
| 3495<br>3995<br>5620<br>6045<br>7070<br>295<br>180               | 824.0<br>808.0<br>778.5<br>749.0<br>719.5<br>928.0<br>932.0                   | 25.4<br>24.4<br>21.2<br>18.1<br>16.5<br>28.7<br>28.7 | 24<br>32       | 26<br>29<br>31<br>35<br>27<br>31<br>30 | 8.5<br>8.8<br>7.8<br>7.3<br>5.1<br>12.2<br>11.8 | 4,6<br>5,2<br>3,4<br>2,4<br>- <b>2,2</b><br>10,0<br>9,4                    | Temp min sharp about 3800'<br>Smooth<br>Bumpy then steady<br>Hvy ling to N Smooth<br>-1,5"C tmp blip on climb<br>Equipment looks OK<br>Bumps at 800'<br>Obsr P.H. |

Table 13.1 (Continued)

| F                                                                                                              | TELD TES                                                                                                                                     | ST NO. 2                                                                                                     | 2                                                                          | :                                                                                      | 26 JULY                                                                                                                                                                 | 1956                                                                                                                                     | 0000 CST                                                                                                                                                                                   |           |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>((t)                                                                                         | P<br>(mb)                                                                                                                                    | Т<br>(°С)                                                                                                    |                                                                            | RH<br>(%)                                                                              | e<br>(mb)                                                                                                                                                               | т <sub>d</sub><br>("С)                                                                                                                   | Remark <b>s</b>                                                                                                                                                                            |           |
| 180<br>400<br>640<br>850<br>1500<br>2925<br>2515<br>3035<br>3515<br>4035<br>5025<br>6045<br>7080<br>280<br>200 | 931.0<br>923.5<br>915.5<br>908.0<br>902.0<br>886.5<br>853.5<br>853.5<br>837.5<br>822.5<br>806.5<br>776.5<br>747.0<br>719.0<br>927.5<br>930.0 | 27.6<br>27.6<br>27.1<br>26.2<br>27.5<br>27.4<br>27.5<br>27.0<br>25.9<br>24.9<br>21.6<br>19.5<br>16.6<br>26.9 | 22<br>35<br>24<br>25<br>84<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | 37<br>37<br>37<br>38<br>38<br>29<br>25<br>24<br>23<br>23<br>23<br>23<br>23<br>36<br>36 | 13.7         13.3         12.9         12.9         12.5         10.6         9.2         8.6         7 7         7.3         5.2         4.4         12.6         12.8 | $\begin{array}{c} 11.6\\ 11.1\\ 10.8\\ 10.9\\ 10.6\\ 10.2\\ 7.8\\ 5.8\\ 4.8\\ 3.2\\ 2.4\\ -0.4\\ 1.9\\ -4.0\\ 10.6\\ 10.6\\ \end{array}$ | Pireps strong winds aloft<br>Bumpy<br>Very ligt inrue<br>Ligt turbe at 4500'<br>Smooth at 5500'<br>Lit turbe at 5600' descent<br>into inaze at 4400'<br>Out haze at 1400'<br>Bumps at 300' | Obsr J.D. |
| 1                                                                                                              | 1                                                                                                                                            |                                                                                                              |                                                                            | 1                                                                                      | !                                                                                                                                                                       | l                                                                                                                                        |                                                                                                                                                                                            |           |

# See Legend

ij.

No. 21 & 22

| ŀ                      | HELD THE                         | sr no. a             | 25       |                          | I AUGUS                      | ST 1956                | 1300 CST                                                                      |           |
|------------------------|----------------------------------|----------------------|----------|--------------------------|------------------------------|------------------------|-------------------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>(ft) | P<br>(mb)                        | Т<br>("С)            | H.       | RU<br>(%)                | e<br>(mb)                    | Т <sub>d</sub><br>(°С) | Remarks                                                                       |           |
| 50<br>100              | 944.0<br>942.5<br>020.5          | 22.6<br>22.6         | 22<br>22 | 96<br>5-5                | 26,5<br>25,8                 | 22.0<br>21.6           | Воилсу                                                                        |           |
| 410<br>630<br>845      | 939.5<br>932.0<br>924 5<br>917.0 | 21.4<br>20.7<br>20.0 | 22       | 90<br>94<br>>100<br>>100 | 20.5<br>24,3<br>34.7<br>34,4 | 20.0<br>20.7<br>20.0   | Drafts and acceleration<br>R H sluggish<br>Bumpy                              |           |
| 1035<br>1510           | 910.5<br>895.0                   | 19.5<br>8,2          |          | 100<br>100               | 23.7<br>22.2                 | 2.02                   | P H sluggish<br>Bampy at base about 1600'<br>In clouds at 1750'<br>and deafts |           |
| 1000<br>50             | 912,0<br>944,0                   | 19.4<br>22.9         | 32       | ~100<br>96               | 23,2<br>27,0                 | 19.4<br>22.4           | Bumpy<br>Est 60 ft by the tower<br>40 ft indicated                            | Obsr P.H. |
|                        |                                  |                      |          |                          |                              |                        |                                                                               |           |

Table 13.1 (Continued)

| F                                    | IELD TES                                  | T NO. 2                               | 6                    |                            | 2 AUGUS                              | T 1956                                   | 1200 CST                                                                                |           |
|--------------------------------------|-------------------------------------------|---------------------------------------|----------------------|----------------------------|--------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|-----------|
| 2 <sub>p</sub><br>(ft)               | ч<br>(mb)                                 | т<br>(°С)                             | H                    | RH<br>(%)                  | и<br>(mb)                            | т <sub>d</sub><br>(°С)                   | Remarks                                                                                 |           |
| 50<br>80                             | 940,0<br>939,0                            | 27.3<br>26.9                          | 24<br>23             | 66<br>68                   | 24.2<br>24,4                         | 20.5<br>20.6                             |                                                                                         |           |
| 190<br>395<br>630<br>830             | 935,5<br>920 0<br>920,0<br>913,5          | 20.9<br>26.3<br>25.6<br>25.6<br>25.6  | 23<br>23<br>22<br>22 | 67<br>72<br>75<br>71       | 24.0<br>24.8<br>24.9<br>23.7         | 20,4<br>21,0<br>21,0<br>20,2             | Draftø<br>Rampy<br>Humpy                                                                |           |
| 1010<br>1490<br>2005<br>2460<br>2985 | 907.5<br>891.5<br>874.5<br>860.0<br>845.0 | 24.4<br>33.0<br>21.2<br>1.2,4<br>18.6 | 22<br>82<br>14<br>36 | 78<br>82<br>92<br>91<br>88 | 23.9<br>23.2<br>23.4<br>22.0<br>20.0 | 20.4<br>19.9<br>00.0<br>19.1<br>16.7     | Turbe<br>Wobdes no drafts                                                               |           |
| 3495<br>4035<br>5025<br>6045<br>7050 | 827.0<br>810.5<br>781.0<br>751.0<br>722.5 | 18.0<br>18.4<br>16.2<br>14.0<br>11.8  | 24<br>83<br>         | 81<br>63<br>82<br>78<br>95 | 17.6<br>13.6<br>15.3<br>13.7<br>12.9 | 15, 4<br>11, 5<br>13, 3<br>10, 6<br>9, 6 | Setd eld bases below<br>Passing eld bases at 3700'<br>Climb in clear<br>In elds 4500 to |           |
| 1020<br>205<br>50                    | 907,0<br>931,5<br>940,0                   | 24.8<br>27.6<br>28.4                  | 34<br>33<br>22       | 73<br>57<br>54             | 23.1<br>21.4<br>21.2                 | 19,8<br>18,6<br>18,4                     | 4800 ft on descent<br>Banes est 3500 ft Bumps<br>Bumps<br>Low 50' pass                  | Obsr P.H. |
|                                      |                                           |                                       |                      |                            |                                      |                                          |                                                                                         |           |

# Sce Legend

No. 25 & 26

: :

t

| F                                    | IELD TES                                  | T NO. 27                             | 1                    |                            | 2 AUGUS                              | T 1956                               | 1400 CST                                                                                                                                        |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | т<br>(°С)                            | #                    | RIJ<br>(%)                 | e<br>(mb)                            | т <sub>d</sub><br>(°С)               | Reinarks                                                                                                                                        |
| 50<br>80                             | 939.5<br>938.5                            | 29.9<br>30.1                         | 24<br>23             | 50<br>49                   | 21.2<br>21.0                         | 18.5<br>18-3                         | Bumpy<br>Drafie already                                                                                                                         |
| 175<br>390<br>615<br>830             | 935.5<br>927.5<br>920.0<br>913.0          | 29.6<br>29.2<br>27.9<br>27.5         | 23<br>63<br>23<br>22 | 50<br>50<br>52<br>54       | 20.8<br>20.5<br>20.0<br>20.2         | 18.2<br>17.8<br>17.5<br>17.6         | Drafts<br>Occasional gusts<br>Ups & Downs                                                                                                       |
| 1020<br>1500<br>2015<br>2495<br>3025 | 906.5<br>890.5<br>873.5<br>858.0<br>841.5 | 26.9<br>25.4<br>23.6<br>22.1<br>20.6 | 22                   | 56<br>67<br>79<br>80<br>84 | 20.4<br>22.0<br>23.2<br>21.4<br>20.6 | 17.8<br>19.0<br>19.0<br>18.6<br>18.0 | Negative G acceleration<br>Bumpy<br>Now under clouds, humpy                                                                                     |
| 3515<br>4025<br>5035<br>6045<br>7065 | 826.0<br>810.5<br>780.0<br>750.5<br>721.5 | 19.0<br>17.6<br>16.4<br>14.6<br>11.7 | 22<br>22             | 93<br>98<br>72<br>75<br>81 | 20.7<br>19.9<br>13.7<br>12.6<br>11.3 | 18.0<br>17.4<br>11.6<br>10.4<br>8.7  | Wobhly<br>Dase of clouds just above<br>Cloud haze at 4800 ft<br>Cht tops 5000-5500 ft<br>Deck Ac est 1000' above<br>Let musture content in clds |
| 290<br>70                            | 931.0<br>938.5                            | 30,1<br>31,0                         | 22<br>23             | 50<br>49                   | 21.6<br>22.0                         | 18.7<br>19-0                         | Bumps at 300'<br>Bumpy Obsr P. II.                                                                                                              |

Table 13.1 (Continued)

| F'I                                          | ELD TES                                            | T NO. 28                                     | j<br>                      |                                  | 3 AUGU                                       | ST 1956                                     | 0000 (ST                                                                                  |
|----------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------|----------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|
| Z <sub>p</sub><br>(ft)                       | р<br>(mb)                                          | т<br>(°С)                                    | #                          | 15H<br>(%)                       | e<br>(mb)                                    | т <sub>d</sub><br>("С)                      | Remark <i>s</i>                                                                           |
| 105<br>385<br>605<br>835                     | 934.5<br>927.0<br>919.5<br>911.5                   | 26,2<br>26,4<br>26,5<br>26,4<br>26,5         | 22<br>22<br>22<br>22<br>22 | 72<br>70<br>70<br>65             | 25 0<br>24.6<br>24.6<br>24.8<br>22.8         | 24.1<br>20.8<br>20.8<br>19.6                | Bumpy<br>Egt rain bumps<br>Humidity sluggish                                              |
| 1005<br>1505<br>1080<br>2490<br>2980         | 906.0<br>869.5<br>873.5<br>857.5<br>841.5          | 26.9<br>23.4<br>25.2<br>23.8<br>23.8<br>23.8 | 22<br>22                   | 61<br>52<br>51<br>52<br>51       | 20.0<br>18.2<br>16.7<br>15.5<br>15.4         | 17-7<br>16,0<br>14,7<br>13,6<br>15-4        | Ling to N<br>Ocal bump<br>Smooth                                                          |
| 3510<br>4030<br>5040<br>6050<br>7025<br>1475 | 925.0<br>809.0<br>779.0<br>749.5<br>722.0<br>800.5 | 23,0<br>21,4<br>19,1<br>15,6<br>12,8<br>26,4 |                            | 49<br>50<br>54<br>76<br>82<br>50 | 13.7<br>12.8<br>12.1<br>13.6<br>12.3<br>17.2 | 11,6<br>10,6<br>9,8<br>11,6<br>10,0<br>15,1 | Smooth<br>Strong S Wind<br>Freq Ing N<br>-3'C atabout 700' due R<br>High pass account wea |
| 175                                          | 934.0                                              | 27.4                                         | 22                         | 55                               | 20.4                                         |                                             | Obar P.H.                                                                                 |

# See Legend

No. 27 & 28

| F                                    | FIELD TEST NO. 29                         |                                      |                      |                            | 3 AUGUS                                   | IT 1956                              | 0200 CST                                                                       |  |  |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------|----------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|--|--|
| Zp<br>(ft)                           | P<br>(mb)                                 | T<br>(°C)                            | ŧ                    | RJI<br>(%)                 | e<br>(mb)                                 | <b>T</b> <sub>€</sub><br>(*_)        | Semarka                                                                        |  |  |
| 165<br>365<br>595<br>795<br>995      | 935.0<br>928.0<br>920.0<br>913.5<br>906.5 | 27.4<br>26.8<br>26.5<br>25.9<br>26.0 | 22<br>22<br>12<br>22 | 50<br>50<br>50<br>49<br>50 | <b>18.4</b><br><b>17.</b><br>16.5<br>16.7 | 16,2<br>15,6<br>15,5<br>14,5<br>14,7 | Custs<br>Accelerations felt                                                    |  |  |
| 1475<br>2000<br>2470<br>3010<br>3490 | 890.5<br>873.5<br>858.5<br>841.0<br>826.0 | 26.2<br>25.8<br>24.2<br>22.7<br>21.5 | 32                   | 45<br>45<br>45<br>46<br>47 | 15.3<br>15.0<br>13.9<br>12.6<br>12.1      | 13.4<br>13.0<br>11.8<br>10.4<br>9.9  | Smoother (th), E.S. SW<br>Smooth                                               |  |  |
| 4000<br>965                          | 810.5<br>907.5                            | 19.8<br>26.2                         | 32                   | 49<br>48                   | 11.3                                      | 8.8<br>14.3                          | Ram encounterest<br>approaching therm<br>Bumps at 76%<br>No low same Obser P f |  |  |
|                                      |                                           |                                      |                      |                            |                                           |                                      |                                                                                |  |  |

Table 13.1 (Continued)

| F                                     | IELD TES                                  | ξī, <sup>1</sup> . 0. 3              | ló                   | 1<br>1<br>1                | AUGUS                                | T 1956                               | 1300 CST                                                                                                                               |           |
|---------------------------------------|-------------------------------------------|--------------------------------------|----------------------|----------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>(fi)                | P<br>(mb)                                 | T<br>(C)                             | •                    | R11<br>(%)                 | r<br>(mb)                            | T <sub>d</sub><br>(°C)               | Remarks                                                                                                                                |           |
| 7,5                                   | 998 Q                                     | 31.8                                 | 23                   | 42                         | 19.8                                 | 17.3                                 | Rough                                                                                                                                  | Ober F.H. |
| 175<br>375<br>625<br>859<br>995       | 905.0<br>928.0<br>919.5<br>912.0<br>907.0 | 31.4<br>30.5<br>30.0<br>29.4<br>28.6 | 23<br>22<br>23<br>53 | 43<br>45<br>46<br>50<br>47 | 19,7<br>20.2<br>19,5<br>20,7<br>18,5 | 17.2<br>17.7<br>17.1<br>18.0<br>16.2 | Bumpy<br>Drafts<br>Drafts<br>Drafts                                                                                                    |           |
| 1465<br>2030<br>2505<br>30 <b>2</b> 0 | 891,5<br>873,0<br>857,5<br>841,0          | 27,4<br>25,7<br>23,9<br>22,5         | 12<br>22<br>22<br>12 | 50<br>54<br>61<br>64       | 15,4<br>18,2<br>18,3<br>17,8         | 16.2<br>16.0<br>16.1<br>16.7         | Occasional light Samps<br>Brotts                                                                                                       |           |
| 3525<br>4016<br>5060<br>6050<br>7105  | 825.5<br>819.6<br>779.6<br>750.0<br>720.0 |                                      | 22                   | 72<br>76<br>83<br>64<br>76 | 17,8<br>17,0<br>15,7<br>11,0<br>10,8 | 15.7<br>15.0<br>13.7<br>8.4<br>8.1   | Wallows<br>Occisional bump<br>(At proaching base level at<br>5500) Edge of FrCu<br>Base elds 6000' tops 7000'<br>No level page account |           |
|                                       |                                           |                                      |                      |                            |                                      |                                      | of boom oscillation                                                                                                                    |           |

# See Legend

No. 29 & 30

# **Best Available Copy**

| V                                                                                                                     | IELD TES                                                                                                                      | T NO. 3                                                                                                                              | 1  | r: •)                                                                                                          | 12 AUGL                                                                                                                      | IST 1956                                                                                                                       | 0300 CST                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Z <sub>p</sub><br>(ft)                                                                                                | P<br>(mb)                                                                                                                     | Т<br>(°С)                                                                                                                            | #  | 165<br>(%)                                                                                                     | 0<br>(mb)                                                                                                                    | т <sub>d</sub><br>(°С)                                                                                                         | Rem <b>arks</b>                                                                                               |
| 165<br>385<br>605<br>810<br>975<br>1475<br>2000<br>2695<br>3470<br>4600<br>5010<br>6010<br>6010<br>6010<br>875<br>155 | 936.5<br>929.0<br>921.5<br>914.5<br>909.0<br>892.5<br>875.0<br>858.5<br>843.0<br>628.5<br>812.9<br>784.5<br>71<br>79<br>812.9 | 19.1<br>21.1<br>22.4<br>22.9<br>23.0<br>23.0<br>22.6<br>21.5<br>20.6<br>19.8<br>18.4<br>17.2<br>16.2<br>14.2<br>11.5<br>22.1<br>31.2 | 32 | 84<br>78<br>74<br>72<br>58<br>54<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53 | 21,3<br>21,6<br>20,8<br>20,4<br>16,7<br>15,0<br>13,8<br>13,1<br>13,5<br>11,2<br>39,7<br>10,2<br>12,1<br>21,2<br>20,9<br>21,5 | 18.5<br>18.7<br>18.1<br>17.8<br>14.7<br>13.0<br>11.9<br>11.0<br>10.2<br>8.7<br>7.3<br>9.0<br>7.3<br>9.8<br>8.7<br>18.2<br>18.0 | Buraps ling N & NE<br>Let inube pirop<br>Very light turbe<br>Ling E<br>Light turbe at 3500<br>Bumpy Obsr P.H. |
| !<br>!<br>!                                                                                                           |                                                                                                                               | ;                                                                                                                                    |    |                                                                                                                |                                                                                                                              |                                                                                                                                |                                                                                                               |

| F                                    | TELD TES                                  | I NO. 38                             | i  |                            | 12 AUGU                              | IST 1956                           | 0500 <b>CS</b> T                                                               |           |
|--------------------------------------|-------------------------------------------|--------------------------------------|----|----------------------------|--------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>(ft)               | р<br>(та:                                 | т<br>{°С;                            | A  | 1131<br>(P)                | e<br>(mb)                            | T <sub>d</sub><br>(°C)             | Remarks                                                                        |           |
| 170<br>380<br>530<br>820             | 936.0<br>920.6<br>920.7<br>920.7<br>914.0 | 21.2<br>21.1<br>22.6<br>25.2<br>23.3 | 33 | 85<br>78                   | 21.5<br>21.5<br>20.7<br>12.6         | 19.6<br>18.6<br>17.6<br>15.5       | Pirops sfe the same                                                            |           |
| 1010<br>1510<br>2015<br>2495<br>3005 | 907.5<br>891.0<br>874.5<br>859.0<br>843.0 | 23.6<br>24.0<br>22.4<br>21.7<br>20.0 |    | 40<br>42<br>48<br>44<br>47 | 14.3<br>12.6<br>13.2<br>11.8<br>10.9 | 12-3<br>10.4<br>11.1<br>9.4<br>8.2 |                                                                                |           |
| 3515<br>4015<br>5025<br>6035<br>7040 | 827.0<br>811.5<br>781.0<br>751.5<br>723.5 | 18.6<br>17.8<br>16.5<br>13.9<br>11.2 |    | 50<br>59<br>51<br>87<br>89 | 10.7<br>12.3<br>5.7<br>14.0<br>12.0  | 8.0<br>10.0<br>6.5<br>12.0<br>9.7  | Light turbe<br>R H jump about 5200'<br>Pireps Jgt turbe<br>R Wdrog about 5600' |           |
| 990<br>30                            | 908.5<br>941.0                            | 22.5<br>20.5                         | 82 | 63<br>89                   | 17.4<br>21.8                         | 15.3<br>18.9                       |                                                                                | Obsr J.D. |

# See Legend

No. 37 & 38

| ŀ                                                                | TELD TES                                                                      | ST NO.                                                                | 39                             |                                                    | 13 AUGU                                                                      | ST 1956                                                           | 2200 CST                                                                                                                                                         |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z <sub>p</sub><br>(ft)                                           | P<br>(mb)                                                                     | ጥ<br>(°C)                                                             | Ħ                              | 1211<br>(%)                                        | e<br>(mb)                                                                    | Т <sub>đ</sub><br>(°С)                                            | Remarks                                                                                                                                                          |
| 190<br>420<br>620<br>850<br>1000<br>1525<br>2045<br>2515<br>3035 | 941.5<br>933.5<br>927.0<br>919.0<br>912.(<br>096.5<br>879.0<br>864.0<br>847.5 | 20,2<br>27,1<br>27,3<br>27,3<br>26,4<br>\$5,7<br>24,3<br>23,0<br>21,8 | 12<br>63<br>22<br>22<br><br>22 | 44<br>43<br>42<br>40<br>40<br>39<br>39<br>39<br>39 | 15.3<br>15.8<br>15.3<br>14.4<br>13.8<br>12.8<br>11.8<br>11.8<br>11.0<br>11.0 | 13.4<br>13.8<br>13.3<br>12.4<br>11.8<br>10.6<br>9.4<br>8.4<br>8.3 | Ocnl bump at 300'<br>Smooth<br>One bump, ocnl draft<br>Smooth                                                                                                    |
| 3525<br>4040<br>5040<br>6070<br>7090<br>1009<br>205              | 832.0<br>816.0<br>785.5<br>755.5<br>726.5<br>914.0<br>941.0                   | 20.0<br>19.3<br>16.3<br>14.3<br>11.3<br>26.4<br>25.0                  | 62                             | 47<br>50<br>55<br>67<br>72<br>40<br>33             | 11.0<br>10.6<br>10.3<br>11.1<br>9.8<br>13.7<br>14.2                          | 8.3<br>7.9<br>7.4<br>6.5<br>0.7<br>11.6<br>12.2                   | Pireps added power needed<br>Several humps, igt turbe<br>Some bases at 5500, turbe<br>Clds above, turbe, drafts<br>Bumps at 500<br>Turbe noted thruout Obsr P.H. |

Table 13.1 (Continued)

| F                                                                                                      | IELD TES                                                                                                                                     | rt NO. 40                                                                                                            | )                                            |                                                                                        | 14 AUGI                                                                                                                                              | IST 1956                                                                                                       | UÚ30 CST                                                                                                                                              |             |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Z <sub>p</sub><br>(ft)                                                                                 | p<br>(mb)                                                                                                                                    | т<br>(°С)                                                                                                            |                                              | RH<br>(%)                                                                              | e<br>(mb)                                                                                                                                            | т <sub>d</sub><br>(°С)                                                                                         | Remarks                                                                                                                                               |             |
| 150<br>365<br>610<br>810<br>1000<br>1510<br>2010<br>2010<br>2010<br>2010<br>2000<br>3000<br>3000<br>30 | 942.5<br>074.5<br>926.5<br>919.5<br>913.5<br>806.5<br>880.0<br>864.0<br>848.0<br>832.5<br>817.0<br>785.5<br>756.0<br>726.5<br>914.0<br>942.5 | 26.4<br>27 2<br>27.0<br>27.3<br>25.5<br>24.3<br>22.7<br>21.2<br>20.0<br>18.4<br>16.3<br>14.1<br>11.3<br>26.4<br>24.4 | 52<br>22<br>22<br>22<br>22<br>22<br>22<br>32 | 44<br>44<br>43<br>43<br>45<br>45<br>47<br>47<br>47<br>48<br>63<br>66<br>71<br>47<br>47 | 15. J<br>15. 3<br>16. 2<br>15. 6<br>14. 8<br>13. 2<br>13. 2<br>14. 8<br>13. 2<br>11. 8<br>11. 2<br>10. 2<br>11. 8<br>10. 8<br>9. 6<br>16. 4<br>14. 4 | 13.1<br>13.8<br>14.2<br>13.7<br>12.8<br>11.7<br>11.1<br>9.4<br>8.7<br>7.2<br>9.4<br>8.1<br>6.4<br>14.4<br>12.4 | No turbe noted<br>Pireps strong wind<br>Pireps less power rqrd<br>Pireps ditto<br>Ocal drafts<br>Lgt turbe 5600 ft<br>Bumps, wallowy<br>Turbe at 300' | Obsr P.H.   |
| # See 1.                                                                                               | ogand                                                                                                                                        |                                                                                                                      |                                              | <br> <br>  <u></u>                                                                     |                                                                                                                                                      |                                                                                                                |                                                                                                                                                       | No. 39 & 40 |

| F                                                          | IELD TES                                                            | st no. 🧃                                                              | 11       |                                               | 14 AUGU                                                                                          | ST 1956                                         | 0300 CST                                                   |           |
|------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|----------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-----------|
| 2 <sub>p</sub><br>(f1)                                     | p<br>(nib)                                                          | т<br>(°С)                                                             | Ħ        | RH<br>(%)                                     | e<br>(mb)                                                                                        | <sup>т</sup> d<br>('С)                          | Remarks                                                    |           |
| 160<br>385<br>615<br>825<br>985                            | 941.5<br>934.0<br>926.0<br>919.0<br>913.5                           | 24 4<br>26.2<br>27.0<br>26.7<br>26.7                                  | 32       | 49<br>45<br>43<br>43<br>42                    | 15.0<br>15.3<br>15.4<br>15.1<br>14.7                                                             | 13.0<br>13.3<br>13.4<br>13.1<br>12.7            | Gust <b>s</b><br>Genl gast<br>Ling N                       |           |
| 1485<br>2005<br>2500<br>3030<br>3520                       | 897.0<br>879.5<br>863.5<br>845.5<br>831.5                           | $\begin{array}{c} 25 & 5 \\ 24.9 \\ 23.6 \\ 22.7 \\ 21.8 \end{array}$ | 22<br>22 | 41<br>41<br>42<br>42<br>46                    | $   \begin{array}{r}     13.4 \\     12.9 \\     12.4 \\     11.7 \\     11.9 \\   \end{array} $ | 11.3<br>10.7<br>10.2<br>9.3<br>9.6              | 3 ltng cells N & NE                                        |           |
| 4025<br>4500<br>5025<br>6060<br><b>7065</b><br>1005<br>175 | 815.5<br>801.0<br>785.5<br>755.0<br>7 <b>26.5</b><br>013.0<br>941.0 | 20,3<br>19,1<br>17,8<br>15,2<br>12,3<br>26,4<br>23,8                  |          | 50<br>53<br>55<br>67<br><b>65</b><br>40<br>50 | 11.9<br>11.8<br>11.3<br>11.8<br><b>9.5</b><br>13.7<br>14.8                                       | 9.6<br>9.4<br>8.8<br>9.4<br>6.2<br>11.7<br>12.8 | Oenl draft<br>Bumps<br>Lgt turbe around 2000'<br>Sie turbe | Obsr P.H. |

Table 13.1 (Continued)

| F                                    | IELD TES                                                        | T NO. 4                              | 2        | 1                          | 4 AUGUS                                                          | ST 1956                                                                                                        | 0500 CST                                  |
|--------------------------------------|-----------------------------------------------------------------|--------------------------------------|----------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                                       | т<br>("С)                            | ,        | RH<br>(%)                  | e<br>(mb)                                                        | т <sub>d</sub><br>(°С)                                                                                         | Remarks                                   |
| 180<br>410<br>650<br>840             | 940,5<br>932,5<br>924,5<br>918,0                                | 22.6<br>23.2<br>26.1<br>27.0         | 23<br>22 | 52<br>49<br>42<br>37       | 14.4<br>14.0<br>14.2<br>13.1                                     | 12,4<br>12,0<br>12,2<br>11,0                                                                                   |                                           |
| 1040<br>1540<br>2025<br>2525<br>3025 | 911.0<br>894.5<br>878.5<br>862,5<br>846,5                       | 26,7<br>25,8<br>24-3<br>24,0<br>23,4 | 22<br>22 | 39<br>39<br>42<br>39<br>41 | 13.6<br>12.9<br>12.8<br>11.6<br>11.8                             | $     \begin{array}{r}       11.6 \\       10.8 \\       10.6 \\       9.2 \\       9.5 \\     \end{array}   $ |                                           |
| 3535<br>4045<br>5065<br>6055<br>7610 | $\begin{array}{r} 830.5\\814.5\\784.0\\754.5\\727.5\end{array}$ | 21.6<br>30.3<br>17.2<br>15.6<br>12.7 | 32<br>   | 43<br>46<br>64<br>69<br>60 | $ \begin{array}{c} 11,0\\ 10,9\\ 12,7\\ 12,3\\ 9,0 \end{array} $ | 8.4<br>8.2<br>10.5<br>19.1<br>5.4                                                                              | L <sub>i</sub> gt turbe<br>Turbe<br>Turbe |
| 1000<br>60                           | 01 <b>2.5</b><br>944.5                                          | 25.9<br>22.3                         |          | 42<br>49                   | 14,0<br>12,4                                                     | 12.0<br>10,2                                                                                                   | Obse 4, D,                                |
|                                      |                                                                 |                                      |          |                            |                                                                  |                                                                                                                |                                           |

-----

-----

----

# See Legend

\_\_\_\_

ļ

No. 41 & 42

:

| F                                    | ELD TES                                                 | T NO. 4:                             | }<br>}               |                            | 15 AUGU                         | IST 1956                             | 1200 CST                                                              |
|--------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------|----------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                               | Т<br>(°С)                            |                      | <u>RU</u><br>(%)           | e<br>(mb)                       | т <sub>d</sub><br>(°С)               | Roma rks                                                              |
| 50<br>80                             | 943.5<br>942.5                                          | 31.7<br>31.7                         | 22<br>23             | 33<br>31                   | 15.4<br>15.4                    | 13.4<br>13.3                         | (Tempadjustment too sluggish,<br>accuracy <u>F</u> 0.3 this run only) |
| 190<br>380<br>600<br>820             | 038.5<br>932.0<br>924.5<br>917.0<br>910.5               | 31.2<br>30.4<br>29.7<br>29.0<br>28.4 | 22<br>22<br>12<br>82 | 33<br>35<br>33<br>36<br>36 | 15.1<br>15.4<br>14.0<br>14.6    | 13.2<br>13.4<br>12.0<br>12.6<br>12.0 | Bumpy<br>Drafts ocn1<br>Hump<br>Draft<br>Smooth over cldy grd         |
| 2005<br>2515<br>3015                 | 878.0<br>861.5<br>845.5                                 | 27.4<br>25.8<br>25.0<br>23.7         | 22<br>23<br>22       | 37<br>35<br>30<br>25       | 13.3<br>11.8<br>9.6<br>7.3      | 11, 2<br>9, 5<br>6, 4<br>2, 5        | Oralt<br>Wallowy<br>Gosty<br>Small ocnt gusts                         |
| 3525<br>4015<br>5030<br>6035<br>7065 | 829,5<br><b>814,0</b><br><b>783,5</b><br>754,0<br>725,0 | 23.2<br>21.8<br>18.7<br>17.2<br>14.8 | 13                   | 25<br>28<br>41<br>50<br>50 | 7.1<br>7.4<br>3.9<br>9.9<br>8.5 | 2, 1<br>2, 6<br>5, 3<br>6, 8<br>4, 7 | Relatively smooth                                                     |
| 990<br>75                            | 911.5<br>942.5                                          | 29.1<br>33.6                         | 12<br>22             | 35<br>33                   | 14.3<br>17.3                    | 12.3<br>15.2                         | Bouncy                                                                |

| F                                    | IELD TES                                  | T NO. 44                             |                      |                            | 15 AUGI                             | JET 1950                                                                          | 1400 CST                                                                    |  |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------|----------------------------|-------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | т<br>(°С)                            | *                    | RH<br>(%)                  | e<br>(mb)                           | т <sub>d</sub><br>("С)                                                            | Remarks                                                                     |  |
| 50<br>95                             | 942.5<br>941.0                            | 34.3<br>34.2                         | 2:2                  | 29<br>29                   | 15.6<br>15.5                        | 13 A<br>13,5                                                                      | (Temp amp closely adjusted,<br>eqp osc., 0.3 'C per 15 sec<br>at this femp) |  |
| 180<br>380<br>640<br>850             | 938.0<br>931.0<br>922.0<br>915.0          | 33,8<br>32,8<br>32,1<br>31,6         | 24<br>22<br>13<br>22 | 29<br>29<br>29<br>29<br>29 | 15, 1<br>14, 3<br>13, 9<br>13, 6    | $   \begin{array}{r}     13.1 \\     12.3 \\     11.9 \\     11.5   \end{array} $ | (Jillers at high temp.)                                                     |  |
| 1000<br>1540<br>2015<br>2515<br>2025 | 910.0<br>892.0<br>870.0<br>860.5          | 30.6<br>29.3<br>37.6<br>26.2         | 22<br>22             | 29<br>33<br>33<br>36       | 12.7<br>13.6<br>12.4<br>12.2        | 10-5<br>11.6<br>10.2<br>9.9<br>9.4                                                |                                                                             |  |
| 3615<br>4055<br>5085<br>6065<br>7070 | 829.0<br>812.0<br>781.5<br>752.5<br>724.0 | 22.8<br>21.2<br>19.1<br>17.0<br>14.0 | 22<br>32             | 39<br>30<br>47<br>50<br>63 | 10.8<br>0.3<br>10.4<br>10.0<br>i0.2 | 0.4<br>0.8<br>7.5<br>7.0<br>7.3                                                   | Outer + 9.1°C at this temp)                                                 |  |
| 005<br>70                            | 910.5<br>942.0                            | 30.9<br>34.3                         | 33                   | 29<br>26                   | 13.0<br>13.8                        | 10.8<br>11.8                                                                      | Height estimated Obsr P.H.                                                  |  |
|                                      |                                           |                                      |                      |                            |                                     |                                                                                   |                                                                             |  |

# See Legend

No. 43 & 14

| FI                                   | ELD TES                                   | T NO. 45                                     |                                  |                                                | 5 AUGU                               | ST 1956                              | 1700 CST                                                |           |
|--------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------|-----------|
| Zp<br>(ft)                           | P<br>(nib)                                | т<br>(°С)                                    | #                                | <b>R</b> H<br>(%)                              | e<br>(mb)                            | 'T <sub>d</sub><br>(°C)              | Remarks                                                 |           |
| 75<br>190<br>380<br>620<br>835       | 938.0<br>934.0<br>927.5<br>919.5<br>912.0 | 35.3<br>34.0<br>33.9<br>33.3<br>32.4         | 22<br>23<br>22<br>22<br>22<br>22 | 20<br>20<br>29<br>29<br>29                     | 16,4<br>15,9<br>15,1<br>14,8<br>14,1 | 14.4<br>13.9<br>13.1<br>12.8<br>12.1 | Fqt bumps<br>Ocn1 drafts<br>Drafts<br>Drafts            | Obsr P.H. |
| 1020<br>1525<br>2035<br>2400<br>3025 | 900.0<br>889.0<br>872.5<br>857.5<br>840.5 | 32.0<br>30.1<br>28.7<br>27.1<br>25.6         | 22<br>62<br>22                   | 31<br>31<br>33<br>36<br>35                     | 14.8<br>13.3<br>13.1<br>12.8<br>11.7 | 12.8<br>11.2<br>11.0<br>10.6<br>9.3  | Wallow<br>Ligt guets                                    |           |
| 4025<br>5045<br>6055<br>7065         | 809.5<br>779.5<br>749.5<br>721.0          | 24.0<br>22.5<br>19.7<br>17.0<br>14.2<br>31.6 | 33                               | 30<br>30<br><b>46</b><br><b>52</b><br>01<br>28 | 11.4<br>10.7<br>10.5<br>10.2<br>10.1 | 8.9<br>8.0<br>7.7<br>7.3<br>7.1      | Brkn elds 2000' above<br>Bumpy about 1200<br>Steady run |           |
| 100                                  | 937.0                                     | 35.0                                         | 63                               | 25                                             | 14.4                                 | 12.4                                 | Gain 30' on traverse;<br>gusty                          |           |

Table 13.1 (Continued)

| F                                                                | IELD TES                                                                      | ST NO. 4                                                             | 6                        |                                                    | 15 AUGU                                                                      | ST 1956                                                              | 1840 CST                                                                                              |           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|
| z <sub>p</sub><br>(ft)                                           | P<br>(mb)                                                                     | T<br>(`C)                                                            |                          | ास<br>(%)                                          | c<br>(mb)                                                                    | Т <sub>d</sub><br>("С)                                               | Remarks                                                                                               |           |
| 45<br>90                                                         | 937,5<br>936,0                                                                | 34.5<br>34.0                                                         | 22<br>22                 | 29<br>25                                           | 15.7<br>13.6                                                                 | 13.7<br>11.6                                                         | Bumpy flight                                                                                          |           |
| 180<br>400<br>620<br>840<br>1020<br>1500<br>2035<br>2515<br>3025 | 933.0<br>925.5<br>918.0<br>910.5<br>904.5<br>888.5<br>871.0<br>855.5<br>839.5 | 34.0<br>33.4<br>32.6<br>31.6<br>31.2<br>29.8<br>28.1<br>26.8<br>25.0 | 22<br>63<br>22<br>62<br> | 25<br>25<br>20<br>29<br>20<br>33<br>35<br>39<br>30 | 13.7<br>13.2<br>14.3<br>13.4<br>13.1<br>13.9<br>13.4<br>13.8<br>13.8<br>13.1 | 11.6<br>11.1<br>12.3<br>11.3<br>11.0<br>11.0<br>10.4<br>11.7<br>11.0 |                                                                                                       |           |
| 3535<br>4035<br>5065<br>6075<br>7080<br>1010<br>60               | 823.5<br>808.0<br>777.5<br>749.0<br>719.5<br>905.0<br>937.0                   | 24.4<br>22.8<br>20,1<br>17,0<br>14.4<br>30.8<br>32.8                 | 32<br>23                 | 41<br>41<br>55<br>01<br>20<br>23                   | 12.6<br>11.4<br>10.8<br>10.9<br>10.2<br>12.8<br>12.8                         | 10.4<br>8.9<br>8.1<br>8.2<br>7.3<br>10.6<br>10.6                     | (Cld to cld ling,<br>strong ling W & N,<br>crew felt static shock<br>on final approach)<br>Sprinkling | Obar J.D. |

# See Legend

No. 45 & 40

| F                                                  | IELD TES                                                    | 1 NO. 47                                                                                                     | ·              |                                        | 20 AUG                                         | UST 1956                                                       | 1000 CST                                                     |
|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| Z <sub>p</sub><br>(it)                             | P<br>(mb)                                                   | Т<br>(°С)                                                                                                    | Ħ              | Rei<br>(%)                             | с.<br>(mb)                                     | т <sub>d</sub><br>(°С)                                         | llema rkø                                                    |
| 50<br>80                                           | 953,5<br>952,5                                              | $\begin{array}{c} 15.5\\15.5\end{array}$                                                                     | 23             | 53<br>54                               | 9.9<br>9.7                                     | 6.8<br>6,6                                                     |                                                              |
| 180<br>400<br>640<br>870                           | 949.0<br>941.0<br>933.0<br>925.0                            | 15.2<br>14.7<br>13.8<br>13.3                                                                                 |                | 55<br>55<br>60<br>63                   | 9.7<br>9.4<br>9.7<br>9.8                       | $\begin{array}{c} 6, 6 \\ 6, 1 \\ 6, 5 \\ 6, 7 \end{array}$    | Bumps<br>Bumps                                               |
| 1010<br>1520<br>2025<br>2535<br>3025               | 920.5<br>903.0<br>886.5<br>869.5<br>854.0                   | $     \begin{array}{r}       12.7 \\       11.6 \\       10.5 \\       9.1 \\       8.4 \\     \end{array} $ |                | 65<br>58<br>62<br>66<br>76             | 9.7<br>8.1<br>8.1<br>7.8<br>8.5                | 6.5<br>3.9<br>3.9<br>3.4<br>4.7                                |                                                              |
| 3525<br>4025<br>5055<br>6055<br>7080<br>1006<br>40 | 841.5<br>822.5<br>791.5<br>762.0<br>732.5<br>921.0<br>953.5 | 7.0<br>5.9<br>3.6<br>1.7<br>0.2<br>12.8<br>16.5                                                              | 82<br>32<br>32 | 80<br>70<br>71<br>71<br>30<br>64<br>52 | 8.2<br>6.7<br>5.7<br>5.0<br>5.7<br>9.7<br>10.0 | <b>4.1</b><br><b>1.2</b><br>-0.8<br>-2.4<br>-0.9<br>6.5<br>7.0 | Lwt setd eld at 4500<br>Let turbe at 2460<br>Turbe Obsy J.D. |
|                                                    |                                                             |                                                                                                              |                |                                        |                                                |                                                                |                                                              |

| F                                    | IELD TES                                  | T NO 4                           | 35       |                            | 20 AUGI                         | JST 1956                         | 1260 <b>CST</b>           |
|--------------------------------------|-------------------------------------------|----------------------------------|----------|----------------------------|---------------------------------|----------------------------------|---------------------------|
| 2p<br>60                             | p<br>(mb)                                 | Т<br>( <sup>°</sup> С)           | #        | пн<br>(%)                  | e<br>(mb)                       | т <sub>d</sub><br>(°С)           | Remarka                   |
| 50<br>85                             | 951.5                                     | 18.0<br>27.4                     | 32<br>22 | 49<br>-46                  | 10.3<br>9.2                     | 7.4<br>5.7                       |                           |
| 175<br>385<br>625<br>835             | 948 5<br>941,5<br>933,0<br>926,0          | 17.5<br>16.9<br>16.2<br>15.5     | 22       | 48<br>49<br>51<br>31       | 9,8<br>9,6<br>9,5<br>9,2        | 6.8<br>6.3<br>6.3<br>5.8         |                           |
| 1015<br>1525<br>2520<br>3020         | 920.9<br>902.5<br>870.0<br>854.0          | 15.0<br>13.6<br>10.8<br>9.3      |          | 53<br>62<br>66<br>77       | 9.2<br>9.8<br>8.7<br>9.2        | 5.8<br>6.7<br>5.0<br>5.8         | Turbe<br>Hvy turbe        |
| 3510<br>4030<br>5040<br>6040<br>7075 | 838.5<br>822.0<br>791.5<br>762.0<br>732.5 | 8.0<br>6.5<br>1.3<br>2.2<br>-0.2 | 32       | 80<br>83<br>80<br>90<br>95 | 8,8<br>8,3<br>7,5<br>6,6<br>6,3 | 5.1<br>4.0<br>2.8<br>1.0<br>-0.5 | Cloud layer<br>4600-5400' |
| 095<br>65                            | 920.5<br>952.5                            | 15.1<br>18,6                     | 36<br>22 | 56<br>49                   | <b>9.7</b><br><b>1</b> 0.6      | 6.6<br>7,9                       | Turbe Obsr J.D.           |
|                                      |                                           |                                  |          |                            |                                 |                                  |                           |

# See Legend

No. 47 & 485

| F                                    | (ELD TES                                                | T NO. 4                             | HK       |                                   | 21 AUGU                      | ST 1956                           | 0900 CST                                                            |  |
|--------------------------------------|---------------------------------------------------------|-------------------------------------|----------|-----------------------------------|------------------------------|-----------------------------------|---------------------------------------------------------------------|--|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                               | т<br>("С)                           | H        | нн<br>(%)                         | e<br>(mb)                    | т <sub>d</sub><br>("С)            | Remarka                                                             |  |
| 75                                   | 944.5                                                   | 16.2                                |          | 74                                | 13.9                         | 11.9                              | (T eq response rate checked)<br>Bouncy – sudden drafts              |  |
| 185<br>405<br>645<br>830             | 940.5<br>933.0<br>925.0<br>918.5                        | 15.8<br>15.2<br>14 5<br>13.8        | 22       | 72<br>75<br>79<br>81              | 13.2<br>12.2<br>13.3<br>13.1 | 11,0<br>11,1<br>11,2<br>11,0      | Bouncy<br>Continual (urbc                                           |  |
| 1015<br>1595                         | 912.5<br>895.5                                          | 13.4<br>13.3                        | 28       | 82<br>80                          | 12.9<br>12.4                 | 10 7<br>10 2                      | Less turbe<br>Inversion osc + 0.6°C<br>in half mile                 |  |
| 2040<br>2520<br>3050                 | 878.5<br>863 0<br>846.0                                 | 14.2<br>13.0<br>11.7                |          | 65<br>69<br>65                    | 10.8<br>10.5<br>9.2          | 8,1<br>7,7<br>5,8                 | Smooth ocn1 bump<br>Smooth                                          |  |
| 3540<br>4050<br>5050<br>6060<br>7095 | <b>830.5</b><br><b>815.0</b><br>784.5<br>755.0<br>725.5 | 11.3<br>10.8<br>11.7<br>10.9<br>9.1 |          | <b>60</b><br>47<br>39<br>36<br>40 | 8.4<br>6.7<br>5.1<br>4.6     | 4,1<br>10<br>-1,5<br>-2,2<br>-3,4 | (Vsby exceptional. Haze)<br>(Dark to S)<br>(White streak E horizon) |  |
| 995<br>95                            | 913.0<br>944.0                                          | 14 2                                | 34<br>32 | 81<br>60                          | 13.3<br>13.3                 | 11.2<br>11.2                      | Bunips at 1509", temp drops<br>Gusts Obsr P.H.                      |  |

| F                                            | IELD TES                                  | T NO. 4                                      | }              |                            | 21 AUGI                                                               | ST 1956                            | 1100 CST                                         |
|----------------------------------------------|-------------------------------------------|----------------------------------------------|----------------|----------------------------|-----------------------------------------------------------------------|------------------------------------|--------------------------------------------------|
| z <sub>p</sub><br>(ii)                       | P<br>(mb)                                 | т<br>(°С)                                    | #              | RH<br>(%)                  | (mb)                                                                  | Т <sub>і</sub><br>("С)             | Remarks                                          |
| 75                                           | 943,0                                     | 20.5                                         | 23             | 49                         | 11.0                                                                  | 9,5                                | (T og response) 9.1 C/10<br>sec) Stde gust felt  |
| 165<br>375<br>615<br>835<br>995              | 940,0<br>953,0<br>924,5<br>917,0<br>912,0 | 19.9<br>  19.6<br>  18.5<br>  18.1<br>  17.5 | 22             | 50<br>50<br>52<br>55<br>58 | $ \begin{array}{c c} 11.7\\ 11.5\\ 11.3\\ 11.7\\ 11.8\\ \end{array} $ | 9.3<br>9.0<br>8.8<br>9.2<br>9.4    | Up & downs<br>Bumpy<br>Drafts                    |
| 1505<br>2-00<br>2510<br>3040                 | 895.0<br>878.5<br>862.0<br>845.0          | $16.3 \\ 15.6 \\ 14.5 \\ 14.2$               | 22<br>22<br>32 | 64<br>64<br>62<br>70       | 12.1<br>11.6<br>10.4<br>11.3                                          | 9.8<br>9.1<br>7.6<br>9.0           | Sharp gusts, wallowy<br>Lgt drafts felt to 3500' |
| 35 <b>20</b><br>4030<br>5030<br>6060<br>7075 | 830.0<br>814.0<br>784.0<br>754.0<br>725.0 | 14.0<br>13.0<br>11.7<br>11.1<br>9.0          |                | 60<br>62<br>33<br>35<br>35 | 9,8<br>9,5<br>4,5<br>4,7<br>4,1                                       | 6,7<br>6,3<br>-3,5<br>-3,2<br>-4,8 | R H dip around 3800'<br>R H drop about 4800'     |
| 595<br>- <b>8</b> 5                          | 912.0<br>943.0                            | 18.4<br>21.9                                 | 34             | 60<br>49                   | 12.8<br>12.8                                                          | 10.7<br>10.6                       | Rough Obsr P.H.                                  |
|                                              |                                           |                                              |                |                            |                                                                       |                                    |                                                  |

# See Lepront

No. 48R & 49

| F                                    | IELD TES                                  | T NO. (                                      | 30                               |                                   | 21 AUGU                              | ST 1956                              | 1400 CST                   |
|--------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|----------------------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | т<br>(°С)                                    | Ħ                                | RH<br>(%)                         | e<br>(mb)                            | T <sub>d</sub><br>(°C)               | Remarks                    |
| 110<br>185<br>390<br>650<br>850      | 939.0<br>936.5<br>929.5<br>921.5<br>914.0 | 26.3<br>25.6<br>25.2<br>24.3<br>23.7         | 23<br>23<br>23<br>23<br>23<br>23 | 43<br>43<br>43<br>45<br>45        | 14.7<br>14.1<br>13.8<br>13.8<br>13.3 | 12,7<br>12,1<br>11.8<br>11.7<br>11.2 |                            |
| 1020<br>1530<br>2045<br>2535<br>3055 | 508.0<br>891.0<br>873.5<br>858.5<br>842.0 | 22.9<br>21.3<br>19.8<br>18.6<br>17.8         | 22<br>22<br>82                   | 46<br>52<br>54<br>52<br>36        | 13.0<br>(2.6<br>12.8<br>11.4<br>7.4  | 10.8<br>10.4<br>10.6<br>9.9<br>2.6   | Sharp temp drop            |
| 3555<br>4045<br>5055<br>6085<br>7040 | 826.0<br>811.0<br>780.5<br>750.5<br>723.5 | 16,8<br>15,4<br>1 <b>2,7</b><br>10,8<br>10,1 | 32<br>6 <b>2</b>                 | 36<br>38<br>38<br><b>35</b><br>29 | 0.9<br>0.7<br>5.6<br>4.6<br>3.6      | 1.7<br>1.4<br>-1.0<br>-3.4<br>-0.3   |                            |
| 1010<br>100                          | 908,5<br>939,5                            | $\frac{23.7}{27.8}$                          | 23                               | 45<br>36                          | $13.4 \\ 13.3$                       | 11,2<br>11,2                         | at 3400 turbe<br>Ober J.K. |

| F                                    | TELD TE                                   | ST NO.                               | 51                   |                            | 21 AUGU                              | ST 1956                           | 1530 CST                                                                     |           |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------|----------------------------|--------------------------------------|-----------------------------------|------------------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>(ít)               | P<br>(mb)                                 | т<br>(°С)                            | #                    | RII<br>(%)                 | e<br>(mb)                            | т <sub>d</sub><br>(°С)            | Remarks                                                                      |           |
| 75                                   | 936.0                                     | 30,5<br>27,4                         |                      | 39                         | 14.1                                 | 12,1                              | Yawing in cross wind                                                         |           |
| 175<br>365<br>615<br>805             | 935.5<br>929.0<br>920.5<br>914.0          | $27.4 \\ 26.8 \\ 26.4 \\ 25.7$       | 22<br>22<br>23<br>62 | 39<br>40<br>42<br>41       | 14.2<br>14.0<br>14.4<br>13.6         | 12.1<br>12.0<br>12.5<br>11.5      | Drafts, Pireps<br>Hard to hold El at 600<br>Wallows, bumps, drafts<br>Drafts |           |
| 1015<br>1525<br>1900<br>2520<br>3015 | 907.0<br>890.0<br>875.0<br>858.0<br>842.0 | 25.0<br>23.5<br>27.6<br>20.4<br>18.8 | 22                   | 42<br>43<br>45<br>46<br>47 | 13.3<br>12.5<br>11.7<br>11.2<br>10.2 | 11.2<br>10.2<br>9.4<br>8.6<br>7.3 | Hard to hold wings level                                                     |           |
| 3500<br>4015<br>5030<br>6035<br>6975 | 827.0<br>811.0<br>780.5<br>751.0<br>724.5 | 17,0<br>15,4<br>12,9<br>9,9<br>8,0   | 22                   | 50<br>68<br>71<br>80<br>50 | 9,9<br>12,0<br>10,8<br>10,0<br>5,5   | 6.8<br>6.8<br>8,1<br>7.0<br>-1.3  | Bumpy<br>Rocky like boat<br>Rocky<br>R H Response marked                     |           |
| 6500<br>1015<br>85                   | 737.8<br>907.0<br>939.5                   | 8.4<br>25.3<br>28.6                  |                      | 82<br>39<br>37             | 9,3<br>12,6<br>14,4                  | 5,9<br>10,4<br>12,4               | In clear (base at 6800')<br>In cload top drops 2°C                           | Obsr P.H. |
|                                      | 1                                         |                                      |                      |                            |                                      |                                   |                                                                              |           |

# See Legend

No. 50 & 51

| F                                                   | IELD TES                                  | 'l' NO. 5                            | 2                          |                            | 24 AUGU                            | ST 1956                           | 1115 CST                                                                                                                                   |           |
|-----------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|----------------------------|------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>(ft)                              | p<br>(mb)                                 | T<br>(°C)                            | *                          | RH<br>(%)                  | e<br>(mb)                          | 'Г <sub>d</sub><br>("С)           | Renarks                                                                                                                                    |           |
| 50                                                  | 950.5                                     | 22.9                                 | 23                         | 38                         | 10.5                               | 7.7                               |                                                                                                                                            |           |
| 115<br>175<br>385<br>630<br>825                     | 948.0<br>946.0<br>938.5<br>930.0<br>923.5 | 22.3<br>22.0<br>21.4<br>20.8<br>19.8 | 23<br>22<br>22<br>22<br>22 | 38<br>38<br>39<br>39<br>44 | 10.3<br>10.1<br>10.0<br>9.6<br>9.6 | 7.4<br>7.1<br>6.9<br>6.4<br>0.3   | Bumpy                                                                                                                                      |           |
| 1015<br>1515<br>2010<br>2535<br>3030                | 917.0<br>900.5<br>884.0<br>867.0<br>851.0 | 19.3<br>17.8<br>16.6<br>15.2<br>13.6 | 82                         | 42<br>47<br>45<br>47<br>50 | 9.5<br>9.6<br>8.5<br>8.2<br>7.0    | 6.2<br>6.4<br>4.6<br>. 4.0<br>4.5 | Drafts<br>Drafts                                                                                                                           |           |
| 3535<br>4 <b>030</b><br><b>5060</b><br>6060<br>7085 | 835.0<br>819.5<br>788.5<br>759.0<br>730.0 | 13.2<br>12.8<br>12.5<br>10.3<br>8.5  | 23<br>33                   | 47<br>50<br>70<br>75<br>60 | 7.1<br>7.4<br>10.3<br>9.6<br>6.8   | 2.1<br>2.7<br>7.4<br>6.4<br>1.4   | Undulations on traverse<br>Smooth R H change 4500'<br>Shallow Ac to S at<br>Top haze layer<br>Cold noted on descent,<br>Bunpy around 4000' |           |
| 1005<br>60                                          | 917.5<br>950.0                            | 19.5<br>23.1                         | 32<br>23                   | 42<br>35                   | 9.6                                | 7.4                               | Pireps updraft, also<br>recorded                                                                                                           | Obsr P.H. |

| F                                                                                | IELD TES                                                                                                | T NO. 53                                                             | }  |                                                                       | 24 AUGI                                                                 | ST 1956                                                                   | 2000 <b>CST</b>                                              |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----|-----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|
| Z <sub>p</sub><br>(ft)                                                           | <b>թ</b><br>(mb)                                                                                        | Т<br>(°С)                                                            |    | RH<br>(%)                                                             | e<br>(mb)                                                               | Т <sub>d</sub><br>(°С)                                                    | Remarks                                                      |
| (11)<br>105<br>395<br>635<br>835<br>1015<br>1520<br>2020<br>2520<br>3030<br>3530 | (mb)<br>942.5<br>934.5<br>926.0<br>919.5<br>919.5<br>919.5<br>896.5<br>896.5<br>896.5<br>847.5<br>831.5 | 22.7<br>22.5<br>21.6<br>31.1<br>20.7<br>20.1<br>18.6<br>17,1<br>16.0 |    | (5)<br>37<br>39<br>39<br>41<br>41<br>38<br>39<br>41<br>43<br>41<br>43 | (mb)<br>8.7<br>10.6<br>10.1<br>11.3<br>10.1<br>8.9<br>8.4<br>8.1<br>7.8 | 5.0<br>5.0<br>7.8<br>7.2<br>7.4<br>7.1<br>5.4<br>4.4<br>4.0<br>3.4<br>3.8 | One hump<br>Very smooth<br>Smooth<br>Minor bump<br>Ting hump |
| 4035<br>5045<br>6065<br>7070<br>995<br>185                                       | 816.0<br>785.5<br>755.5<br>727.0<br>914.0<br>941.5                                                      | 15.2<br>13.9<br>12.3<br>10.1<br>20.8<br>21.4                         | 22 | 47<br>48<br>50<br>43<br>48<br>39<br>42                                | 8, 3<br>8, 0<br>0, 2<br>5, 9<br>9, 6<br>10, 7                           | 3.8<br>4.3<br>3.8<br>0.2<br>-0.4<br>6.4<br>8.0                            | Above haze<br>Obsr P.4.                                      |

# See Legend

7.

No. 52 & 53

| F                                    | IELD TES                                  | T NO. 54                             |   |                            | 24 AUG                               | UST 1950                         | 6 <b>200 CST</b>                                    |           |
|--------------------------------------|-------------------------------------------|--------------------------------------|---|----------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------|-----------|
| Z <sub>12</sub><br>(ft)              | )?<br>(mb)                                | т<br>(°С)                            | H | 1113<br>(%)                | 0<br>(mb)                            | <sup>Т</sup> d<br>(°С)           | Remarks                                             |           |
| 6                                    | 948.5                                     | 18.1                                 |   | 53                         | 11.2                                 | 8.6                              | Take off                                            | ·····     |
| 160<br>370<br>610<br>820<br>990      | 943<br>936<br>928<br>920.5<br>915         | 19.9<br>20.2<br>21.0<br>20.4<br>20.5 |   | 47<br>46<br>41<br>42<br>42 | 11.2<br>11.3<br>10.5<br>10.2<br>10.4 | 8,6<br>8,8<br>7,7<br>7,4<br>7,5  | Slight turbe<br>Smooth<br>Bump                      |           |
| 1505<br>2195<br>2495<br>3000<br>3495 | 897.5<br>875.0<br>865.5<br>849.0<br>833.5 | 15-6<br>14.8<br>18.0<br>17.4<br>17.0 |   | 40<br>43<br>45<br>45<br>46 | 9.5<br>9.6<br>9.5<br>9.1<br>9.1      | 6.2<br>6.4<br>6.2<br>5.6<br>5.6  |                                                     |           |
| 4005<br>5005<br>6030<br>7050<br>970  | 817.5<br>787.6<br>757<br>728<br>916       | 16.3<br>14.4<br>12.6<br>10.3<br>20.2 |   | 45<br>47<br>36<br>64<br>42 | 8.4<br>8.0<br>5.7<br>8.2             | 4.4<br>3.7<br>-1.6<br>4.1<br>7.1 | (Pireps higher engine<br>output rgrd all traverses) |           |
| 6                                    | 943<br>948,5                              | 19,5                                 |   | 50                         | 10.9                                 | 6.2<br>8.2                       | Landing                                             | Obsr P,H. |

| r                                    | ITTO IFS                                  | T NO. 5                              | 5  |                            | 25 AUGL                              | 1871 1956                          | 0100 <b>CST</b>          |                                       |
|--------------------------------------|-------------------------------------------|--------------------------------------|----|----------------------------|--------------------------------------|------------------------------------|--------------------------|---------------------------------------|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | 'T'<br>(^C)                          | *  | RH<br>(%)                  | o<br>(mb)                            | т <sub>с</sub> ,<br>(°С)           | Remark <b>s</b>          |                                       |
| G                                    |                                           | 16.4                                 | 1  | 67                         | 12.7                                 | 10.6                               | Take off                 | * * * * * * * * * * * * * * * * * * * |
| 155<br>405<br>615<br>845             | 942.5<br>934.0<br>027.0<br>919.0          | 17.1<br>17.4<br>18.7<br>19.6         | 32 | 58<br>54<br>50<br>46       | 11.8<br>11.2<br>11.2<br>10.8         | 0.4<br>8.6<br>8.6<br>8.2           | Pireps turbe noted below |                                       |
| 1015<br>1525<br>2000<br>2490<br>3020 | 013,5<br>896,0<br>880,5<br>864,5<br>847,5 | 19.6<br>20.0<br>19.8<br>19.1<br>19.2 |    | 46<br>43<br>45<br>48<br>49 | 10.6<br>10.1<br>10.4<br>10.8<br>11.2 | 7.8<br>7.2<br>7.6<br>8.1<br>8.6    |                          |                                       |
| 3515<br>4025<br>5020<br>6040<br>7035 | 832<br>816.5<br>786<br>756.5<br>728       | 18.1<br>17.1<br>15.0<br>13.2<br>11.2 |    | 49<br>52<br>52<br>48<br>41 | 10.2<br>10.2<br>0.2<br>7.4<br>6.5    | $7.2 \\ 7.6 \\ 5.7 \\ 2.8 \\ -1.2$ | Steady going             |                                       |
| 985<br>195<br>0                      | 914.5<br>941<br>948                       | 19.3<br>16.4<br>10.5                 |    | 45<br>62<br>60             | 10.2<br>12.0<br>11.6                 | 7.2<br>9.7<br>9.1                  | Landing                  | Obsr J.K.                             |
|                                      |                                           |                                      |    |                            |                                      |                                    |                          |                                       |

# See Legend

Nu. 54 & 55

| FI                                          | ELD TES                                          | T NO. 56                             |                 |                                  | 25 AUGI                              | JST 1956                                     | 0300 CST                                                           |           |
|---------------------------------------------|--------------------------------------------------|--------------------------------------|-----------------|----------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-----------|
| Z <sub>p</sub><br>(ft)                      | p<br>(mb)                                        | т<br>(°С)                            | #               | RH<br>(%)                        | o<br>(mb)                            | т <sub>d</sub><br>(°С)                       | Remarks                                                            |           |
| 6                                           | 948                                              | 16,4                                 |                 | 70                               | 19.2                                 | 11.2                                         | Take off                                                           |           |
| 155<br>385<br>625<br>855                    | 942.5<br>934.5<br>926.5<br>913.5                 | 16.0<br>17.2<br>17.9<br>19.3         |                 | 68<br>63<br>57<br>49             | 12.8<br>12.8<br>12.0<br>11.1         | 10.6<br>10.6<br>9.7<br>8.5                   | Lgt turbe<br>Lgt turbe                                             |           |
| 1015<br>1515<br>2020<br>2510<br>3020        | 913.5<br>896.5<br>880.0<br>864.0<br>847.5        | 19.6<br>20.3<br>19.9<br>19.6<br>19.7 | 32              | 47<br>46<br>46<br>49<br>48       | 10.9<br>11.0<br>11.3<br>11.2<br>11.0 | 8, 2<br>8, 4<br>8, 8<br>8, 6<br>8, 6<br>8, 4 | Possible Neg G<br>Possible Neg G                                   |           |
| 3510<br>4030<br>5040<br>6040<br>7055<br>985 | 832.5<br>816<br>785.5<br>754 5<br>727.6<br>914 5 | 18.9<br>18.4<br>16.3<br>13.2<br>10.7 | <b>32</b><br>62 | 49<br>48<br>46<br>53<br>68<br>43 | 10.8<br>10.3<br>8.7<br>18.8<br>8.5   | 8. J<br>7. 4<br>4. 9<br>4. 4<br>4. 6<br>7. 7 | Some lgt turbc<br>Draft<br>Down Draft, Undulations<br>Ac E15000M6L |           |
| 105                                         | 942.5<br>948.0                                   | 16.2<br>16.5                         | 92              | 88<br>83                         | 12.8                                 | 10.6<br>10.4                                 | Rough now<br>Landing                                               | Obsr P.H. |

| F                                    | ELD TES                                   | T NO. 51                                                      | 77             |                            | 25 AUG                             | UST 1956                         |       | 1730 CST |           |
|--------------------------------------|-------------------------------------------|---------------------------------------------------------------|----------------|----------------------------|------------------------------------|----------------------------------|-------|----------|-----------|
| z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | т<br>(°С)                                                     | #              | RН<br>(¶)                  | 0<br>(mb)                          | T <sub>d</sub><br>(°C)           | ł     | lomarks  |           |
| 50<br>95                             | 938.5<br>938.5                            | 33. i<br>33. 7                                                |                | 25<br>23                   | 13,4<br>13,4                       | 11.3<br>11.4                     | Turbe |          |           |
| 195<br>395<br>615<br>845             | 933.5<br>926-5<br>919.0<br>911.0          | $\begin{array}{c} 33 \ 1 \\ 32,7 \\ 32,1 \\ 31,1 \end{array}$ | 22<br>82<br>22 | 29<br>29<br>29<br>29       | 14.6<br>14.4<br>13.9<br>13.2       | 12,6<br>12,4<br>11,9<br>11,1     | Turbe |          |           |
| 1045<br>1545<br>2035<br>2535<br>3030 | 905.5<br>888.0<br>872.0<br>856.0<br>841.0 | 30.5<br>22.8<br>27.6<br>25.7<br>23.9                          | 22<br>2?       | 20<br>30<br>34<br>34<br>36 | 12.6<br>8.4<br>9.2<br>10.8<br>10.7 | 10.4<br>4.5<br>5.8<br>0.4<br>8.0 |       |          |           |
| 3550<br>4040<br>5070<br>6070<br>7075 | 824.0<br>809.0<br>778.0<br>749.0<br>720.5 | 22, 2<br>21, 4<br>18, 2<br>16, 2<br>13, 4                     |                | 59<br>38<br>41<br>40<br>31 | 10.5<br>9.7<br>8.7<br>7.3<br>4.8   | 7.7<br>6.5<br>5.0<br>2.5<br>-3,0 |       |          |           |
| 1015<br>60                           | 905.5<br>938.0                            | 30.4<br>35.4                                                  |                | 29<br>29                   | 12.7<br>14.9                       | 10.4<br>12.9                     |       |          | Obsr J.D. |
|                                      |                                           |                                                               |                |                            |                                    |                                  |       |          |           |

# See Legand

No. 56 & 57

| F                                    | IELD TES                                  | T NO. 5                              | 3        | 25 AUGUST 1956             |                                      |                                  | 1930 CST                                     |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------|----------------------------|--------------------------------------|----------------------------------|----------------------------------------------|
| Z <sub>p</sub><br>(ft)               | Р<br>(mb)                                 | Т<br>(°С)                            | H        | R11<br>(%)                 | e<br>(mb)                            | т <sub>d</sub><br>(°С)           | Romarks<br>Temp og damping checked OK        |
| 190<br>410<br>660<br>870             | 932.0<br>924.0<br>916.0<br>909.0          | 31.1<br>32.2<br>32.1<br>31.2         | 62<br>22 | 31<br>26<br>26<br>26       | 14.0<br>12.4<br>12.4<br>12.4<br>11.7 | 12.0<br>10.1<br>10.1<br>9.3      | Smooth<br>Anvil eid West<br>Fleecus overhead |
| 1080<br>1500<br>2055<br>2545<br>3070 | 902.5<br>886.0<br>970.0<br>854.5<br>837.5 | 30.5<br>29.2<br>27.6<br>26.2<br>24.9 | 82<br>22 | 29<br>29<br>29<br>29<br>33 | 12.6<br>11.8<br>10.8<br>10.0<br>10.3 | 10.4<br>9.4<br>8.0<br>7.0<br>7.4 | Bluish haze noted<br>Ocal vecy igt updraft   |
| 3565<br>4075<br>5080<br>6075         | 822.0<br>806.5<br>776.5<br>747.5          | 22.7<br>21.2<br>18.4<br>16.3         | 22<br>22 | 35<br>36<br>35<br>25       | 9.6<br>9.9<br>7.4<br>4.7             | 6.4<br>J.i<br>2.6<br>-3.2        | Clear overhead                               |
| 7 100<br>1010<br>215                 | 718.9<br>904.5<br>931.0                   | 13.3<br>30.3<br>30.1                 | 62<br>13 | 29<br>28<br>30             | 4.4<br>12.1<br>13.8                  | 9.8                              | Floccus overhead<br>Ocal bump<br>Obsr P.H.   |

Table 13.1 (Continued)

| F                                    | IELD TES                                  | T NO. 5                              | <u>i9</u> |                            | 25 AUGU                             | 5T 1056                         | 2230 CST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|--------------------------------------|-------------------------------------------|--------------------------------------|-----------|----------------------------|-------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Z <sub>p</sub><br>(ft)               | p<br>(mb)                                 | т<br>(°С)                            |           | 1111<br>(%)                | e<br>(mb)                           | т <sub>d</sub><br>(°С)          | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                                      |                                           | 23.0                                 |           | 44                         | 13.0                                | 10,8                            | 1 Constraint and the second part of the other of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco<br>second second     |
| 190<br>400<br>630<br>850             | 935.0<br>928.0<br>920.0<br>912.5          | 28.0<br>20.8<br>31.2<br>30.8         |           | 36<br>31<br>26<br>26       | 13,4<br>13,0<br>11,7<br>11,5        | 11,2<br>10,8<br>9,2<br>9,0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 1050<br>1530<br>2030<br>2525<br>3035 | 906.0<br>890.0<br>873.5<br>857.5<br>841.5 | 30.9<br>29.7<br>28.5<br>26.8<br>25.4 |           | 26<br>26<br>26<br>20<br>28 | 11.5<br>10,8<br>10,1<br>10.3<br>9.2 | 9.1<br>8.1<br>7.4<br>5.7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 3525<br>4025<br>5035<br>0075<br>7060 | 828.0<br>811.0<br>780,5<br>750,0<br>722,0 | 23,9<br>22,3<br>19,1<br>15,0<br>13,1 | 22<br>22  | 30<br>30<br>30<br>40<br>46 | 9.0<br>8.2<br>9.0<br>7.2<br>7.0     | 5.5<br>4.1<br>3.8<br>2.2<br>1,9 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 1020<br>170                          | 907.0<br>936.0                            | 30.5<br>27.8                         |           | 26<br>35                   | 11.4<br>13.2                        | 8.8<br>11,1                     | T lag test 63% in few see<br>Obar J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , Ð. |
| # See I                              | Legend                                    |                                      |           |                            | <u> </u>                            |                                 | No. 58 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50   |

| F                                           | ELD TES                                   | T NO. 60                             | )  |                            | 27 AUGL                            | IST 1956                                      | 0030 CST           |
|---------------------------------------------|-------------------------------------------|--------------------------------------|----|----------------------------|------------------------------------|-----------------------------------------------|--------------------|
| Z <sub>p</sub><br>(ít)                      | P<br>(mb)                                 | т<br>(°С)                            | *  | RH<br>(%)                  | u<br>(rnb)                         | Т <sub>d</sub><br>(°С)                        | Remarks            |
| 6                                           | 938.0                                     | 24,2                                 |    | 10                         | 12.1                               | 9.8                                           | Take off           |
| 185<br>385<br>625<br>825                    | 932.0<br>925.0<br>917.0<br>910.0          | 26.8<br>28,1<br>28,8<br>29,0         | 23 | 34<br>31<br>28<br>29       | 12.0<br>11.8<br>11.1<br>11.6       | 9.7<br>94<br>8.5<br>9.2                       | Turbc below 600 ft |
| 1015<br>1515<br>2005<br>2490<br>3025        | 903.5<br>887.0<br>871.0<br>855.5<br>838.5 | 28.3<br>29.0<br>27.9<br>26.6<br>25.3 |    | 29<br>26<br>29<br>28<br>28 | 11,2<br>10.3<br>10.9<br>9.8<br>9.1 | 8.6<br>7.4<br>8.3<br>6.7<br>5.6               |                    |
| 3510<br>4030<br><b>5020</b><br>6030<br>7085 | 823,5<br>807,5<br>777,5<br>748,5<br>718,5 | 23.8<br>22,2<br>19.1<br>16.1<br>13.1 |    | 30<br>33<br>33<br>36<br>42 | 9.0<br>8.8<br>7.2<br>6.8<br>6.5    | 5.4<br><b>5.2</b><br><b>2.4</b><br>1.2<br>0.8 |                    |
| 1025<br>195<br>Ŭ                            | 903.5<br>931.5<br>938.0                   | 29.9<br>26.6<br>25.7                 |    | 25<br>34<br>36             | 10.4<br>11.8<br>11.9               | 7.5<br>9.5<br>9.5                             | Landing Obsr J.D.  |
|                                             |                                           |                                      |    |                            |                                    |                                               |                    |

| F                                                        | IELD TES                                                                      | T NO. 61                                                             | I .                                                      |                                                          | 27 AUGU                                                                     | IST 1956                                               | 6 1100 CST                                                                         |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Z <sub>p</sub><br>(ft)                                   | P<br>(mb)                                                                     | Т<br>(`C)                                                            | 11                                                       | RH<br>(%)                                                | e<br>(amb)                                                                  | т <sub>d</sub><br>(°С)                                 | Remarks                                                                            |  |
| 90<br>90                                                 | 934.0<br>931.0                                                                | 32.5<br>28.7                                                         | 23<br>23                                                 | 39<br>33                                                 | 19,1<br>13,2                                                                | 16,8<br>11.0                                           | Take off<br>Bouncy                                                                 |  |
| 190<br>380<br>645<br>845<br>1015<br>1525<br>2030<br>2536 | 927.5<br>921.0<br>912.0<br>905.5<br>900.0<br>883.0<br>866.5<br>859.5          | 28.6<br>28.0<br>27.3<br>26.5<br>26.2<br>24.0<br>24.0<br>24.4<br>24.4 | 23<br>22<br>23<br>22<br>23<br>22<br>24<br>62<br>62<br>64 | 33<br>33<br>32<br>32<br>34<br>35<br>32<br>32<br>32<br>32 | 1 3.0<br>1 2 6<br>1 2.1<br>1 1.2<br>1 1.8<br>1 1.0<br>1 0.2<br>1 0.0<br>H 8 | 10.0<br>10.4<br>9.8<br>9.4<br>9.4<br>7.3<br>7.0<br>5.1 | Laft<br>Bourcy<br>G felt in drafts<br>Drafts<br>Small bumps                        |  |
| 3540<br>4040<br>5045<br>6050<br>7065<br>995<br>90<br>5   | 834.0<br>819.0<br>803.5<br>773.5<br>744 5<br>710.0<br>000.5<br>031.0<br>234.9 | 22.3<br>21.0<br>20.3<br>17.4<br>14.7<br>11.8<br>26.4<br>29.6<br>30.2 | 22<br>22<br><br>33<br>14                                 | 35<br>32<br>38<br>47<br>50<br>34<br>31<br>32             | 8.7<br>7.8<br>7.6<br>7.9<br>7.0<br>11.8<br>12.8<br>13.6                     | 4,9<br>3,4<br>3,1<br>3,6<br>1,9<br>9,4<br>10.7<br>11,6 | Bumps with drafts<br>Wallowy<br>Not smooth<br>Bouncy & drafts<br>Landing Ober P.H. |  |

# See Legend

No. 30 & 61

| F                                           | ELD TES                                            | T NO. 62                                             | 2              | ·                                        | 27 AUGI                                      | IST 1956                                    | 1400 CST            |
|---------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------|------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------|
| 72<br>(ft)                                  | P<br>(mb)                                          | Т<br>(°С)                                            | ł              | RН<br>(%)                                | e<br>(mb)                                    | т <sub>d</sub><br>(°С)                      | Remarks             |
| 6<br>90<br>180<br>380<br>620<br>810         | 934.0<br>931.0<br>928.0<br>921.5<br>913.0<br>907.0 | 28.9<br>28.3<br>28.3<br>27.8<br>27.8<br>27.8<br>28.0 | 22             | 43<br>30<br>36<br>36<br>35<br>31         | 17.0<br>15.2<br>14.0<br>13.6<br>13.2<br>11.8 | 15.0<br>13.2<br>12.0<br>11.6<br>11.1<br>9.4 | Take off<br>Turbc   |
| 1010<br>1505<br>2015<br>2505<br>3015        | 900.0<br>883.5<br>867.0<br>851.5<br>835.5          | 27.7<br>26.4<br>25.5<br>24.3<br>22.6                 | 32<br>22<br>62 | 31<br>32<br>30<br>30<br>32               | 11.6<br>11.0<br>9.9<br>9.2<br>8.9            | 9, 1<br>8, 4<br>6, 8<br>5, 8<br>5, 2        | Bumins              |
| 3515<br>4025<br>5035<br><b>6045</b><br>7050 | 820.0<br>804.0<br>774.0<br>744.5<br>716.5          | 20.9<br>19.4<br>16.6<br>13.6<br>12.6                 | 22             | 36<br>39<br><b>43</b><br><b>49</b><br>51 | 9.0<br>8.8<br>8.1<br>7.7<br>7.4              | 5.4<br>5.1<br><b>4.0</b><br>3.2<br>2.8      | Bumps               |
| 990<br>80<br>6                              | 901.0<br>931.5<br>934.0                            | 26, 2<br>31, 6<br>31, 4                              | 62             | 30<br>26<br>32                           | 11.4<br>12.0<br>14.6                         | 9.0<br>9.6<br>12.7                          | Landing — Obsr J.D. |
|                                             |                                                    |                                                      |                |                                          | 1                                            | [ ]                                         |                     |

| FIELD TEST NO. 63            |                                           |                                      |    | 27 AUGUST 1956       |                              |                                    | 2000 CST             |
|------------------------------|-------------------------------------------|--------------------------------------|----|----------------------|------------------------------|------------------------------------|----------------------|
| Z <sub>p</sub><br>(9)        | p<br>(mb)                                 | Т<br>(°С)                            | #  | 1211<br>(%)          | e<br>(mb)                    | т <sub>d</sub><br>(°С)             | Remarks              |
| 6                            | 931.0                                     | 28.3                                 |    | 31                   | 11.9                         | 9.6                                | Take.off             |
| 195<br>385<br>630<br>635     | 925.0<br>918.5<br>910.0<br>903.0          | 31.4<br>31.2<br>30.6<br>30.0         |    | 33<br>33<br>31<br>33 | 15.2<br>15.1<br>23.8<br>14.2 | 13.2<br>13.2<br>11.7<br>12.2       | Smooth<br>Smooth     |
| 1015<br>1525<br>2020<br>2520 | 807.0<br>880.5<br>864.5<br>845.5<br>841.5 | 29.7<br>28.2<br>26.8<br>25.4<br>23.7 |    | 33<br>33<br>36<br>36 | 13,8<br>12,8<br>12,6<br>11,6 | 11.8<br>10.6<br>10.4<br>9.2<br>7 8 | Smooth<br>Shedd liff |
| 3540                         | 816.5<br>801.0                            | 22.5                                 |    | 35                   | 9.6                          | 6.4<br>4.0                         | Smooth               |
| 5050<br>6070<br>7075         | 771.0<br>741.5<br>713.5                   | 18.5<br>16.0<br>13.1                 |    | 33<br>32<br>33       | 6.9<br>5.9<br>5.0            | i.6<br>-0.4<br>-2.4                | Smooth               |
| 1005<br>180<br>6             | 897.5<br>925.5<br>931 0                   | 29, 1<br>31, 2<br>28, 7              | 32 | 33<br>33<br>38       | 13.4<br>15.0<br>15.0         | 11.4<br>13.0<br>13.0               | Landing Obsr P.H.    |
|                              |                                           |                                      | 1  |                      |                              |                                    | . –                  |

# See Legend

No. 62 & 63
| F                                           | IELD TES                                         | T NO. 64                             | 1              |                                          | 27 AUGI                              | IST 1956                          | 2200 CST          |           |
|---------------------------------------------|--------------------------------------------------|--------------------------------------|----------------|------------------------------------------|--------------------------------------|-----------------------------------|-------------------|-----------|
| z <sub>p</sub><br>(ft)                      | P<br>(mb)                                        | т.<br>(°С)                           | #              | ात्म<br>(%)                              | e<br>(mb)                            | т <sub>а</sub><br>(°С)            | Remarks           |           |
| 6                                           | 931.0                                            | 20.5                                 |                | 69                                       | 16.6                                 | 14.6                              | Take off          |           |
| 205<br>435<br>670<br>890                    | 924.0<br>916.0<br>908.5<br>901.0                 | 30.0<br>30.4<br>30.0<br>30.0         | 22<br>22<br>22 | 33<br>33<br>31<br>29                     | 14.0<br>14.4<br>13.2<br>12.4         | 12.0<br>12.4<br>11.2<br>10.1      | Very steady going |           |
| 1005<br>1560<br>2080<br>2575<br>3070        | 895.0<br>879.0<br>862.0<br>846.0<br>830.5        | 29.7<br>28.8<br>27.5<br>26.1<br>24.8 | 22             | 20<br>29<br>29<br>30<br>32               | 12.1<br>11.6<br>10.7<br>10.2<br>10.0 | 9.8<br>9.1<br>8.0<br>7.3<br>7.0   |                   |           |
| 3565<br>4070<br>5090<br><b>6080</b><br>7105 | 815 5<br>800.0<br>769.5<br><b>741.0</b><br>712.5 | 23 0<br>21.8<br>18.7<br>15.6<br>12.6 |                | 32<br>28<br>33<br><b>33</b><br><b>40</b> | 9.2<br>7.4<br>7.2<br>5.9<br>5.8      | 5 R<br>2.7<br>2.0<br>~0.5<br>-0.6 |                   |           |
| 1045<br>195<br>6                            | 896.0<br>924.5<br>931.0                          | 28.9<br>27.7<br>25.9                 | 24             | 31<br>42<br>43                           | 12.5<br>15.6<br>14.4                 | 10.3<br>13.6<br>12.4              | Landing           | Obsr J.K. |

Table 13.1 (Continued)

| F                                                                              | FIELD TEST NO. 65                                                                                |                                                                                              |              |                                                                      |                                                                                     | UST 1950                                                                         | 1900 <b>CST</b>                                                        |           |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|
| Zp<br>(R)                                                                      | P<br>(mb)                                                                                        | Т<br>(°С)                                                                                    |              | RII<br>(%)                                                           | e<br>(mb)                                                                           | Т <sub>d</sub><br>("С)                                                           | Remarks                                                                |           |
| 6<br>190<br>335<br>645<br>1045<br>1530<br>2020<br>2510<br>3040<br>3540<br>4050 | 932.0<br>925.5<br>910.0<br>902.5<br>897.0<br>881.0<br>865.0<br>8440 0<br>832.5<br>817.0<br>801.5 | 24.5<br>26.4<br>26.3<br>25.8<br>25.2<br>24.7<br>22.6<br>21.7<br>20.0<br>10.6<br>17.5<br>15.8 | 22<br>22<br> | 33<br>30<br>28<br>28<br>30<br>32<br>32<br>36<br>39<br>43<br>46<br>49 | 10.3<br>10.2<br>9.6<br>9.3<br>9.7<br>10.0<br>9.0<br>9.0<br>9.2<br>9.2<br>9.2<br>8.7 | 7.4<br>7.4<br>6.4<br>6.0<br>6.5<br>7.0<br>5.4<br>6.0<br>5.6<br>5.8<br>5.8<br>5.0 | Take off<br>Smooth ocn1 bump<br>Sunset 19:12 by tables<br>Slight draft |           |
| 5050<br>6080<br>7105<br>1005<br>195<br>6                                       | 771.5<br>741.5<br>713.0<br>898.0<br>925.5<br>932.0                                               | 13.3<br>11.8<br>9.4<br>24.9<br>25.7<br>24.7                                                  | 33           | 50<br>43<br>30<br>32<br>32<br>33                                     | 7 6<br>6.0<br>4.3<br>10.2<br>10.6<br>10.4                                           | 3.0           -0.2           -4.2           7.4           7.8           7.4      | Occasional light turbe<br>SII turbe<br>Landing                         | Obsr P.H. |

# See Legend

No. 64 & 65

207

| F                                           | FIELD TEST NO. 66                         |                                      |                            |                            |                                  | KIT 1958                          | 2133 CST                      |           |
|---------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------------|-----------------------------------|-------------------------------|-----------|
| $\frac{z_p}{r}$                             | р<br>(mb)                                 | Т<br>(°С)                            | #                          | R11<br>(%)                 | e<br>(mb)                        | т <sub>d</sub><br>("С)            | Romarks                       |           |
| 6                                           | 932.0                                     | 20.7                                 | 82                         | 48                         | 11.2                             | 8.8                               | Take off delay - flat tire    |           |
| 190<br>400<br>610<br>885                    | 925.5<br>918.5<br>910.5<br>902.0          | 23.6<br>25.8<br>25.7<br>25.2         | 05                         | 36<br>32<br>30<br>32       | 10.5<br>10.5<br>10.0<br>10.4     | 7.6<br>7.8<br>7.0<br>7.5          | Gust or bump<br>Draft or bump |           |
| 1060<br>1560<br>2085<br>2555<br>3085        | 896.5<br>880.0<br>863.0<br>848.0<br>931.0 | 24.4<br>23.1<br>22.8<br>22.1<br>20.0 | 82<br>13<br>13<br>12<br>22 | 33<br>30<br>25<br>25<br>25 | 10.0<br>8.6<br>7.0<br>6.8<br>6.1 | 7.0<br>4.8<br>1.8<br>1.2<br>0.0   | Smooth                        |           |
| 3580<br>4090<br>5080<br><b>6095</b><br>7120 | 816.0<br>800.0<br>770.5<br>741.3<br>712.5 | 19.4<br>18.0<br>15.2<br>12.6<br>9.9  | 32<br>32<br>22<br>32       | 31<br>32<br>36<br>39<br>40 | 6.9<br>6.8<br>6.3<br>5.7<br>4.9  | 1.8<br>1.5<br>0.2<br>-0.8<br>-2.8 | Slt turbe<br>Sit turbe        |           |
| 101.5<br>205<br>B                           | 837.5<br>925.0<br>932.0                   | 24.5<br>22.2                         |                            | 32<br>41<br>38             | 10.0<br>11 1<br>10.2             | 7.0<br>85<br>7.2                  | Slight turbe<br>Landing       | Obsr P.H. |
| }                                           |                                           |                                      |                            |                            |                                  | ĺ                                 |                               |           |

Table 13,1 (Continued)

| F                                    | IELD TES                                  | <b>5T NO.</b> 67                     | 1              | 39 AUGUST 1956             |                                    |                                           | 0020 <b>CST</b>                                           |  |
|--------------------------------------|-------------------------------------------|--------------------------------------|----------------|----------------------------|------------------------------------|-------------------------------------------|-----------------------------------------------------------|--|
| Z <sub>p</sub><br>(ft)               | P<br>(mb)                                 | т<br>(°С)                            | #              | R11<br>(%)                 | 0<br>(mb)                          | т <sub>d</sub><br>(°С)                    | Romarks                                                   |  |
| 6                                    | 932.0                                     | 19.7                                 | • •            | 48                         | 10.5                               | 8.2                                       | Take off                                                  |  |
| 220<br>430<br>670<br>880             | 924.5<br>917.5<br>909.6<br>902.5          | 21.7<br>24.6<br>24.6<br>23.7         | 25<br>82<br>62 | 41<br>36<br>35<br>37       | 10.7<br>11.0<br>10.9<br>10.2       | 8.0<br>8.4<br>8.2<br>7.2                  | Bumpy below 300 ft<br>Slight turbe<br>Smooth              |  |
| 1080<br>1570<br>2075<br>2545<br>3065 | 898 0<br>879.5<br>863.5<br>648.5<br>832.0 | 23 2<br>21,6<br>21,0<br>20,5<br>20,0 | 82             | 36<br>40<br>42<br>33<br>29 | 10.4<br>12.0<br>10.5<br>7.9<br>6.8 | 7.4<br>9.6<br>7.8<br>3.5<br>1.4           |                                                           |  |
| 2565<br>4085<br>5085<br>6090<br>7110 | 816.5<br>800.5<br>771.0<br>741.5<br>713.5 | 19,6<br>)8 4<br>15,2<br>12,6<br>9,7  | 32<br>32       | 25<br>28<br>35<br>36<br>40 | 57<br>51<br>62<br>54<br>54         | + 1.0<br>- 0.2<br>- 0.0<br>- 1.6<br>- 2.8 | Ling SW<br>Pireps all turbe<br>Sil turbe<br>Tarbe wallowy |  |
| 1040<br>225<br>6                     | 897.0<br>921.5<br>932.0                   | 23,2<br>22,1<br>22 1                 | 62             | 41<br>30<br>37             | -1.7<br>-10.4<br>-9.9              | 9,3<br>7,5<br>6,8                         | Rough at 200° Dumps<br>Landing Obse P.H.                  |  |
|                                      |                                           |                                      |                |                            |                                    |                                           |                                                           |  |

# See Legend

No. 66 & 67

208

۰,

| F                                                  | FIELD TEST NO. 65                         |                                      |                      |                            |                                                                                          | IST 1958                           | 0230 CST                                                                                                                                                                                            |  |  |
|----------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------|----------------------------|------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Z <sub>p</sub><br>(ft)                             | P<br>(mh)                                 | T<br>(°C)                            | #                    | RH<br>(%)                  | e<br>(mb)                                                                                | т <sub>d</sub><br>(°С)             | Remarks                                                                                                                                                                                             |  |  |
| 6                                                  | 951.0                                     | 21.6                                 | 22                   | 43                         | 11.2                                                                                     | 8.6                                | Take off Obsr P.H.                                                                                                                                                                                  |  |  |
| 200<br>420<br>675<br>880                           | 924,5<br>917,0<br>908,0<br>902,0          | 22.8<br>23.4<br>23.8<br>23.8<br>23.6 | 04<br>14<br>24<br>12 | 39<br>36<br>35<br>32       | 10.8<br>10.3<br>10.5<br>9.3                                                              | 8.1<br>7.4<br>7.6<br>6.0           | Bump not turbe<br>Turbe                                                                                                                                                                             |  |  |
| 1050<br>1540<br>2040<br>2525<br>3045               | 896 0<br>879.5<br>963.5<br>848.0<br>831.5 | 23.2<br>22.2<br>22.2<br>22.8<br>21.4 | 22<br>12<br>32<br>62 | 32<br>32<br>28<br>25<br>25 | $   \begin{array}{r}     9.1 \\     8.7 \\     7.7 \\     6.9 \\     6.4   \end{array} $ | 5.6<br>5.0<br>3.2<br>1.a<br>0.7    | Turbe draft<br>Lgt bump<br>Wallowy                                                                                                                                                                  |  |  |
| 3585<br>4055<br><b>5085</b><br><b>6075</b><br>7100 | 815.5<br>800.5<br>770.5<br>741.0<br>712 5 | 20.2<br>18.9<br>18.0<br>13.2<br>10,1 | 12<br>22             | 25<br>26<br>28<br>33<br>36 | 5.0<br>0.3<br>5.2<br>5.0<br>4.5                                                          | -0.4<br>04<br>-2.0<br>-2.3<br>-3.8 | Pireps rocky<br>Down draft at 4500<br>Furbe                                                                                                                                                         |  |  |
| 1010<br>200<br>6                                   | 807.0<br>924.0<br>931.0                   | 25.0<br>25.6<br>24.1                 | 23<br>82             | 27<br>38<br>35             | 8,8<br>11,0<br>10,6                                                                      | 5.0<br>8.4<br>7.8                  | Tourist in descent<br>Bourcey<br>Down deaft at 250°<br>Mild wind shift encountered.<br>In about 2 miles 2 cycles + 1°C<br>top charge at 725°, updraft<br>with $\Delta T$ 2.1°C in about<br>1/2 mile |  |  |

Toble 18.1 (Continued)

# See Legend

No, 68

٩.

## GEOPHYSICAL RESEARCH PAPERS

- No. 1. Isotropic and Non-Isotropic Turbulence in the Atmospheric Surface Layer, lieinz Lottau, Geophysics Research Directorate, December 1949.
- No. 2. Effective Radiation Temperatures of the Ozonosphere over New Mexico, Adol, Geophysics H-D, December 1949.
- No. 3. Diffraction Effects in the Propagation of Compressional Waves in the Atmosphere, Norman A. Haskell, Geophysics Research Directorate, March 1950.
- No. 4. Evaluation of Results of Joint Air Force-Weather Bureau Cloud Seeding Trials Conducted During Winter and Spring 1949, Charles E. Anderson, Geophysics Research Directorate, May 1950.
- No. 5. Investigation of Stratesphere Winds and Temperatures From Acoustical Propagation Studies, Albert P. Crary, Geophysics Research Directorate, June 1950.
- No. 6. Air-Coupled Flexural Waves in Floating Ice, F. Press, M. Ewing, A. P. Crary, S. Katz, and J. Oliver, Geophysics Research Directorate, November 1950.
- No. 7. Proceedings of the Conference on Ionospheric Research (June 1949), edited by Bradford B. Underhill and Ralph J. Donaldson, Jr., Geophysics Research Directorate, December 1950.
- No. 8. Proceedings of the Colloquium on Mesospheric Physics, edited by N. C. Gerson, Geophysics Research Directorate, July 1951.
- No. 9. The Dispersion of Surface Waves on Multi-Layered Media, Norman A. Haskell, Geophysics Hesearch Directorate, August 1951.
- No. 10. The Measurement of Stratospheric Density Distribution with the Searchlight Technique, L. Elterman, Geophysics Research Directorate, December 1951.
- No. 11. Proceedings of the Conference on Ionospheric Physics (July 1950) Part A, edited by N. C. Gernon and Ralph J. Donoldson, Jr., Geophysics Research Directorate, April 1952.
- No. 12. Proceedings of the Conference on Jonuspheric Physics (July 1950) Part B, edited by Ludwig Katz and N. C. Gerson, Geophysics Research Directorate, April 1952.
- No. 13. Proceedings of the Colloquium on Microwave Meteorology, Acrosols and Cloud Physics, edited by Ralph J. Donaldson, Jr., Geophysics Research Directorate, May 1952.
- No. 14. Atmospheric Flow Patterns and Their Bepresentation by Spherical-Surface Harmonics, B. Haurwitz and Richard A. Craig, Geophysics Research Directorate, July 1952.
- No. 15. Back-Scattering of Electromagnetic Waves From Spheres and Spherical Shells, A. L. Aden, Geophysics Research Directorate, July 1952.
- No. 16. Note: on the Theory of Large-Scale Distarbances in Atmospheric Flow With Applications to Numerical Weather Prediction, Philip Duncan Thompson, Major, U. S. Air Force, Geophysics Research Directorate, July 1952.

## GEOPHYSICAL RESEARCH PAPER5 (Continued)

- No. 17. The Observed Mean Field of Motion of the Atmosphere, Yile Mintz and Gordon Dean, Geophysics Research Directorate, August 1952.
- No. 18. The Distribution of Radiational Temperature Change in the Northern Hemisphere During March, Julius London, Geophysics Research Directorate, December 1952.
- No. 19. International Symposium on Atmospheric Turbulence in the Boundary Layer, Massachusetts Institute of Technology, 4-8 June 1951, edited by E. W. Hewson, Geophysics Research Directorate, December 1952.
- No. 20. On the Phenomenon of the Colored Sun, Emperially the "Blue" Sun of September 1950, Rudolf Penndorf, Geophymics Remearch Directorate, April 1953.
- No. 21. Absorption Coefficients of Several Atmospheric Gases, K. Watanaba, Murray Zelikoff and Edward C. Y. Inn, Geophysics Research Directorate, June 1953.
- No. 22. Asymptotic Approximation for the Elastic Normal Modes is a Stratified Solid Medium, Norman A. Hunkell, Geoghysics Research Directorate, August 1953.
- No. 23. Forecasting Helationubips Between Upper Level Flow and Surface Meteorological Processes, J. J. George, R. O. Roche, H. B. Viancher, R. J. Shafer, P. W. Funke, W. R. Biggers and R. M. Whiting, Geophysics Research Directorate, August 1953.
- No. 24. Contributions to the Study of Planetacy Atmospheric Circulations, edited by Robert M. White, Geophysics Research Directorate, November 1953.
- No. 25. The Vertical Distribution of Mie Particles in the Troposphere, R. Penndorf, Geophysics Research Directorate, March 1954.
- No. 26. Study of Atmompheric lenn in a Nonequilibrium System, C. G. Storgis, Geophysics Research Directorate, April 1954.
- No. 27. Investigation of Microbarometric Oscillations in Eastern Massachusetts, E. A. Flauraud, A. H. Mears, F. A. Crowley, Jr., and A. P. Crary, Geophysics Research Directorate, May 1954.
- No. 28. The Botation-Vibration Spectre & Anatonia in the G- and 10-Micron Regions, R. G. Breene, Jr., Capt., USAF, Geophysics Research Directorate, June 1954.
- No. 29. Sensonal Trends of Temperature, Dennity, and Pressure in the Stratosphere Obtained With the Searchlight Frohing Technique, Louis Elterman, July 1954.
- No. 30. Proceedings of the Conference on Aurocal Physics, edited by N. C. Gerson, Geophysics Resourch Directorate, July 1954.
- No. 31. Fog Modification by Gold-Water Seeding, Vernon G. Plank. Geophysics Research Directorate, August 1954.

## GEOPHYSICAL RESEARCH PAPERS (Continued)

- No. 32. Adsorption Studies of Astronogeneous Phase Transitions, S. J. Birstein, Geophysics Research Directorate, December 1954.
- No. 33. The Latitudinal and Sensonal Variations of the Absorption of Solar Radiation by Ozone, J. Pressman, Geophysics Research Directorate, December 1954
- No. 34. Synoptic Analysis of Convection in a Rotating Cylinder, D. Fultz and J. Corn, Geophysics, Research Directorate, January 1955.
- No. 35. Balance Requirements of the General Circulation, V. P. Starr and R. H. White, Geophysics Research Directorate, December 1954.
- No. 36. The Mean Molecular Weight of the Upper Atmosphere, Warren E. Thom; son, Geophysics Research Directorate, May 1955.
- No. 37. Proceedings on the Conference on Interfacial Phenomena and Nucleation. I. Conference on Nucleation.
  - II. Conference on Nucleation and Surface Tension.
  - III. Conference on Adsorption.
  - Edited by H. Reiss, Geophysics Research Directorate, July 1955.
- No. 38. The Subility of a Simple Dependence flow With Merizon el Shear, such S. Colinki, Geophysics Research Directorate, 5-19 1955.
- No. 39. The Chemistry and Vertical Distribution of the Order of Program in the Mark La Miller, Geophysics Research Directorate, April 1955.
- No. 40. Near Infrared Transmirsion Terreigh Synthetic Atmospheres, J. N. Howard, Geophysics Ressearch Directorate, November 1945.
- No. 41. The Shift and Shape of Spectral Lines, R. G. Breene, Geophysics Rescurch Directorate, October 1955.
- No. 42. Proceedings on the Conference on Atmospheric Electricity, R. Hiller, W. Smith, Coophysics Research Directorate, Deveniver 1955.
- No. 43. Methods and Results of Upper Atmospheric Research, J. Kaplan, G. Schilling, H. Kallman, Geophysics Research Directorice, Nevember 1955.
- No. 44. Luminous and Spectral Follector e as Well as Colors of Natural Objects, R. Panndorf, Geophysics Research Directorate, Factuary 1956.
- No. 45. New Tables of Mie Scuttering Eductions for Spherical Particles, R. Penndorf, B. Goldberg, Geophysics Research Directority March 1956.
- No. 46. Results of Numerical Formerical g With the Barotropic and Thermotropic Models, W. Gates, L. S. Pocinki, C. F. Jenkiss, & ophysics Research Directorate, April 1956.

## **Best Available Copy**