AFCRC-TR-58-239 ASTIA Document No. 152582

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF METEOROLOGY

THE STUDY OF THE DIFFUSION OF GASES OR AEROSOLS IN THE LOWER ATMOSPHERE

H. E. CRAMER, F. A. RECORD, H. C. VALIGHAN

FINAL REPORT UNDER COMTRACT No. AF 19(604)-1058

Project Supervisor - H. G. HOUGHTON

15 MAY 1958

The research reported in this document has been sponsored by the Geophysics Research Directorate of the Air Force Cambridge Research Center, Air Research and Development Command.

8 (89)		TABLE .F CONTENTS		
•. • •		i F	age	No.
ABS	STRACT		i	
LIS	st of i	IGURES	vi	
LI	st of 1	ABLES	ix	
I.	INIRC	DUCTION	1	
TT.	D IPPU DURIN	SICN MEASUREMENTS AT ROUND HILL AND O'NEILL, NEBRASKA IG 1954-1956	5	
	A. B.	Frief summary of experimental techniques Results of data analysis 1. Basic relationships	5 8	
		2. Application of results of data analysis to diffusion theory	16	
		3. Quantitative estimates of dispersal from an elevated source	22	
III.	MBASU NERRA	REMENTS OF THE STRUCTURE OF TURBULENCE AT O'NEILL, SKA	26	·
	۸.	Description of fast-response meteorological instrumenta-	_	·
	-	tion	2ő	
	Β.	Experimental procedures and data abstraction	31	
	C.	Brief description of data processing techniques	- 33	
	D.	Results of preliminary scale analysis	36	
IV.	ט דדו ת	SION MEASUREMENTS AT ROUND HILL DURING 1957	ينبا	
	۸.	Introduction	հր	
	B •	Description of experimental techniques	45	
	C.	Data analysis and discussion of results	47	
₹.	DEVEL	OPTENTS IN METEOROLOGICAL INSTRUMENTATION	62	
	٨.	Lightweight cup anerometers	62	
	B.	Automatic data handling and processing system	64	
REF	ERENCE	3	67	
ACX	NOWLED	CTENTS	70	
AFT	endix	A. SUMMARY OF DIFFUSION MEASUREMENTS AND METEOROLOGICAL OBSERVATIONS OBTAINED AT ROUND HILL DURING 1954-1955		
APF	endix	B. SUMMARY OF DIFFUSION MEASUREMENTS AND METEOROLOOICAL CESERVATIONS OBTAINED-AT ROUND HILL DURING 1957		

needs and the second second

Mar and Market States and Andrews

Section Section Section

1653

c.

æ.

and a second second

4

E.

ABSTRACT

The mincipal objectives of the research described in this report have been to achieve improved understanding of the basic physical processes involved in the dispersal of airborne material in the lower atmosphere: and, to establish empirical relationships between basic diffusion parameters and direct meteorological indicators that permit satisfactory quantitative astinates of dispersal from continuous point sources, over travel distances of the order of 1 km. in a wide variety of general weather conditions. These objectives have been achieved largely as the result of a series of comprehensive field observations involving similtaneous measurements both of diffusion and the structure of atnospheric turbulence. The diffusion measurements comprise 10-min average concentrations of sulfur-dioxide gas emitted from a continuous point source near ground level, at travel distances from 50 to 800 m from the release-point for the tracer. The meteorological observations include mean wind speeds, frequency distributions of asimuth wind direction, working profiles of wind speed and air temperature, and measurements of the fluctuations in wind velocity obtained from bivanes and heatedthermonousle anomeneters. Over one hundred individual experiments of this type ware carried out at Round Hill and at a field site near C'Neill, Nebraska during Project Prairie Grass, an extensive series of diffusion measurements sponsored by the Air Force Cambridge Research Center during the summer of 1956. These data comprise the most comprehensive set of small-scale diffusion and meteorological ubsarvations currently available. They provide a fairly complete picture of the probable variation: in basic diffusion parameters over travel distances of the order of 1 km in all conditions of thermal stratification.

Analysis of these measurements indicates that the prediction of dispersal for small-scale processes is a relatively simple manner. Satisfactory estimates of diffusion from a continuous point source near ground level are provided by a knowledge of source strength, mean wind speed, and the frequency distribution of asimuth wind direction. In the presence of temperature inversions, the estimates for a particular site are somewhat improved by the inclusion of a measure of thermal stratification, such as kichardson's number or the Stability Ratio. The distribution of azimuth wind direction appears to contain implicit information on site roughness and other factors affecting dispersal, and the standard deviation of azimuth wind direction shows promise of serving as a universal diffusion indicator; measures of thermal stratification, on the cther hand, appear to be largely independent of site characteristics. The exporimental results suggest a simple theoretical diffusion model that is utilized in the derivation of a complete set of small-scale diffusion equations applicable to elevated as well as ground-level sources. The equations are closely similar in form to those of 0. G. Sutton and differ principally in the substitution of direct meteorological indicators, the standard deviations of asimuth and elevation angle, for generalized coefficients derived from the vertical profile of mean wind wpeed; and, in the absence of restriction on the value of the powerlaw exponent on travel distance. Quantitative estimates of maximum ground-level concentrations associated with effluent emission from tall stacks are obtained, for a wide range of thermal stratification (near-neutral to extreme instability). from the equations and the experimental data. The rosults scatter about Sutton's estimates of maximum ground-level concentration which appear to be reliable first

£-

-11-

approximations; however, the distances from the base of the stack at which these concentrations occur are significantly smaller than Sutton's estimate.

Fast-response data, obtained during Project Prairie Grass from five tivanes and heated-therrecouple anemometurs aligned either parallel or sormal to the prevailing wind direction, have been analyzed by high-speed computational techniques to provide cstimates of power spectra and the Eulerian scales of turbulence within the frequency range from about 0.5 to 0.01 cycles \sec^{-1} . Analysis of scale estimates for the eddy velocities, based on the results from twelve experiments, indicate the following tentative conclusions: Fluctuations in the w-component are smaller than the minimum separation distance of 6 m used in the experiments analysed to date and no detailed scale estimates are possible. During the daytime, and at night in the presence of thermal instability, there is a continuous spectrum of eddy sizes for both the u- and v-components within the frequency range embraced by the measurements. Only slight differences are noted between the "clative dimensions of the u- and v-components and between transware wer longitudinal orientations; at low frequencies, scales for the v-component appear to be larger than those for the u-component and there is a tendency for the fluctuations in both components to be elongated in the direction of the mean flow. At night, the Clansverse scales are considerably smaller than the longitudinal scales and the fluctuations in the v-component tend to be larger then those in the u-component. The spectrum of oddy sizes found during the nighttime observations is not continuous over the whole frequency range; low frequency fluctuations are present only in about half the cases studied. When the scale catimates for various frequency : ands are plotted against inverse wave number,

€__

a close linear relationship between the variates is indicated. There examination of the experimental data shows that space and time correlations in the direction of mean flow are equivalent and are related by the usual substitution $\underline{x} = \underline{u} \underline{t}$. It appears that the daytime scale estimates will be of limited use in explaining the 10-min diffusion measurements since the major features of the time-mean plume principally reflect the influence of fluctuations with frequencies below 0.01 cycles sec⁻¹.

The variation in basic diffusion parameters as a function of the period of sampling was investigated in a series of field experiments conducted at Round Hill during the fall of 1957; sulfur-dioxide gas from a continuous point source located near ground lovel was again used as a tracer. The sampling array comprised three ina_pendently-operated, overlapping networks located at a height of 1.5 m at travel distances of 50, 100, and 200 m; limited concentration data were also available along the vertical coordinate for the layer from 0.5 to 2.5 m. The experiments were based on sampling intervals of 0.5, 3, and 10 min. Results of the data analysis show that, at night, average peak concentrations for the 0.5- and 3-min periods are about 1.3 times larger than the observed 10-min values. During the daytime, average peak concentrations for the 0.5and 3-min sampling periods exceed the 10-min values by factors of about 2.4 and 1.5, respectively. The shorter-period variations in basic plume charactoristics are highly correlated with 10-min standard deviations of asimuth wind direction: these relationships are utilised in obtaining estimates of the probable variations, at the three travel distances, in peak concentration for sampling periods from 0.5 to 10 min over a range of thermal stratification extending from nearneutral to extreme instability.

New developments in meteorological instrumentation include low-inertia anencesters which utilize smell aluminum rups and a chopper that permits a beam of light to fall on a photo diode once during each rotation of the cup wheel. These instruments are particularly useful in obtaining representative measuresents of the mean wind speed in the presence of stable thermal stratification. Considerable effort has been devoted to the design and construction of a system for the automatic collection and presentation of data from the fast-response notecrological instruments. The present recording system requires a major data abstraction and reduction effort before the measurements are in a form suitable for high-speed computations. The system that has ovolved performs four major functions; encoding of analog information (shaft rotation, voltage, etc.) from sensing elements in the form of binary numbers; storage of these numbers in a relay memory until they can be placed on perforated paper tape; decoding of the paper tape; and, presentation of the data either in the form of sequences printed on an IBM electric typewriter or as entries on punch cards. Construction of the system is about two-thirds completed. Use of the system requires substitution of analog to binary converters for the microtorque potentiometers now used in the bivanes; a number of satisfactory types are available.

-

LIST OF FIGURES

i

1.24

Monitor March 20

		TTOME DEG
Tig. 1.	Schematic diagram of field installation for 1954-1955 diffusion experiments at Round Hill	6
Fig. 2.	Contour map of field site for Project Prairie Grass	7
Fig. 3.	Schematic diagram of sulfur-dioxide generator used in Project Prairie Grass diffusion experiments	7
Fig. 4.	Photographs of Project Prairie Grass diffusion installation	• 7
Fig. 5.	Horisontal cross-sections for selected Prairie Grass diffusion experiments	8
Fig. 6.	Vertical cross-sections for selected Prairie Grass diffusion experiments	8
Fig. /.	Horisontal concentration profiles at three travel distances and frequency distributions of asimuth wind direction	9
Fig. 8.	Peak concentrations at 100 m versus inverse standard de- viation of asimuth wind direction for daytime and nighttime diffusion experiments	10
Fig. 9.	Peak concentrations at height of 1.5 m expressed in terms of standard deviation of azimuth wind direction (daytime)	r 12
Fig. 10.	Peak concentrations at height of 1.5 m expressed in terms of standard deviation of asimuth wind direction (nighttime)	r 12
Fig. ll.	Integrated-crosswind concentrations at height of 1.5 m expressed in terms of standard deviation of azimuth wind direction (daytime)	12
Fig. 12.	Integrated-crosswind concentrations at height of 1.5 m expressed in terms of the Stability Ratio (nighttime)	12
Fig. 13.	Standard deviations of concentration along the lateral coordinate for O'Neill daytime experiments	12
Fig. 14.	Standard deviations of concentration along the lateral coordinate for the O'Neill nighttime experiments	12
Fig. 15.	Estimates of the standard deviation of concentration along the vertical coordinate	15
Fig. 16.	Simple diffusion model for representing dispersal of effluents emitted from an elevated source	15

LIST OF FIGURES (cont.)

Follows page

Fig. 17.	Profiles of axial ground-level concentration for stack height of 100 m for three stability stratifications	22
Fig. 18.	Photograph of bivane and heated-thermoccuple anemometer mounted un tripod and closeup of the base of the bivane	26
Fig. 19.	Calibration curve for heated-thermocouple anemometer	28
Fig. 20.	Response of the bivane and heated-thermocouple anemometur to simple sine waves of varying frequency	28
Pig. 21.	Photographs of various components of fast-response meteor- ological instrumentation system used during Project Prairie Grass	30
Fig. 22.	Schematic diagram showing longitudinal and transverse spacings of fast-response instrumentation during Project Prairie Grass	31
Fig. 23.	Plote of the coherence and compectral correlation coefficient for the v-component of wind velocity during a daytime experi- ment	37
Fig. 24.	Scale diagrams for the u- and v-velocity components during a daytime experiment	39
Fig. 25.	Scale diagrams for the u-and v-velocity components during a nightime experiment marked by convective instability	ро
Fig. 26.	Scale diagrams for the u- and v-velocity components during a typical nighttime experiment	40
Fig. 27.	Scale diagrams for the u- and v-velocity components during a nighttime experiment characterized by long-period fluctu- ations	ГO
Fig. 28.	Scales of turbulence for the u- and v-velocity components of daytime experiments plotted as functions of inverse wave number	го
Fig. 29.	Scales of turbulence for the u- and v-velocity components of nighttime experiments plotted as functions of inverse wave number	12
Fig. 30.	Schematic diagram of field installation used for 1957 experi- ments at Round Hill	45

÷

LIST OF FIGURES (cont.)

NAMES OF A PARTY OF A P

Follows page

Pig. 31.	Photographs of sulfur-dioxide generator and release-point for the tracer	45
Fig. 32.	Photographs of a section of the 100-s: arc and vacuum pumps, tanks, and regulators for operating three sampling networks at 50 m	Γ2 .
Fig. 33.	Photograph of remote-controlled vacuum source	46
Fig. 34.	Examples of horisontal concentration profiles at various travel distances for three periods of sampling	49
Fig. 35.	Standard deviation of concentration along lateral coordinate at 100 m versus standard deviation of asimuth wind direction	50
Fig. 36.	reak concentration at 100 m versus inverse standard devia- tion of asimuth wind direction	50
Fig. 37.	Closeup of lightweight anemometer	62
Fig. 38.	Field installation of lightweight cup anemometers	62
Fig. 37.	Front and rear views of read-out panel of automatic data handling and processing system	65
Fig. 40.	Block diagrams showing principal components involved in encoding and decoding proceedures of data processing system	65

· E

LIST OF TABLES

1

í

ġ,

1 . A.

i

		Page
Table 1.	Estimated range in standard deviations of azimuth wind direc- tion and elevation angle for various stability stratifications	11
Table 2.	Maximum ground-level concentrations for effective stack height of 100 m	25
Table 3.	Mean wind speeds, mean wind directions, and standard deviations of asimuth wind direction for Prairie Grass experiments used in determining Eulerian scales of turbulence	38
Table 4.	Cantral frequencies and band widths of frequency intervals associated with selected values of k used in obtaining scale estimates	:i- 41
Table 5.	Estimates of the scales of turbulence for $\overline{V} = 5 \text{ m sec}^{-1}$ as functions of the period T (sec)	43
Table 6.	Plume characteristics for three periods of sampling	51
Table 7.	Effect of sampling time on plume parameters at three travel distances	53
Table 8.	Summary of observed variations in plume parameters with period of sampling for daytime and nighttime experiments	54
Table 9.	Estimates of ratios of 0.5- and 3-min standard deviation of lateral concentration and peak concentration to their respec- tive 10-min values as functions of the 10-min standard devia- tions of azimuth wind direction	58
Table 10.	Correlations between logarithms of standard deviation of azimuti wind direction and normalized ratios of plume characteristics	י 59 ַ
Table 11.	Estimates of peak concentration for three periods of sampling as functions of standard deviation of azimuth wind direction	60
Table 12.	Relative concentrations at various sampling heights expressed as percentages of concentration at a height of 1.5 m.	61
	APPENDIX A	

Table I. Ten-minute average concentrations of sulfur-dioxide gas and frequency distributions of azimuth wind direction

E__

LIST OF TABLES (cont.)

and the second second

- Table II. Summary of source strengths for the 1954-1955 diffusion experiments and correction factors for evaporational loss of impinger solution
- Table III. Summary of meteorological observations for 1954-1955 field experiments at Round E11

•

XXX

Page

na sun anna an tha a

xxx

1

xnd

APPENDIX B

- Table I. Sulfur-diaxide concentrations for three periods of sampling and 10-min frequency distributions of azimuth wind direction
- Table II. Summary of source strengths and correction factors for evaporational loss of impinger solution
- Table III. Mean wind speeds and standard deviations of azimuth wind direction measured at a height of 2 m during the diffusion experiments
- Table IV. Summary of mean wind speeds and air temperatures measured at four heights on portable tower during the diffusion experiments

zodi

E.__

I. INTRODUCTION

The diffusion of airborne material in the lower atmosphere is of particular interest to meteorologists for at least two reasons. First, there are many practical problems, such as smoke screening, emission of contaminants from tall stacks, etc., which require dependable quantitative estimates of dispersal in a wide variety of weather conditions. Second, many of the unsolved problems in the physics of the earth's boundary layer depend for solution upon improved knowledge of the eddy transfer processes responsible for the vertical diffusion of characteristic air properties, such as heat, momentum, and water vapor. All these phenomena occur as a consequence of turbulent mixing and it appears likely that the same basic mechanisms are involved in each instance. Diffusion studies, therefore, serve a dual purpose; they contribute not only to the solution of basic problems in meteorological physics, but also lead to the resolution of many practical problems.

There have been two principal lines of attack followed in atmospheric diffusion studies. The older approach, identified with the well-known work of Sir Graham Sutton and other British investigators (1; 2; 3; 4), utilises the vertical gradient of mean wind speed as the primary meteorological factor in predicting dispersal. The diffusion theories thus derived apply strictly to small-scale diffusion over a relatively smooth surface in the presence of nearneutral thermal stratification. Extension of the theories to the more-frequently encountered thermal stratifications of temperature lapse and inversion, to rough surfaces, and to travel distances in excess of 1 km has been questioned. Recent diffusion measurements (5; 6; 7) appear to confirm these limitations. However, in view of the complexity of atmospheric diffusion and the limited empirical data available at the time the above theories were formulated, the work of Sir Oraham Sutton and his collaborators represents an outstanding achievement.

Within the past decade, investigations of atmospheric diffusion have been guided by a different point of view which holds that improved understanding of dispersal processes, and consequent simplification of prediction techniques, depends upon increased knowledge of the structure of turbulence, i.e., fluctuations in wind velocity. This has been the view of investigators at the Round Hill Field Station of the Massachusetts Institute of Technology. In the initial research programs, attention was focused principally on the development of measurement techniques suitable for studying fluctuations in wind velocity and on the utilisation of these techniques to provide basic information on turbulent structure (8; 9; 10; 11). During the period covered by this report, the research program has had two principal objectives: (1) To obtain simultaneous, comprehensive measurements both of diffusion, downwind from a continuous point source located near ground level, and of the structure of turbulence in a wide variety of general weather conditions. (2) To establish, from these data, empirical relationships between dispersal and simple meteorological parameters useful in formulating techniques for providing satisfactory quantitative dispersal estimates. Achievement of these objectives has in part depended upon an extensive series of diffusion experiments in which sulfur-dioxide gas was used as a tracer. Midget impingers containing 10 ml of dilute hydrogen-peroxide solution were located at various distances downwind from a continuous point source. During the

E.__

experiments, the impingers were acrated at a known, constant rate; sulfur dioxide present in the air samples reacted with the hydrogen peroxide to form sulfuric acid, thus increasing the electrical conductivity of the solutions. Tire-mein concentrations for the 10-min sampling periods were determined from laboratory analyses of the conductance of the acrated solutions. This technique, which proved very reliable; is capable of detecting concentrations of one part sulfur dioxide in one hundred million parts of air. During 1954 and 1955, twentymine diffusion experiments were conducted over a 200-m range at the Round Hill Field Station. In the summer of 1956, approximately seventy similar experiments were conducted over a maximum range of 800 m during Project Prairie Grass, an extensive series of diffusion experiments sponsored by the Air Force Cambridge Research Center at a field site near O'Neill, Nebraska. The Project Prairie Grass experiments also included an extensive series of measurements of fluctuations in wind velocity, utilizing five bivanes equipped with Leated-thermocouple anomometers; these instruments were mounted at a height of 2 m above the ground and placed either parallel or normal to the mean wind direction. Analysis of these data to provide information on power spectra and the scales of turbulence is proceeding. During the fall of 1957, a new series of diffusion experiments was initiated at Round Hill to investigate variations in time-mean concentration as a function of the duration of the period of sampling. Three independentlyoperated sampling networks at traveldistances of 50, 100, and 200 m were utilised in measuring average concentrations for sampling periods of 30 sec, 3 min, and 10 min. In the course of the diffusion experiments, certain improvements were made in existing meteorological instrumentation and some progress achieved in the development of a dsta-recording system designed to facilitate the handling

1. A. A.

of both fast- and slow-response meteorological observations.

Much of the research mentioned above has already been described in detail in various published papers (12; 13; 14) or in a Geophysical Research Paper to be issued in the near future by the Air Force Cambridge Research Center. The general plan of this report is to summarize briefly the material that is available elsewhere and to devote principal attention to those aspects of the research program that have not previously been described.

-li-

NAPSALA AND

II. DIFFUSION MEASUREMENTS AT ROUND HILL AND O'NEILL, NEBRASKA DURIND 1954-1956

A. Brief summary of experimental techniques

Approximately one hundred field experiments, utilizing sulfur-dioxide gas as a tracer, were conducted during the period from 1954 through 1956 at two sites: Round Hill and O'Neill, Nebraska. About half the experiments at each site were carried out in the presence of unstable thermal stratification and half in the presence of temperature inversions. Twenty-nine sots of diffusion measurements, comprising 10-min average gas concentrations determined at selected points downwind from a continuous point source located near ground level, were obtained at Round Hill during 1951 and 1955. The sampling network consisted of 183 midget impingers mounted at a height of 2 m along three semicircular arcs at travel distances of 50, 100, and 200 m; an angular separation of 3 deg between individual impingers was used at all travel distances. The impingers were aspirated at the rate of 1.51 min⁻¹ by means of vacuum sources positioned at the mid-points of the arcs. The sulfur-dioxide generator utilised a 100-1b cylinder of liquid sulfur dioxide issuersed in a constanttemperature water bath. Heat of vaporisation required for the change of state of the tracer was largely supplied by the water; this facilitated maintenance of a constant emission rate (5 to 10 g sec⁻¹) throughout the 10-min sampling period. The total amount of gas released during each experiment registered on the dials of a large gas meter. After passage through the meter, the tracer was conducted through a 100-ft length of copper tubing and released vertically at a height of 30 cm above ground level. Prior to the start of the 10-min

sampling pericd, the tracer was permitted to traverse the entire sampling network; source operation continued for a short time after the sampling period had ended. Meteorological instrumentation included: cup anomometers and ventilated thermocouples, installed at four levels on a portable tower, for measuring vertical gradients of mean wind speed and air temperature; a cup anemometer and wind-direction wane, located at a height of 2 m near the release point, for determining mean wind speeds and frequency distributions of asimuth wind direction; four bivanes equipped with heated-thermocouple anomometers for measurements of the structure of turbulence. A schematic diagram of the field installation is presented in fig. 1. Tabular summaries of the concentration measurements and meteorological observations obtained Juring all of the experiments are presented in Appendix A. Descriptions of the experimental techniquez and discussions of the results of data analysis may be found elsewhere (13; 14).

Seventy sets of similar concentration data were obtained at a field site near ('Neill, Nebraska in the summer of 1956 during Project Prairie Grass. The sampling network comprised 599 midget impingers; of these, 545 were mounted at a height of 1.5 m along five concentric semicircular arcs located at travel distances of 50, 100, 200, 400, and 800 m. An angular separation of 2-dup was used along the four inner arcs while a 1-deg separation was used at 800 m. The remaining 54 impingers were mounted at nine levels on each of six lightweight towers erected along the 100-m arc. Aspiration was provided by cleven vacuum units suitably positioned within the sampling network. The sulfur-

And the second second

Fig. 1. Schematic diagram of field installation for 1951-1955 diffusion experimente at Round Hill.

E

dioxide generating apparatus was basically similar to that previously used at Round Hill but, due to the longer travel distances involved, capable of maintaining source strengths within the range from 50 to 100 g sec⁻¹. To minimize the disturbance of the natural air flow in the vicinity of release point for the tracer, the generating apparatus was set in a shallow trench and the gas conducted through a 50-m length of buried plastic pipe before being released horizontally at a height of 46 cm above ground level (see fig. 4). A contour map of the Prairie Grass field site showing the location of the arcs of the sampling network and other installations appears in fig. 2. A schematic diagram of the sulfur-dioxide generator is presented in fig. 3 and photographs of various components of the field installation are shown in fig. 4. Meteorological instrumentation included: cup anemometers and wind-direction vanes mounted at a height of 2 m both near the release point for the tracer and at a distance of 450 m directly downwind (north) of the release point; five bivanes, outfitted with heated-thermocouple anemometers, mounted at a height of 2 m at the northern boundary of the field site. Measurements of vertical profiles of mean wind speed and air temperature were made by Texas A & M. Neteorological observations were made over a 20-min sampling period centered at the mid-point of the 10-min gas release. The diffusion network was placed in operation immediately prior to the start of the gas release and continued in operation for several minutes after the end of the release, until the tracer had cleared the 800-m arc. Detailed descriptions of the conduct of the experiments, discussion of the reliability of the measurements, and complete tabular summaries of concentration data and meteoro-Ingical observations are available in a Meenhysical Mesearch' Paper currently

and the second secon

A STATE AND A S

An Instanting and the State of State of

in the second second

in the second se

1

10 A 10 A 10

Fig. 2. Contour map of field site for Project Prairie Grass showing location of sampling arcs in diffusion network (dashed lines) and other installations.

LEGEND

(a)

(c)

(b)

(d)

Fig. 4. Photographs of Project Prairie Grass diffusion installations: (a) sulfurdioxide generating apparatus; (b) release-point for traber; (c) midget impinger installed on one of the 60-ft towers; (d) interior of laboratory building showing storage shelves for impinger baskets.

being prepared for distribution by the Air Force Cambridge Research Center. Other descriptions of the diffusion measurements and the results of data analysis may be found elsewhere (12; 14).

「「「「」」のないので、

It should be pointed out that surface roughness characteristics at the two sites are quite different. The Statil, Mebraska site is unusually smooth ($s_{0} < 1 \text{ cm}$) with an unobstructed upwind fetch of at least 1 km. The Round Hill site is unusually rough ($z_{0} > 10 \text{ cm}$); trees, houses. small buildings, and differences in elevation of the order of 100 ft are found within a distance of G.5 to 1 km immediately upwind from the test area.

B. Results of data analysis

1. Basic relationships

Herizontal and vertical cross-sections for several time-mean gas plumes obtained during the Project Prairie Grass diffusion experiments are presented in figs. 5, 6. These examples indicate the variations in characteristic plume features (width, height, axial concentration, form of the concentration profile, etc.) observed over a wide range of general weather conditions. The fundamental problem is that of relating these observed variations in diffusion parameters to meteorological quantities which may then be used as useful indices of dispersal.

All the diffusion experiments reveal a very close relationship between the structure of the time-mean gas plume and fluctuations in azimuth wind direction. The downwind axis of the plume is found approximately

Fig. 5. Horisontal cross-sections for selected Prairie Grass diffusion experiments: concentration isopleths are in mg m⁻³ for standard source strength of 100 g sec⁻¹ and mean wind speed of 5 m sec⁻¹: (a) narrow, symmetrical plume characteristic of stable thermal stratification; (b) exceptionally narrow, symmetrical daytime plume associated with high wind speeds; (c) daytime plume in which the shape of the concentration profile changes significantly with travel distance; (d) wide, irregular plume characteristic of strong midday convection.

Fig. 6. Vertical cross-sections for selected Prairie Crass diffusion experiments at travel distance of 100 m; concentration isopleths are in mg m⁻³ and are adjusted for standard source strength of 100 g sec⁻¹ and mean wind speed of 2 m sec⁻¹: individual examples correspond to the horizontal cross-sections shown in fig. 5.

along the direction of the mean wind and the lateral distribution of concontration at all travel distances corresponds closely to the frequency distribution of azimuth wind direction. This correspondence is best at short travel distances and tends to decrease with increasing travel distance due to enhanced dilution at the edges of the plume. Concentration profiles at three traveldistances and frequency distributions of azimuth wind direction for one of the C'Neill, Nebraska nighttime experiments are presented in fig. 7. Over travel distances of the order of 1 km, the timemean gas plume thus appears to be composed of elementary filaments that have traveled downwind from the source along lines of constant azimuth bearing. Recent experiments in England (15) and in this country (15) indicate that vertical diffusion may be described similarly. Basic features of plume structure (peak concentration \sum_{n} , integrated-crosswind concentration $\chi_{ ext{CIC}}$, plume width \underline{W} , etc.) are consequently highly correlated with the standard deviation of azimuth wind direction $\sigma_{\rm a}$. In the presence of thermal instability, correlation coefficients between σ_{\star} and the variates mentioned above are approximately 0.9 at all travel distances; during stable thermal stratification, the correlations are about 0.6. Features of plume structure, particularly $\chi_{_{
m CIC}}$, are also significantly related to measures of thermal stratification such as Eichardson's Number Ri or the Stability Ratio SR. Results of multiple correlation studies show that an index combining both G_A and either <u>Ri</u> or <u>SR</u> is of advantage in predicting nighttime peak concentrations and daytime integrated-crosswind concentrations; daytime peak concentrations and plume width in all stability stratifications are best predicted by C _ alone; nighttime $\chi_{_{\rm CIC}}$ values are best predicted by <u>SR</u> or <u>Ri</u> alone.

9

Fig. 7. Horisontal concentration profiles at three travel distances (above) and frequency distributions of azimuth wind direction (below) measured at height of 2 m at two locations. Data refer to nighttime Prairie Grass experiment conducted in presence of very stable thermal stratification.

When the Round Hill and C'Neill, Nebraska diffusion measurements for the same travel distance are plotted against $\overline{\mathcal{T}_A}$, the least-squares regression lines for both sets of data are almost identical. Peak concentrations at 100 m from both sites are shown in fig. 8;¹ no adjustment has been made for the slight difference in sampling height between Round Hill (2 m) and O'Peill (1.5 m). If similar diffusion data are plotted against Ei or SP , the Round Hill and O'Neill data cannot easily be reconciled. The discrepancy is principally explained by the difference in roughness of the two sites: at Round Hill, neutral stratification corresponds to \mathcal{J}^-_A values of about 13 deg; at O'Neill, neutral stratification is identified with $\mathcal{T}_{\mathbf{A}}$ 7 deg. The conclusive that the standard deviation of asimuth wind direction contains implicit information on site roughness and other factors (such as air mass) that determine diffusion; further investigation may establish it as a universal diffusion index. It is also apparent from close inspection of the data from the two sites that lateral and vertical diffusion are not completely independent (as frequently assumed in theoretical treatments) but must be at least quasi-dependent. This point is further discussed below.

For reasons indicated above, the results of the small-scale diffusion measurements are most conveniently summarized in terms of the standard deviation of azimuth wind direction.² Estimates of the variation in both σ_A and the standard deviation of elevation angle σ_E with thermal stratification and site roughness are presented in table 1; entries in the table are

Concentration data not no rected for evaporational loss of luftimer solution.

きんしいという読を歩いる

based upon bivane measurements made at O'Neill (17) during the Great Flains Program and other data. The values apply generally within the layer from ground level to a height of 100 m; both $(\Gamma_A \text{ and } O''_E \text{ tend to increase with}$ height during thermal instability and to decrease with height during thermal stability. For stable stratification, the larger values of both parameters apply near ground level and the smaller values apply at higher levels; the situation is reversed in the case of unstable thermal stratification.

Table 1. Estimated range in standard deviations of azimuth wind direction \mathcal{T}_{A} and elevation angle \mathcal{T}_{E} for various stability stratifications.

Stratification	Smooth site		Rcugi	Rcugh Site	
	(JA (deg)	$O_{\mathbf{E}}^{\cdot}$ (deg)	$\mathcal{O}_{A}^{-}(deg)$	$\overline{U_E}$ (deg)	
Extremely stable	2-4	0-2	2-6	0-3	
Moderately stable	4-8	2-1,	7-15	3-5	
Near-neutral	65	3-5	10-15	4-6	
Moderately unstable	10-15	4-6	15-20	6-8	
Extremely unstable	20-25	7-9	25-30	9-11	

Basic diffusion parameters for twenty-two daytime and twenty nighttime Prairie Grass experiments (selected on the basis of complete concentration data and meteorological observations) have been correlated with meteorological parameters ($(T_{n} \text{ or } SR)$; results of the regression analysis are presented in figs. 9 to 14. Concentration data, corrected for evaporational loss of impinger solution during the experiments, are adjusted to a standard source strength of 100 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹. The analysis technique involved determination of least-squares regression lines, for the logarithms of the variates, at each travel distance. Estimates of the diffusion parameters for selected values of the meteorological quantities were then obtained, at each travel distance, from the regression equations and the appropriate points connected by straight lines. A detailed account of the analysis technique and tabulated values of correlation coefficients and standard errors of estimate are available elsewhere (11). It should be mentioned that the concentrations shown in figs. 9, 10, 11, 12 refer to measurements made at a height of 1.5 m associated with continuous emission of the tracer from a point source at a height of about 0.5 m. At short travel distances (50, 100 m), the plume axis tends to be located below the height of the sampling network; thus, the measured concentrations are somewhat lower than the axial concuntrations. Studies of vertical concentration profiles obtained at a travel distance of 100 m during the O'Neill experiments indicate that the measured concentrations, at a height of 1.5 m. should be increased by 10 per cent, on the average, for both daytime and nighttime cas releases to secure reasonable cstimates of axial concentration (12).

¹Concentrations for daytime experiments were smoothed by a weighted threeterm moving average at all travel distances.

Fig. 9. Peak concentrations at height of 1.5 m expressed in terms of \mathcal{O}_{A} ; data based on O'Neill daytime diffusion experiments. Values are adjusted to a source strength of 100 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹. Dashed lines are suggested extrapolations.

日本市 あたい うちょう

3

Fig. 10. Feak concentrations at height of 1.5 m expressed in terms of \mathcal{O}_A ; data based on O'Neill nighttime diffusion experiments. Values are adjusted to a source strength of 100 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹. Dashed lines are suggested extrapolations.

ε__

No Provide a Charles of the South of the Charles of the South of the Charles of the South of the Charles of the

Fig. 11. Integrated-crosswind concentrations at height of 1.5 m expressed in terms of \mathcal{O}_A ; data based on O'Neill daytime experiments. Values are adjusted to a source strength of 100 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹; dashed lines are suggested extrapolations.

이 것 같은 물건 물건 것에서 이 가지?

A State of the second second

and the second second

Fig. 13. Standard deviations of concentration along the lateral coordinate for O'Neill, Nebrasha daytime experiments; values are expressed in terms of are distance and dashed lines are suggested extrapolations.

£-

Course and white we want to be a series of

第3。1998年起12日**小田**植

Fig. 14. Standard deviations of concentration along the lateral coordinate for O'Neill, Nebraska nighttime experiments; values are expressed in terms of arc distance and dashed lines are suggested extrapolations.

The correction at 50 m is estimated to be about 25 per cent. At travel distances greater than 200 m. it appears that the 1.5 m measurements adequately represent axial concentration except in the presence of extremely stable thormal stratification. The concentration measurements are also affected by reflection from the ground; this factor is judged insignificant at travel distances greater than 100 m in comparison with the standard errors of estimate of the regression technique and estimates of the reliability of the basic measurements. Highttime integrated-crosswind concentrations have been presented as functions of the Stability Ratio since, for the selected cases (which represent moderate stability), $\chi_{\rm CIC}$ is almost invariant with $\mathcal{O}_{\mathbf{A}}$. If the whole range of stable thermal stratification is considered, the prediction value of $\sigma_{\rm A}$ increases; however, since variations in $\chi_{\rm crc}$ occur almost entirely as a result of the vertical spread of the plume, SR is the most likely indicator. Values of SR used in the analysis were obtained from the ratio of the temperature difference between the L- and 1-m levels and the square of the wind speed at a height of 2 m.

Variations in basic diffusion parameters with travel distance may be expressed in terms of simple power laws of the general form

 $\chi_{P_{e}} \sigma_{y} \sim (x)^{b}$

where x is the travel distance and b is a constant. The power-law exponent b has been evaluated for four intervals of travel distance (50-100, 100-200, 200-400, 400-800 m) with respect to peak concentration, and the standard

-13-

deviations of concentration along the lateral and vertical coordinates. Estimates of the value of the exponent on \Im_z^- were obtained by taking the difference $\underline{b}(\chi_p) - \underline{b}(\Im_y)$. Results of these computations may be summarized as follows:

In near neutral stratification, the power-law exponent on all three diffusion parameters tends to be invariant with distance. The average value of <u>b</u> on axial concentration is about 1.8, <u>b</u> on \bigcirc is about 0.8, and <u>b</u> on \bigcirc is thus about 1.0. These values are in substantial agreement with those obtained by Sutton (1) in the Porton experiments.

In unstable thermal stratification, the exponent on axial concentration increases markedly with distance from about 2.0 to values in excess of 3.0 (extreme instability). The exponent on \bigcirc_y tends to be invariant with distance (0.8 to 0.9). The exponent on \bigcirc_y increases from about 1.0 to values in excess of 2.0 (extreme instability). This behavior of the power-law exponents on axial concentration and on \bigcirc_y is not explained by existing diffusion theories which do not permit a value in excess of 2.0 for \succeq (χ_p).

In stable thermal stratification, the exponent on axial concentration tends to decrease with distance from about 1.6 to 1.0 (extreme stability). The exponent on G_y is probably invariant with distance and is about 0.6. The power-law exponent on G_y , therefore, must decrease with increasing travel distance from about 1.0 to 0.4. Although there is serious question about the absolute value of these estimates for extremely stable stratification, the results are at least in qualitative agreement with measurements made by Hilst (7) using an elevated source.

And the second of the

The above results indicate that simple power laws adequately explain dispersal from continuous point sources, located near ground level, only in the presence of near-neutral thermal stratification. As the stratification becomes increasingly acable or unstable, simple power laws become increasingly less effective in describing the distance variation in basic plume parameters.

The power-law analysis described above emphasizes the importance of vertical diffusion in determining the rate of decrease in axial concentration with increasing travel distance. The only direct measurements of ver-

tical diffusion made during the Prairie Grass experiments were at a travel distance of 100 m. Estimates of σ_{e} at other travel distances were obtained by two indirect methods: (1) Results of the regression analysis of observed values of \mathcal{O}_{A} and \mathcal{O}_{E} at 100 m were extrapolated to other travel distances under the assumption that the vertical spread of the plume was rectilinear. (2) Values for peak concentrations (adjusted to axial) and G_{z} shown in figs. 9, 10, 13, 14 were used to calculate G_{z} at all travel distances; the procedure follows from equation (2) on page 1^{ℓ} and involves the assumption that the distributions of concentration along the lateral and vertical coordinates of the plume are approximately Gaussian. There is good agreement at 100 m between the results obtained from the latter method and the estimates derived from the regression analysis of measured values of σ_{e} . The estimates presented in fig. 15 were derived as follows: At 100 m, the G_z values were obtained from the regression analysis of actual measurements; the estimates ct 50 m were obtained by extrapolation of the results at 100 m, assuming rectilinear vertical spread of the plume. Daytime values for $\overline{O_{12}}$ at travel distances beyond 100 m were calculated from the diffusion equation. Nighthime estimates at similar travel distances were calculated by both methods and the smaller values selected for use in the figure. The results show very clearly the remarkable vertical growth of the plume in the presence of unstable thermal stratification and the suppression of vertical growth during stable thermal stratification.

-15-

£.__

Fig. 15. Intimates of standard deviation of concentration along vertical coordinate; values are expressed in terms of are distance. Intimates for nighttime values of $\sigma_A > 5$ deg are not shown. Dashed lines are suggested articipulations.

E.

2. Application of results of data analysis to diffusion theory.

Results of the analysis of the diffusion measurements reported in the previous section support the simple diffusion model shown schematically in fig. 16. The model is referred to a curvilinear coordinate system with the convinuous point source at the origin: \underline{X} (y = 0, z = 0) is along the mean wind; y and s are directed along arcs in the horizontal and vertical planes, respectively, at distance r from the source. The effluent travels downwind and spreads laterally over an arc segment defined by the angle ← , which is given by the extremes of the frequency distribution of azimuth wind direction measured at the source. Lateral boundaries of the plume are indicated by the (solid) straight lines in fig. 16a; plume width, defined on the basis of the customary 1/10 limits, is shown by the dashed lines and is assumed equal to μ .3 σ_y , where σ_y is the standard deviation of concentration in the y-direction. This relationship is well supported by the O'Neill measurements. The diffusion measurements indicate that the angular plume width decreases with travel distance; near the source, $G_{\mathbf{A}} = G_{\mathbf{y}}$ but at longer travel distance $G_{\mathbf{x}} > G_{\mathbf{y}}$. Vertical spread of the plume is confined within the straight lines defined by the angle $\Theta_{\mathbf{r}}$ identified with the extremes of the frequency distribution of elevation angle measured at the source; dashed lines denote the 1/10 limits used to define the vertical extent of the plume. If the vertical spread is rectilinear, $\sigma_E = \sigma_e$ at all travel distances; otherwise; the equality exists only in the immediate vicinity of the source. Experiments

<u>ال</u>

演奏

Fig. 16. Simple diffusion m.fel for representing (a) lateral and (b) vertical dispersel of effluence emitted from an elevated source.

in England (15) indicate that the vertical spread is approximately rectilinear for travel distances of the order of 500 m in moderately-stable, near-neutral, and moderately-unstable stratification. The O'Neill experiments, on the other hand, indicate that the vertical spread is rectilinear only in near-neutral stratification: in the presence of thermal instability, the plume expands vertically, the rate of expansion increasing markedly with travel distance for extreme instability; in stable stratification, the C'Neill data indicate a suppression of the vertical growth of the plume, the rate of suppression increasing with trevel distance. Measurements based on photographs of smoke plumes in very stable atmosphere indicate negligible vertical growth at travel distances in excess of about 0.5 km (7). It should be pointed cut that some differences are to be expected in diffusion patterns from ground-level and elevated sources due to such factors as wind shear, variations in the power spectrum of the vertical velocity component, etc.

If the concentration in mg m⁻³ is given by $\chi_{y,z}$, then at all distances r

(1)
$$\int_{-\infty}^{\infty} \chi_{y,z} r^2 dy dz = \frac{Q}{\overline{u}} = \text{const.}$$

where Q is the source strength in g sec⁻¹, \overline{u} is the mean wind speed in m sec⁻¹, and \underline{y} , \underline{z} are in radians. It can be shown that the differences between the curvilinear coordinate system and a conventional rectangular system are generally negligible. Thus, the limits of integration

ε.

for equation (2) are effectively $\pm \infty$. Assuming that the effluent is normally distributed along the y- and s- coordinates, it follows from the geometry that

(2)
$$\chi_{y,z} = \frac{Q}{2\pi \pi r^2 \sigma_y \sigma_z} = \frac{1}{2} \left\{ \frac{y^2}{(\sigma_y)^2} + \frac{r^2}{(\sigma_z)^2} \right\}$$

where σ_y , σ_z , y, z are expressed in radians. For rectilinear spread:

 $\sigma_A \circ \sigma_y : \sigma_E \circ \sigma_s :$

and, equation (2) becomes

(3)
$$\chi_{y,z} = \frac{q}{2\pi \pi r^2 \sigma_{z} \sigma_{z}} \exp \left[-\frac{1}{2} \left\{ \frac{y^2}{(\sigma_{A})^2} + \frac{z^2}{(\sigma_{E})^2} \right\} \right]$$

If the spread of the plum. along the lateral and vertical coordinates is not rectilinear but follows simple power laws of the form

 $\mathbf{r} \sigma_{\mathbf{y}} \propto (\mathbf{r})^{\mathbf{q}}$, $\mathbf{r} \sigma_{\mathbf{s}} \propto (\mathbf{r})^{\mathbf{p}}$;

then,

$$\mathbf{r} \ \boldsymbol{\sigma}_{\mathbf{y}} = \boldsymbol{\sigma}_{\mathbf{A}} (\mathbf{r})^{\mathbf{q}}; \mathbf{r} \ \boldsymbol{\sigma}_{\mathbf{s}} = \boldsymbol{\sigma}_{\mathbf{B}} (\mathbf{r})^{\mathbf{p}}$$

when the above relationships are substituted in equation (2), we obtain

(4)
$$\chi_{y,z} = \frac{Q}{2\pi z r^{b} \sigma_{A} \sigma_{E}} \exp \left[-\frac{1}{2} \left\{ \frac{y^{2}}{(\sigma_{A})^{2} r^{2} q^{-2}} + \frac{z^{2}}{(\sigma_{E})^{2} r^{2} p^{-2}} \right\} \right]$$

where b = p + q.

If \mathcal{T}_y , \mathcal{T}_g vary with distance in a more complex manner, equation (2) may be evaluated at selected values of <u>r</u> for which estimates of \mathcal{T}_y , \mathcal{T}_g are available.

--3-

The above diffusion equations are of the same general ferm as those of Sutton (1) and differ principally in the use of direct meteorolo; ical indicators (\mathcal{O}_E , \mathcal{O}_A) in place of generalized diffusion coefficients derived from the vertical profile of mean wind speed; and, in the greater freedom of variation in the expensent on distance <u>r</u>. Following Sutton's argument of reflection, the source strength <u>Q</u> in equations (2), (3), (4) is doubled for a source located at ground level or in the case of a plume from an elevated source that reaches the ground.

The equations have been tested against the C'Neill measurements of peak concentration at 100 m (see figs. 9, 10). Axial ground-level concentrations were calculated on the basis of equation (2) using values of σ_y (figs. 13, 14) and of σ_s (fig. 15) at 100 m obtained from regression analysis. The calculated axial concentrations agree closely with the measured values in near-neutral stratification. For unstable thermal stratification, the calculated values are from 10 to 25 per cent lower than the measurements; this is hardly surprising in view of uncertainties in the estimates of σ_s for extreme instability and probable deviations from normal distributions. In moderately stable stratification, calculated axial concentrations are approximately equal to the (adjusted) measured values; for extreme stability, the calculated axial concentrations are about twice as large as the measured (peak) values. This does not appear unreasonable in view of the height of the sampling network (1.5 m).

-19-

Expressions for ground-level concentration profiles associated with the operation of the model shown in fig. 16 are derived on the basis of equation (4) which describes distance variations in the diffusion parameters \overline{y} in terms of simple power laws. At a given distance <u>x</u> from the base of the stack, the angle \overline{y} is approximately given by

(5)
$$e_{\underline{n}} = \frac{h}{x} = N \sigma_{\underline{n}}$$

where <u>h</u> is the height of the stack and N is a positive number. It follows that 1

(6)
$$N = \frac{h}{\sigma x} = \frac{h}{E}$$

The ratio between ground-level concentration χ_g at x = r and χ_a is, allowing for reflection,

(7)
$$\frac{\chi_g}{\chi_a} = 2 \exp \left[-\frac{h^2}{2(\overline{U_E})^2 r^{2p}}\right]$$

Thus, the ground level concentration is given by

(8)
$$\chi_{g} = \frac{Q}{R \pi r^{b} \sigma_{A} \sigma_{E}} = \frac{h^{2}}{2(\sigma_{E})^{2} r^{2p}}$$

If the above equation is maximized, we obtain the following expression for the distance from the base of the stack $x_{\rm H}$ at which the maximum ground-level will be found:

¹In the following discussion, it is assumed that $x = r_{\bullet}$

(9)
$$\mathbf{x}_{\mathbf{R}} = \left[\frac{\mathbf{h}^2 \mathbf{p}}{(\overline{\mathbf{r}_{\mathbf{E}}})^2 \mathbf{b}}\right]^{\frac{1}{2\mathbf{p}}}$$

For near-neutral stratification (b \approx 1.60; p = 1.0), the estimate for $x_{\rm m}$ reduces to

-21-

かいちち

(10)
$$Z_{\rm R} = \frac{A}{1.35 \, \sigma_{\rm R}}$$

The general expression for maximum ground-level concentration

 $\chi_{\rm g~(max)}$ obtained by combining equations (9), (10) is

(11)
$$\chi_g(max) = \frac{Q\left(\frac{b}{p}\right)^{b/2p} \left(\overline{T_E}\right)^{b/p-1}}{\pi \pi h^{b/p} \overline{T_A}} \exp\left[-\frac{b}{2p}\right]$$

For b = 2.0, p = 1.0 this reduces to

(12)
$$\chi_{g(max)} = \frac{2Q \ \sigma_{E}}{e \pi_{\tilde{u}} h^{2} \ \sigma_{A}}$$

Sutton's (13) expressions for x_m and $\chi_{g(max)}$ are practically identical in form with equations (10), (12):

$$\chi_{g(mnx)} = \frac{\frac{2Q}{e \pi \bar{u} h^2}}{\left(\frac{h^2}{c_x}\right)^{\frac{1}{2-n}}} \approx \frac{h}{c_z}$$

3. Quantitative estimates of dispersal from an elevated source.

2.25

The diffusion equations of the provisus section provide quantitative estimates of dispersal when appropriate values for the various meteorological and diffusion parameters are inserted. Estimates of $\sigma_{\rm A}$, $\sigma_{\rm E}$ are found in table 1 and estimates for the other diffusion parameters are given above. It should be emphasized that the diffusion data are based on measurements exterding only to a distance of 800 m from the source. Extrapolation of the results to appreciably longer travel distances appears acfe in near-neutral stratification. In the presence of moderate thermal stability or instability, extrapolation is less certain; for extreme stability or instability, the uncertainty is greatly increased. In other words, the suggested technique provides fairly reliable quantitative dispersal estimates for travel distances of the order of 1 km except in the presence of near-neutral stratification when extrapolation to appreciably longer distances seems justified. As noted previously, one aspect of plume structure has not been definitely established empirically - the question of whether the vertical spread of the plume is rectilinear for a wide range of thermal stratification (15); or whether, as indicated by the O'Neill estimates, the spread is recailinear only in near-neutral stratification. In view of this uncertainty, it seems advisable to consider both possibilities in making dispersal estimates.

Profiles of axial ground-level concentration for three stability stratifications are presented in fig. 17; a stack height of 100 m is assumed and concentrations are adjusted to a standard gource strength of 100 g sec⁻¹

Fig. 17. Profiles of axial ground-level concentration for stack height of 100 m for three stability stratifications.

and a mean wind speed of 5 m sec^{-1} . Axial concentrations for the elevatedsource plume were calculated from the σ_y values in fig. 13, assuming rectilinear vertical spread (p = 1.0). Values assumed for σ_A , σ_E (deg) are: neutral ($\sigma_A = 7$; $\sigma_E = 4$); moderate instability ($\sigma_A = 12$; $\sigma_E = 6$); extreme instability ($\sigma_A = 25$; $\sigma_E = 9$). The maximum concentrations in the figure may be compared with Sutton's value of 0.46 mg m⁻³ which is invariant with thermal stratification. The results show that, as might be expected, the point of maximum concentration moves closer to the stack as the instability increases. Sutton's estimates for \underline{x}_m are considerably larger than those in the figure. This may be partly explained by the fact that the values selected for σ_E apply generally to a rough site.

The data presented in the preceding section of the paper clearly indicate that there are a variety of assumptions that may be made in obtaining quantitative dispersal estimates within the framework of the above diffusion model. The results in table 3 are intended to show the probable extreme range of estimates for maximum ground-level concentrations that might be expected for various stability stratifications. It has been assumed that the plume does not reach the ground in the presence of stable thermal stratification. Axial concentrations for the elevated-source plume were obtained by calculating initial concentrations at $\underline{r} = 100$ m from $\bigcirc_{\underline{r}}$ in figs. 13, 14 and from $\bigcirc_{\underline{r}}$ based on rectilinear vertical spread from the source to 100 m. These initial estimates were then decreased with distance according to the tabulated values of \underline{b} . Entries for \underline{X} and $\bigwedge_{\underline{g}}$ not enclosed by parenthesis refer to rectilinear vertical spread ($\underline{p} = 1.0$); entries enclosed by parenthesis refer to vertical spread göverned by the power-law exponent \underline{p} .

These computations show that in near-neutral stratification, the maximum axial ground-level concentration occurs within a distance of 1.5 km from the stack; in unstable thermal stratification, x_m is generally less than 1 km. This means that the O'Neil' concentration measurements constitute a reliable basis for estimating maximum ground-level concentrations; the data in figs. 9, 10 are merely multiplied by the factor $e^{-2p} \approx 0.4$ at the appropriate distance given by equation (9). Estimates for χ_g in table 3 scatter about Sutton's value of 0.46 mg m⁻³, and it appears that the latter may safely be used as a first approximation to maximum ground-level concentration in all stability classifications (for h = 100 m).

According to equation (11), the variation of maximum ground-level concentration with stack height, is given by the expression

$$\chi_{g(max)} \propto \frac{1}{b^{t/p}}$$

In general, therefore, the variation follows the usual inverse-square law. However, in stable thermal stratification, the variation with height is somewhat less than that indicated by the inverse-square law; in unstable thermal stratification, the height variation is somewhat greater.

-21-

Table 2. Maximum ground-level concentrations for effective stack height of 100 m. Concentrations are adjusted to standard source strength of 100 g sec⁻¹ and mean wind speed of f m sec⁻¹. Estimates enclosed by parentheses () refer to computations using values of $p \neq 1.0$.

Stability stratification	J (deg) 6	J-(deg) 3.0	<u>b</u> 1.70	P 1.0	x _m (km)		$\chi_{g}(mg m^{-3})$	
					1.46		0.6	
Near neutral	10	4.0	1.85	1.0	1.05	*****	0.3	
	14	5.0	2.00	1.0	0.51	*****	0.2	
	10	4.0	2,00	1.0	1.01	****	C.2	(0.2)
Noderately unstable	15	5.5	2.15	1.1	0.71	(0.42)	0.2	(1.3)
	20	7.0	2.30	1.2	0.54	(0.21)	0.1	(0.6)
	20	7.0	2.20	1.2	0.54	(0.21)	0.1	(1.2)
Extremely unstable	25	ΰ . 5	2.20	1.2	C.46	(0.18)	0.1	(1.0)
	30	10.0	2.20	1.2	0.39	(0,16)	0.1	(1.0)

1

III. MEASUREMENTS OF THE STRUCTURE OF TURBULENCE AT O'METLL, MEBRASKA

A. Description of fast-response meteorological instrumentation

Instrumentation for investigating characteristic features of the structure of turbulence has been under continuous development for many years at the Round Hill Field Station in connection with empirical studies of diffusion and atmospheric turbulence. The fast-resronse instruments used during Project Prairie Grass comprised five lightweight bivanes and heatedthermocouple anemometers. Prototypes of these instruments have been described previously (8; 9; 10; 17). A photograph of one of the field assemblies used during the Prairie Grass experiments 's shown in fig. 18. The vane is constructed of optical lens cleaning tissue demented to a fine wire framework: the total surface area is about 300 cm² and the weight of the entire tail assembly, including the thin-wall aluminum alloy shaft, is 2 g. Movements of the vane in both the plane of the horizon and vertically are transmitted to two Giannini microtorque potentiometers mounted in the base of the instrument; the azimuth shaft of the bivane is coupled to one of the potentiometers by a pair of 1:1 precision aluminum gears. Vertical movements of the vane are transmitted by means of a fine metal chain that passes over two identical aluminum pulleys (located at the top and bottom of the vertical shaft); the second potentiometer is connected to the shaft of the lower pulley by a flexible coupling. The bivane is supported on three legs, one of which is 180 deg from the electrical zero of the azimuth potentiometer and serves as a reference for orienting the bivane with respect to the mean wind direction.

E._

Fig. 18. Photograph of bivars and heated-thermocouple anemometer mounted on tripod (abcve), and (below) closeup of the base of the bivane show-ing micro-torque potentiometers and other components.

III. MEASUREMENTS OF THE STRUCTURE OF TURBULENCE AT O'MEILL, MEBRASKA

A. Description of fast-response meteorological instrumentation

Instrumentation for investigating characteristic features of the structure of turbulence has been under continuous development for many years at the Round Hill Field Station in connection with empirical studies of diffusion and atmospheric turbulence. The fast-response instruments used during Project Prairie Grass comprised five lightweight bivanes and heatedthermocouple anomometers. Prototypes of these instruments have been described previously (8; 9; 10; 17). A photograph of one of the field assemblies used during the Prairie Grass experiments 's shown in fig. 18. The vane is constructed of optical lens cleaning tissue demented to a fine wire framework; the total surface area is about 300 cm² and the weight of the entire tail assembly, including the thin-wall aluminum alloy shaft, is 2 g. Movements of the vane in both the plane of the horizon and vertically are transmitted to two Giannini microtorque potentiometers mounted in the base of the instrument; the azimuth shaft of the bivane is coupled to one of the potentiometers by a pair of 1:1 precision aluminum gears. Vertical movements of the vane are transmitted by means of a fine metal chain that passes over two identical aluminum pulleys (located at the top and bottom of the vertical shaft); the second potentiometer is connected to the shaft of the lower pulley by a fl-xible coupling. The bivane is supported on three legs, one of which is 180 deg from the electrical zero of the azimuth potentiometer and serves as a reference for orienting the bivane with respect to the mean wind direction.

E.__

Sensing elements of the heated-thermocruple anememeters comprise thermojunctions made from chromel-P and constantan wires measuring 0.005 cm in diameter: the wires are butt-welded by a spark-discharke technique in the field of a low power binocular microscope. This technique facilitates preduction of junctions of uniform physical dimensions, a condition requisite for the use of a single calibration curve for several probes. The thermojunctions are incorporated in an electrical circuit first developed by Hastings (18; 19). The probe consists of four copper studs, arranged in a t-shaped pattern, that support the theraccouple wires; two junctions are heated to a temperature of about 300 C by a constant-current a.c. power supply: the third junction is unheated and assumes ambient air temperature. Passage of air over the heated junctions produces a cooling that results in a reduced thermal e.m.f.; fluctuations in ambient air temperature are compensated by the output of the unheated junction which opposes that of the other two. Satisfactory operation of the probes depends on the maintenance of a closely-controlled (constant) heater current. In preparation for the Prairie Grass observations, the r.f. thermocouple meters previously used to monitor the current to individual probes were replaced by a single Weston a.c. milliammeter (Model ,433) which has a frequency range of 25 to 500 cycles sec⁻¹ and an accuracy of about 0.75 per cent. This meter and an equivalent inductance are switched from one heated-thermocouple power supply to another to determine the proper current settings. When the mater is switched out of a probe circuit, it is replaced by an equivalent d.c. resistance. This procedure eliminates the necessity for considering the characteristics of individual monitor meters in determining the proper heater

currents. As an additional precaution, a Sorensen voltage regulator (Type 100 A), capable of maintaining the line voltage within 0.5 per cent, was placed in the primary of the heater-current supply circuit. As shown in fig. 18, the probes are mounted on the azimuth shafts of the bivanes so that they will be headed into the wind by the action of the vane. The response of the probes is essentially nondirectional since the heated thermojunctions are oriented parallel to the plane of the horison and are thus insensitive to the angle of attack of the wind vector. The response in the azimuth plane varies as the cosine of the angle between the horizontal wind vector and the heading of the asimuth vane; this is normally a small angle.

-20

The calibration curve for the Psated-thermocouple anemometers used in the Prairie Grass experiments is presented in fig. 19. The curve is a composite based on the results of a series of calibrations in the Project wind tunnel at O'Neill, Nebraska prior to the start of the field program. Scatter of points about the composite curve varies from an average deviation of about 10 per cent, at both extremos of the wind-speed range, to about 5 per cent within the 3 to 10 m sec⁻¹ interval; this is in part due to uncertainties in determining wind-tunnel air speeds, particularly at low draft velocities. The absolute calibration of the heated-thermocouple probes is sensitive to large differences in ambient air temperature; the O'Neill calibration curve is significantly displaced from that obtained at Round Mill which refers to an ambient air temperature of about 18 C (as contrasted with a value of about 30 C for O'Neill). Numerous other factors, such as dust collected on the thermojunctions, uncertainties in the recording apparatus.

5

Fig. 19. Calibration www for heated-thermocouple anomenter. Measurements obtained during Project Prairie Grass.

Fig. 20. Response of bivane and heated-thermocouple anemometer to simple sine waves of varying frequency.

etc., also contribute to errors in absolute calibration. In practice, therefore, absolute values of the wind speed measured by individual probes are frequently not representative. In statistical tests to determine the homogeneity of the data, for example, absolute values should be normalized with respect to the (measured) mean wind speed. As shown in fib. 19, there is a contraction of the calibration curve at high wind speeds which makes it difficult to resolve wind speeds in excess of 11 m sec⁻¹; expansion of the high wind-speed section of the calibration curve has so far been achieved only at the expense of eliminating important low wind-speed ranges. Response characteristics of the bivanes and heated-thermocouple anemensions are shown in fig. 20. Due to the nature of the sensing elements, the response of the bivane is a function of the wind speed, particularly for speeds below 5 m sec⁻¹. The limiting factor in the speed of response of the bivane, except for very low wind speeds, is in the recording system. Critical damping of the azimuth and elevation motion of the vane is achieved by use of appropriate electrical resistances in series with the recorders. The response of the recorders to fluctuations in azimuth and elevation angle is speeded up by means of r-c networks. Since data from the bivanes and heatedthermocouple anemometers are combined to determine the vector wind components, it is important that the characteristic times of both instruments be closely matched. The curves in fig. 20 indicate that this condition is satisfied for wind speeds in excess of about 3 m sec⁻¹, and that both instruments faithfully resolve fluctuations with frequencies less than 1 to 0.5 cycles sec⁻¹.

£.

Preparations for the Prairie Grass experiments involved the relocation of the recording equipment and auxilliary apparatus for the fast-response instrumentation in the interior of the International truck shown in fig. 21a. Power supplies for both the bivales and heated-thermocouple anemometers were rebuilt and provision made for handling information from six instrument assemblies. Data from the sensing elements are relayed to the junction box, located on the lower left side of the truck (see fig. 21b), by insulated cables. The interior of the truck is fitted with six standard relay racks. The racks on the left side contain the power supplies for the heated-thermocouple anemometers and bivanes, Weston inductronic amplifiers for the anemometers, voltage regulator, heater-current monitor, and a master timer for automatic sequence-operation of all the equipment (see fig. 21c). The racks on the right side of the truck contain eight Esterline-Angus dual recorders (0 to 1 ma), switches, and other auxilliary apparatus for the operation of the recorders (see fig. 21d). A tie point between the amplifiers, power suppli, s. and recorders is provided by a row of terminal strips in the interior of a 6-ft section of square duct mounted behind the relay racks. All of the wiring from the recorders to the amplifiers and power supplies is enclosed in water-tight, flexible tubing that passes through the walls and beneath the truck floor. A 200-watt, L00-cycle generator, driven by an C.5 hp electric motor, is mounted on the lower right side of the truck; this a.c. source may be used for the anemometer heater circuits. Jllumination in the truck interior is provided by two LO-watt fluorescent lamps mounted on the truck walls behind the relay racks.

E

(a)

100

(b)

(c)

(d)

Fig. 21. Photographs of various components of fast-response meteorological instrumentation system used during Project Prairie Grass: (a) Instrument truck; (b) connector box mounted on truck for bivane and heated-thermocouple anemometer cables; (c) amplifiers and power supplies for fast-response instrumentation and (d) high-speed recorders mounted in truck interior. B. Experimental procedures and data abstraction

Investigations of the structure of atmospheric turbulence are principally based on selective analyses of the mean square amplitudes (power spectra) and characteristic lengths (scales) of fluctuations in wind velocity. Due to the broad spectrum of eddy sizes normally present in atmospheric flow, techniques that have been successfully applied in wind-tunnel studies of turbulence (20) are only of very limited use. Within the past decade, precise methods have been developed by Tukey (21) and others for the spectral and cospectrel analysis of turbulent fluctuations of the type found in the lower atmosphere. These techniques utilize Fourier transforms of autocorrelation and cross-correlation functions obtained from stationary or quazistationary time series. Mumerous investigators have determined power spectra of the wind velocity or of its components (11; 22; 23; 24; and others); however, except for preliminary studies at Round Hill (8; 25), practically no measurements of the Eulerian scales of atmospheric turbulence are available.

The Prairie Grass experiments were designed to provide information on the Eulerian scales of turbulence of the orthogonal components of the wind velocity within the frequency band extending from about 0.5 to 0.01 cycles sec⁻¹. Five bivanes equipped with trated-thermocomple anemometers were arranged either parallel or normal to the prevailing wind direction as shown in fig. 22; the sensing elements were at a height of 2 m. Frecise orientation of the azimuth scales of the bivanes with respect to the axes of the arrays was accomplished in the following manner: A small transit was mounted on the tripods used to support the bivanes and the tripod head

Fig. 22. Schematic diagram showing longitudinal and transverse spacings of fast-response instrumentation during Project Prairie Grass experiments. Dashed line denotes actual location of transverse array. rotated until the position of the reference leg of the bivane, mentioned previously, was exactly (\pm 0.3 deg) in line with the axis of the array. To facilitate rapid changes from transverse to longitudinal orientation, two sets of tripods and two complete sets of insulated electrical cables were utilized; the tripods were left permanently in position (except for changes in transverse separation distances) and only the bivanes needed to be moved. Due to the length of time required to prepare for an experiment (1 to 2 hr), there did not appear to be any satisfactory alternative method for improving the orientation of the bivanes with respect to the mean wind direction actually observed during the experiments; experience demonstrated that forecasts of the wind direction were not sufficiently accurate to justify the additional effort required.

Data were cotained for approximately 60 experiments in which the 20min sampling period was centered on the mid-point of the gas release for the diffusion measurments (see p. 8). The experiments are approximately equally divided between longitudinal and transverse orientations. Separation distances of 6, 12, 2L, and L8 m (see fig. 22) were used for all longitudinal orientations and for about half the transverse orientations; the remaining transverse experiments utilised separations of 1, L, 16, and 6L m. The observations comprise chart records (continuous pen traces) of fluctuations in asimuth angle, elevation angle, and total wind speed at each instrument position. Data were abstracted from the original chart records at intervals of 1.067 sec and entered on IBM punch cards at Iowa State College under the direction of Professor R. M. Stewart, Jr.; this was accomplished by means of

E_

automatic equipment that included a photoelectric scanning device for reading the chart records. Detailed descriptions of the data abstraction techniques and the apparatus will soon be available in a Scientific Report issued by Iowa State College.

C. Brief description of data processing techniques

Before spectral analyses may be performed, the raw data must first be converted into velocity components by means of a trigonometric program. The various steps involved in this program are outlined below. The following information is available on purch cards for each instrument position for each experiment: Asimuth angle (deg) A_{ij} Elevation angle (deg) E_{ij} Wind speed (m sec⁻¹) ∇_i . There are approximately 1130 consecutive values of each of the above quantities (N=1130) in view of the total longth of record (20 min) and the time interval (1.067 sec) between individual samples. By definition, the algebraic summations of the individual velocity components taken over the complete sampling period are not equal to zero. The virtual mean asimuth A^* and elevation E^* angles required to satisfy this condition may be written in the form

$$A^{\#} = \tan^{-1} \qquad \frac{\sum_{i=1}^{N} V_{i} \cos (E_{i} - E^{\#}) \sin A_{i}}{\sum_{i=1}^{N} V_{i} \cos (E_{i} - E^{\#}) \cos A_{i}}$$

j

and,

$$E^{*} = \tan^{-1} \qquad \frac{\sum_{i=1}^{N} V_{i} \sin E_{i}}{\sum_{i=1}^{N} V_{i} \cos E_{i}}$$

$$i=1$$

٤...

The expressions for the component velocities referred to a Cartesian coordi-

nate system with the x-axis in the direction of the mean wind then become

$$u_{1} = U_{1} - \overline{U}$$

$$v_{1} = \overline{V}_{1} \cos (E_{1} - \overline{E}^{*}) \sin (A_{1} - \overline{A}^{*});$$

$$\overline{v}_{1} = \overline{V}_{1} \sin (E_{1} - \overline{E}^{*});$$

where

$$\overline{U} = \frac{1}{N} \sum_{i=1}^{N} U_{i}; \qquad U_{i} = V_{i} \cos \left(E_{i} - E^{\dagger}\right) \cos \left(A_{i} - A^{\dagger}\right)$$

and

The spectral analysis program utilises the auto-correlation function

States and

and the second second

THE PARTY COMPANY

いろう ちょうちょう しょう

$$\mathbf{R}_{\mathbf{p}} = \frac{1}{\mathbf{N} - \mathbf{p}} \sum_{i=1}^{\mathbf{N} - \mathbf{p}} \mathbf{x}_{i} \mathbf{x}_{i+\mathbf{p}} \quad (0 \le \mathbf{p} \le 60) ;$$

where x_i ($1 \le i \le N$) is one set of u_i , v_i , or w_i to obtain smoothed spectral densities UN_k ($1 \le k \le 59$) for each velocity component at each sampling station. Cospectral analysis utilizes the covariance functions

$$s_{p}^{+} = \frac{1}{N-p} \sum_{i=1}^{N-p} x_{i} y_{i+p} \quad (0 \le p \le 60) ;$$

$$s_p^- = \frac{1}{N-p} \sum_{i=1}^{N-p} x_{i+p} y_i \quad (0 \le p \le 60) ;$$

where y_i $(1 \le i \le N)$ is another set of the same velocity component represented by x_i for another instrument position during the same experiment. From those functions, smoothed cospectral estimates UCN_k $(1 \le k \le 59)$ and smoothed quadrature spectral estimates UQN_k $(1 \le k \le 59)$ are obtained for each velocity component at 10 separation distances in each experiment.

According to Tukey (21), the UN_k , UCN_k , UQN_k estimates are averages for frequency bands centered at

$$f_{c} = \frac{\pi k}{\Delta t m} ;$$

the frequency limits for each band are given by

$$f_1 = \frac{\pi (k \pm \frac{1}{2})}{\Delta t}$$

In the present case, $\triangle t = 1.067$ sec and m, the number of lags, is 60. The estimates therefore refer to a gross frequency range extending from about 0.5 to 0.008 cycles sec⁻¹.

The programming of the punch cards for high-speed computations of welocity components, spectral and cospectral analysis was performed by the Ceneral ...lectric Company in Lynn, Mass- under the supervision of Lt. R. P. Ely and Mr. D. A. Haugen of the Air Force Cambridge Research Center. Detailed descriptions of the procedures are available in a Osophysical Research paper.¹ The actual computations were carried out on the Ceneral Electric IBN 704 machine.

٤...

Panofsky and Deland (23) also present a detailed discussion of the computational procedures for determining spectra and cospectra.

D. Results of preliminary scale analysis

The Eulerian scales of turbulence are usually defined in terms of the correlation coefficient R(s) between fluctuations at two points separated by a distance s. The average eddy diameter or scale L is given by the integral

$$L = \int_{0}^{\infty} R(s) ds$$

In practice, the upper limit of the integral is given by the separation distance at which the spatial correlation function becomes insignificant. In studying the scales of turbulence associated with a broad spectrum of eddy sizes, it is necessary to filter the data so that correlation functions may be determined for relatively narrow frequency bands; otherwise, the results will primarily reflect the influence of the longest period fluctuations present in the sample. Two quantities are derived from the autocovariance and covariance functions defined above that are analagous to the squares of linear correlation coefficients between two time series but are, also, functions of frequency k. The coherence (CON) is given by

$$COH_{k} = \left[(R_{COH})_{k} \right]^{2} = (UCN_{k})^{2} + (UCN_{k})^{2} / (UN_{k,1} UN_{r,2}) \quad (1 \le k \le 59);$$

where the subscripts 1, 2 refer to instrument positions. Inclusion of the quadrature term (UQN) permits consideration of fluctuations that are 90 deg out of phase; if these fluctuations are neglected, or are insignificant, the expression simplifies to

$$COH_{k} = \left[(R_{COS})_{k} \right]^{2} = (UCN_{k})^{2} / (UN_{k,1} UN_{k,2}) \qquad (1 \le k \le 59),$$

Sample plots of the correlation coefficients R_{COH} , R_{COS} as functions of frequency are presented in fig. 23; data refer to fluctuations in the vcomponent of wind velocity at two separation distances during a daytime experiment. By definition, R_{COH} is always positive and can never be less in absolute magnitude than R_{COS} . Although R_{COS} is also, by definition, positive it has been given the sign of the covariance term UCN according to the usual convention. There are no accepted statistical tests for the significance of cospectral estimates. An approximate value for the significance level of the correlation coefficients shown in the above figure may be obtained by considering the confidence limits for linear correlation coefficients (95 per cent level), using the number of degrees of freedom established for the spectral estimates UN_k. According to Tukey (21), the number of degrees of freedom <u>f</u> for individual estimates of UN_k is given by

$$f = \frac{N - \frac{1}{4}}{\frac{1}{2}} = 40.$$

This indicates a significance level of about 0.30 for the $R_{\rm COH}$, $R_{\rm COS}$. It appears from the curves shown in fig. 23 that there is no appreciable dirference in the behavior of the two correlation functions so far as scale computations are concerned; the inclusion of the quadrature estimates essentially results in random fluctuations that are statistically insignificant. The results of numerous scale computations utilizing both correlation functions support this conclusion. In the scale diagrams presented below, only the $R_{\rm COS}$ values have been considered.

-3?-

Fig. 23. Plots of the coherence and cospectral correlation coefficients for the v-component of wind velocity during a daytime experiment; data in upper diagram refer to longitudinal separation distance of 6 m while lower diagram refers to a longitudinal separation of 64 m.

£.__
Data for 12 experiments have been analyzed to obtain scale estimates for the u- and v- components of wind velocity for selected frequency bands. The minimum separation distance of 6 m used in these experiments experime the dimensions of the fluctuations in the w-component and no scale estimates are possible. As mentioned above, approximately half the transverse experiments utilized a minimum separation distance of 1m; when spectral and cospectral estimates for these experiments become available, it should be posible to obtain scale estimates for the w-component. Mean wind speeds, wind directions, and standard doviations of asimuth wind direction fo. the Prairie Grass experiments in which scale estimates have been obtained are presented in table 3. The experiments comprise five daytime and seven nighttime cases.

Table 3. Hean wind speeds \overline{V} , mean wind directions \overline{A} , and standard deviations of aximuth wind direction $\mathcal{O}_{\overline{A}}$ for the Prairie Grass experiments used in determining Eulerian scales of turbulence.¹

Run	No.	Time (CST)	\overline{V} (m sec ⁻¹)	Ā (deg)	𝔄 (deg)
6	L	1655-1715	ن ,65	176	9.0
7	L	1355-1415	4.37	203	22.0
8	T	1655-1715	4.75	180	16.3
10	L	1155-1215	4.58	207	17.3
43	L	1155-1215	5.00	167	14.2
17	L	1955-2015	3.40	172	5.7
21	L	2155-2215	5.53	171	6.4
23	Ţ	2055-27.15	6.17	126	6.2
21	L	2255-2315	5.86	110	6.0
32	L	1755-2015	2.22	171	3.9
35	T	2257-2317	3.55	139	5.5
39	L	2225-2245	2.78	126	10.1

The letter L denotes longitudinal (alongwind) orientation of the instruments and T signifies transverse (crosswind) orientation. The mean wind directions and standard deviations of asimuth angle are averages obtained from individual bivane records. Mean wind speeds are based on data from cup anomometers installed at a height of 2 a near the sulfur-dioxide source and at 450 m. The difference between the observed mean wind direction and the expected direction (180 deg) is less than 30 deg for all the daytime experiments; however, this difference exceeds 40 deg in four of the nightime cases. As pointed out below, these large deviations make it difficult to specify the effective orientation of the instrument arrays and result in scale estimates that are composites of longitudinal and transverse factors.

Sample scale diagrams of the u- and v- components for several experiments are presented in figs. 24 to 27. The scale curves are based on calculations of R for selected values of the frequency k; due to the large amount of information available at high frequencies, no attempt has been made to compute the correlations for all possible k values. In drawing the scale curves, the 10 values of R for each k were plotted at the appropriate separation distances and the resulting points connected by straight lines; values of $R_{cos} < 0.30$ were considered insignificant and arbitrarily set equal to sero. For convenience in interpreting the results, the central frequencies and band widths of the frequency intervals identified with the selected k values have been expressed in terms of period (inverse frequency) and are entered in table h. The scale diagrams presented in fig. 24 are typical of the daytime cases thus far analysed. These data indicate the presence of a continuous spectrum of eddy sizes within the period range from about 2 sec to 2 min; although the scale curves for both components are generally similar, the scales for the v-component appear to be somewhat larger than those for the u-component at all frequencies. The scale diagrams pre-

See rage 35 for the appropriate formulas. 🚝

1

-72-

Fig. 24. Scale diagrams for the u- and v-velocity components during a daytime experiment: instruments spaced along the mean wind direction.

The state of the second s

ľ

•

 The set of the second second

sented in fig. 25 refer to a nighttime experiment conducted in the tresence of convective activity (as indicated by intermittent light rain showers at the field site and thunderstorn activity within the general area). The general appearance of the diagrams in fig. 25 is very similar to that of the scale diagrams in fig. 24 which are representative of strong daytime (thermal) convection. There is a marked absence of long-period fluctuations indicated in the scale diagrams of fig. 26 which are representative of a nighttime experiment conducted in the presence of moderate wind speeds and a slight temperature inversion. Also, as noted in fig. 24, the fluctuations in the v-component appear to be somewhat larger than those for the i-component. The scale diagrams presented in fig. 27 reveal the presence of long-period fluctuations; inspection of azimuth vane records show a gradual turning of the wind in the asimuth plane during the observation period; this gradual shift in wind direction is also apparent in the diffusion measurements obtained for the same experiment. These data also indicate that the shorter-period fluctuations in the v-component are somethet larger than those for the u-component.

Scale estimates for the u- and v-components of the wind velocity have been obtained for the 12 experiments listed in table 3 by calculating the areas beneath the scale curves. In order to have a basis for comparing the results from the various experiments, the scale estimates thus obtained have been plotted as functions of inverse wave number. The daytime results, presented in fig. 28, show that the longitudinal scale estimates for both u and v are linearly related to the inverse wave number. The solid lines in the figure were fitted to the longitudinal data by the method of least squares.

-40-

Fig. 25. Scale diagrams for the u- and w-velocity components during a nighttime experiment marked by convective instability; longitudinal orientation of instruments.

ľ

m

10.

08

06

04

3

24L 2255-2315 (ST

Fig. 26. Scale diagrams for the u- and w-velocity components during a typical nighttime experiment; instruments spaced along the mean wind direction.

+p-#

ł

I

Fig. 27. Scale diagrams for the u- and v-velocity components during a nighttime experiment characterized by long-period fluctuations; longitudinal orientation.

and the second state of the second state of the second

Fig. 28. Scales of turbulence for the u- and v-velocity components of daytime experiments plotted as functions of inverse wave number.

M

Table 4. Central frequencies and bord widths of frequency intervals secondiated with selected values of k used in obtaining scale estimates; for convenience, data are inverted and expressed in terms of period rather than frequency.

¥	$T_c = 1/f_c (sec)$	Band width (sec)
1	128	256-85
2	64	85-51
3	43	51-37
L L	32	37-28
ŝ	26	28-23
6	21	23-20
8	16	17-15
10	12.8	13.5-12.2
12	10.7	11.1-10.2
15	8.5	8.8- 8.2
20	6.4	6.6- 6.2
2h	5.3	5.4- 5.2
-1 70	4.25	4.3-4.2
1.0	3.20	3.24- 3.16
 59	2.18	2.19- 2.15

The scale estimates for Run No. 8, which refer to a transverse orientation, have not been included in the regression calculations; these estimates, particularly in the case of the v-component, appear to be smaller than the corresponding longitudinal scales. The linear relationship between the longitudinal scale estimates and inverse wave number implies the equivalence of space and time spectra; in other words, spatial correlations determined at fixed separation distances \underline{x} along the direction of the mean wind correspond to points on the autocorrelation curve (based on measurements at a fixed point) when time and space are related by the equation

x - VT ,

where $\overline{\mathbf{v}}$ is the mean wind speed and T is time in sec. This equivalence has been demonstrated by direct comparisons of space and time correlations obtained from

the Prairie Grass fast-response data (26). The regression lines in fig. 28 show that, while the daytime longitudinal scales for the u- and v-components are closely eimilar, the scale estimates for the v-component tend to be elightly larger, (particularly for large inverse wave numbers). Although data for only one transverse crientation are available, these suggest that there is no great difference in the alongwind and crosswind dimensions of the u- and vfluctuations during the daytime. Plots of the nighttime scale estimates versus inverse wave mumber (ase Fig. 29) tend to fall into two groups both of which show a linear relationship between the two variates. Approximately half the data tend to scatter about the regression line determined from the daytime cases; the other half tends to be situated along a regression line of significantly smaller slope. In general, the scale estimates for the transverse orientations (Run Nos. 23, 35) fit the lower regression line; Run No. 24 also fits this regression line and, in view of the mean wind direction, must we considered of doubtful orientation. The longitudinal orientations fit the upper regression line. The tentative conclusion would appear to be that, at night, the alongwind dimensions of both the u- and v-components are considerably larger than the crosswind dimensions. Panofsky et al (26) have reached the same conclusion based on a different treatment of the data. The regression lines in the figure also suggest, as in: fig. 28, that the dimensions of the fluctuations in the v-component are somewhat larger than those in the u-component at all frequencies investigated. Summaries of the scale estimates for the u- and v-components adjusted to a mean wind speed of 5 m sec⁻¹ and based on the regression lines in figs. 28, 29 are presented in table 5.

The set of the set of

Fig. 29. Scales of turbulence for the u- and w-velocity components of nighttime experiments plotted as functions of inverse wave number.

Taole 5.	Estimates of the of the period T	sciles of (sec).	turbu	lence	for y	= 5 m	sec-l	as fu:	nctio	n
Iongitudi (daytime	and nighttime ¹)	T(sec)	90	60	30	20	15	10	5	
S _u	(=)		60	40	20	13	10	6	÷ 3	
Sv	, (m)		81	ŝ	214	11,	10	۶	3	
Tran svers (nigh	e orientation ttime ¹)									
Sa	(m)		12	8	5	3	< 3	< 3	<3	
S _▼	(m)		20	15	9	8	5	. 3	3	

1 Nighttime spectrum of eddy sizes is not necessarily continuous within the range of period specified in the table.

The scale estimates obtained from spatial correlations refer to the average dimensions of fluctuations measured over half cycles and thus correspond to half wave lengths. It is apparent from the data in table 5 and from the regression lines in figs. 28, 29 that the wave lengths thus indicated by the longitudinal scale estimates are about three times smaller than the simple wave lengths obtained from the expression $x = \overline{V} T$. This is approximately the same relationship found between the Eulerian and Lagrangian scales of turbulence (26). Since the validity of the expression $x = \overline{V} T$ depends upon the persistence of the turbulence in the direction of the mean wind, it is suggested that the factor of 3 noted above is essentially due to important variations in azimuth wind direction that continuously alter the effective orientation of the fixed instrument array during the 20-min sampling periods.

IV. DIFFUSION MEASUREMENTS AT ROUND HILL DURING 1957

-<u>II</u>--

A. Introduction

Most available diffusion measurements comprise average or time-mean concentrations measured at fixed points over compling periods of 3 to 10 min. Three-minute samples were widely used in the well-known Porton experiments (1) and 10-min sampling has been employed for the diffusion measurments made at Project Prairie Grass and for the earlier work at Hound Hill. Satisfactory understanding of dispersal processes and maximum utilisation of these data require detailed knowledge of the probable variation in concentration and other diffusion parameters as a function of sampling time. For certain practical applications, and for use in formulating dispersal theories as well, it is essential to know the instantaneous distripution of concentration within the plume from a continuous point source. Recent studies of small-scale dispersal have shown that the standard deviation of asimuth wind direction and the Stability Ratio are useful meteorological indicators of diffusion (14) over sampling periods of 10 min duration; the utility of these predictors in estimating short-period dispersal is of considerable interest.

Frevious investigations of the "instantaneous" filld of concentration have been based largely on interpretations of photographs of visible smoke plumes (7; 16). This technique is subject to certain limitations inherent in the determination of visual range and does not provide information on the distribution of concentration within the plume. Direct measurement of effluent concentrations over short sampling periods requires detailed and comprehensive experimental procedures utilizing a tracer technique of wide flexibility. During the fall of 1957, a series of diffusion experiments of this type was conducted at the Round Hill Field Station. Suitable modifications in the sulfur-droxide sampling network were made to permit sampling over periods as short as 0.5 min without appreciable loss in precision.

-45-

B. Description of experimental techniques

and the state of the second second

The sampling array consists of three overlapping, independently-operated, networks at travel distances of 50, 100 and 200 m. During the experiments, time-mean concentrations for sampling intervals of 0.5, 3, and 10 min were obtained at each travel distance. A schematic diagram of the field installation is shown in fig. 30. The 10-min network comprised individual stations located at a height of 1.5 m and spaced at 3-deg intervals along 180 deg of arc; limited vertical sampling was also carried out at 15-deg angular separations at heights of: 0.5, 1.0, 2.5 m (50 m); 0.5, 2.5 m (100 and 200 m). Sampling stations for the 3-min and 0.5-min networks were at a height of 1.5 m and spaced at 1.5 deg intervals along arcs of 150 and 120 deg, respectively. A section of the 100-m arc with midget impingers in position is shown in fig. 32.

御御書書を読みてい

「「「「「「」」」をも

寺方を使いた

The sulfur-dioxide generator used throughout Project Prairie Grass supplied the tracer.¹ The installation of the generating equipment at the

See fig. 3. Details of source operation are described in a Geophysical Research paper to be distributed by the Air Force Cambridge Research Center.

E___

Fig. 31. Photographs of sulfur-dioxide generator (above) and release-point for the tracer (telow). Generator comprises inverted tank of liquid sulfur dioxide sheltered by galvanized-iron cylinder, water bath containing vaporization chamber, and large gas meter. Plastic pipe connected to outlet of gas mater conducts tracer to release-point shown in lower photograph which is at height of 1.5 m. Cup anemometer and azimuth wind direction vane are shown at the left.

Fig. 32. Photograph of a section of the 100-m arc (above) showing cedar posts of the 10-min network and steel fence posts utilized in the 0.5- and 3-min networks. The lower photograph shows the vacuum pumps, tanks, and regulators for operating the three sampling networks at 50 m; vertical samples are obtained at heights of 0.5, 1.0, 1.5, and 2.0 m on cedar post shown at extreme_left.

E

field site is shown in the upper photograph of fig. 31. After passing through the meter the gas was conducted underground through 2-in. plastic pipe to the release point (lower photograph of fig. 31) where it was emitted horizontally into the atmosphere at a height of 1.5 m. A source strength of about 100 g sec-1 was required during conditions of thermal instability while an emission rate of half that amount was sufficient under nightime conditions of thermal stability. Prior to the start of an experiment, the tracer was permitted to traverse the entire network; the three sampling networks were then turned on simultaneously and each operated for the appropriate length of time. Aspiration of the impingers was provided by 10 vacuum tanks. Each of the three networks at each travel distance was supplied by a single vacuum source, with exception of the 0.5-min sampling network of the 200-m arc. To obtain the desired speed of response for this network, the 120-deg section was divided into two equal parts and each section provided with its own vacuum pump. The vacuum pumps, tanks and regulators used for the three networks of the 50-m are are shown in fig. 32. Vacuum sources were controlled from a panel located upwind from the release point (see fig. 30). Solenoid-operated valves were used on all vacuum sources of the 3-min and 0.5-min networks to ensure minimum time-delay in reaching the proper rate of aeration of the samplers. The details of one of the vacuum sources may be seen in fig. 33. During a gas release, the equipment functioned as follows: (1) The vacuum pump was turned on to evacuate the tank to a predetermined value which was maintained by the regulator at the right. This vacuum was just sufficient for rapid evacuation of the line to the proper value at the start of the sampling poriod.

-46-

Barrie

Fig. 33. Photograph of remote-controlled vacuum source showing (from left to right) vacuum regulator, solenoid-operated valves, motor for vacuum pump, relay box for operating solenoid valves, vacuum pump, gauge and regulator for initial tank vacuum.

and a weight with a feature we

(2) At the beginning of the samplin; period, a solenoid-operated value between the tank and the vacuum line to the impingers was opened. The vacuum regulator at the extreme left then maintained the vacuum of the system at the level required for an acration rate of $1.5 \ lmin^{-1}$ (100 mm of mercury). (3) At the end of the sampling period, the pump was turned off, the line disconnected from the tank by the first solenoid value and opened to the atmosphere by a second sclenoid value. Errors introduced into the concentration measurements by the above operation of the vacuum system are estimated to be less than 5 per cent.

Meteorological instrumentation included: a cup anemometer and sensitive azimuth wine located at a height of 2 m near the source; cup anemometers and ventilated thermoccuples at heights of 1.5, 3, 6 and 12 m on the portable tower; and for most a periments, five bivanes equipped with heated-thermocouple anemometers oriented along a line parallel to the base line and spaced at intervals of 1, 4, 16 and 64 m. The operation of all meteorological instrumentation was controlled by a timer located within the recording truck. A 20-min observation period centered on the 10-min gas-sampling period was employed for the meteorological measurements. The location of the meteorological instrumentation at the field site is shown in fig. 30.

C. Data analysis and discussion of results

Ten field experiments were carried out during the period from 21. September to 3 December under a variety of weather conditions. Of these,

E

four wore made during the daytime and six were carried out in the evening under inversion conditions. Appendix B contains tabular summaries of the meteorological data and concentration measurements obtained during this series of experiments. Concentrations are presented in table I; source strengths and correction factors, which may be applied to the measured concentrations to compensate for the evaporational loss of impinger solution during aeration, are entered in table II; base-line wind speeds and standard deviation of azisuth wind direction J for the three sampling periods are summarised in table III; profile data for wind speed and temperature are contained in table IV. The transit time across the network was usually considerably greater than 30 sec. Separate determinations at each travel distance are therefore required to establish appropriate estimetes of the 0.5-min wind speed and σ_{-} values. Because of inherent uncertainties involved in such determinations, only rough estimates of the mean wind speed for the 0.5-min period, applicable to cll travel distances, are presented. Estimates of σ_A for the 0.5-min period were obtained by dividing the maximum range in azimuth wind direction observed during 0.5-min intervals of the base-line wane record by 4.9.1 The start of the 0.5-min sections were delayed with respect to the start of the 0.5-min sampling periods by 100/V sec, where V is the estimate of the 0.5-min wind speed in m sec⁻¹. These \mathcal{O}_A^- estimates are, therefore, most closely related to the concentration measurements made at the 100-m arc. Standard deviations of asimuth wind direction for longer sampling times were computed directly from the vane records (data abstracted at intervals of 2.5 sec).

This approximation assumes that the vane data are normally distributed.

E.

Horizontal concentrations profiles for four experiments are presented in fig. 34 to illustrate general features of the gas plumes. The profiles were obtained by expressing the concentrations at individual sampling stations along a given arc as percentages of the sum of all concentrations for the arc. In addition, daytime percentages for all sampling times were smoothed by a weighted)-term moving average; nighttime data are unsmoothed. These profiles show the effect of sampling time upon plume width and upon the distribution of concentration across the plume. Fig. 34(a) shows profiles obtained at 50 m under corditions of strong midday heating. The 3-min profile tends to be bimodal but is otherwise guite similar to the 10-min distribution; in contrast. the C.5-min profile is much narrower and more peaked than either of these. Fig. 34(b) shows profiles at 200 m obtained under slight inversion conditions. Again, except for its marked bimodal character, the 3-min profile is similar to that of the 10-min sample and the 0.5-min profile is narrower and more peaked than the other two. Fig. $3\mu(c)$ shows profiles at 50 m obtained under slight inversion conditions and relativoly strong gusty winds. The three profiles are rather similar, but show increasing irregularity with decreasing sampling time, as might be expected. Fig. 34(d) shows profiles at 100 m obtained under marked inversion conditions. During this experiment the profile was nearly invariant with sampling time.

The utility of the standard deviation of asimuth wind direction \mathcal{T}_{A} as a predictor of plume characteristics measured over a 10-min period has been well established in previous experiments. The data presented in figs. 35 and 36 indicate the usefulness of \mathcal{T}_{A} in estimating dispersal over shorter time

「「「「「「」」

Fig. 34. Examples of horisontal concentration profiles at various travel distances for three periods of sampling.

intervals. In fig. 35 the standard deviation of cross-plume concentration at 100 m for the three sampling times has been plotted against σ_A for the same periods. In fig. 36, peak concentrations at 100 m, adjusted to a standard source strength of 1 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹, are plotted (for the three sampling times) against the reciprocal of σ_A . Daytime and nighttime data are indicated by open and filled symbols, respectively; leastsquares regression lines have been fitted to the combined data. These two figures suggest that the relationships previously found between σ_A and plume characte: latics over periods of 10-min duration still hold for periods as short as 0.5 min. The scatter of pointe for the 0.5 min observations may be largely due to uncertainties in establishing the proper value of σ_A . The large σ_A value for the point enclosed by parentheses in figs. 35 and 36 resulted from a single large fluctuation of σ_A from the range shown by the vame record clearly leads to doubtful results.

Measurements of basic plume features (standard deviation of lateral concentration, peak concentration, and integrated-crosswind concentration) for individual diffusion experiments are summarized in table 6. The adjusted concentrations are based in part upon rough estimates of the mean wind speed during the shorter (3-min and 0.5-min) sampling periods obtained from conventional cup anomometers. Use of these estimates tends to eliminate some of the actual variation in the concentrations; in the extrems, observed variations in the 0.5-min peak concentrations may be reduced by about 20 per cent by this factor.

-50-

Fig. 35. Standard deviation of concentration along lateral coordinate (7, at 100 m versus standard deviation of azimuth wind direction. Open symbols denote daytime observation; closed symbols refer to nightime observations. Fig. 36. Peak concentration at 100 m versus inverse standard deviation of asimuth wind direction. Concentrations are adjusted to source strength of 1 g sec⁻¹ and mean wind speed of 5 m sec⁻¹. Open symbols denote daytime observations and closed symbols refer to nighttime observations.

3 H - N 0 5 H - N -11-

Table 6. Plume characteristics for three periods of sampling.¹

(a)	Cross-plum			dard d	leviatio	on of co	of concentration			(deg)		
	Travel dis		itance 50 m			100 m			200 m			
Sampling	time	(min)	10	3	0.5	10	3	0.5	10		0.5	
Run	۶o.								•			
1	L		5.7	5.2	4.5	3.8	3.4	3.8	2.7	2.4	2.3	
2	2		Ц.9	11.7	8.1	14.0	10.6	4.0	13.1	10.4	5.1	
3)		8.1	7.0	5.4	6.4	6.4	4.3	5.0	5.5	4.0	
L	L		15.1	10.2	10.7	ц.з	7.1	8.3	12.5	7.4	8.7	
5	;		7.3	6.2	4.7	5.2	4.7	4.2	3.1	2.6	3.0	
6	•		9.2	6.2	6.5	7.7	5.1	4.1	6.7	3.7	4.0	
7	•		10.4	8.1	8.7	8.3	6.7	5.7	6.4	6.0	3.9	
8			9.2	8.2	8.8	7.3	6.8	7.2	5.9	5.4	5.5	
9)		11.6	10.9	9.7	9.4	8.5	4.8	8.1	7.1	4.7	
10)		17.3	10.6	6.3	16.7	9.9	5.6	17.5	6.5	2.4	

(b)

Peak concentration χ_p (mg m⁻³) adjusted to a source strength of 1 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹

	Travel distance			50 m			100 m			200 m		
Sampling	time	(min)	10	3	0.5	10	3	0.5	10	3	0.5	
Run	No.											
1	1		4.02	5.68	8,38	بلبا. 2	3.28	3.18	1.00	1.12	0.33	
2	2		1.13	1.21	1.87	0.19	0.26	0.54	0.05	0.06	0.17	
	3		2.72	4.04	2.93	0.77	0.98	1.35	0.23	0.21	0.33	
1	4		1.36	2.75	3.22	0.38	0.69	0.74	0.10	0.17	0 .22	
1	5		3.21	4.56	4.99	1.84	2.10	3.64	0.89	0.60	0.20	
Ċ	5		2.52	1.57	4.41	0.85	1.46	2.02	0.27	0.48	0.23	
•	7		1.14	1.88	1.65	0.50	0.68	0.59	0.17	0.17	0.04	
8	8		1.59	2.78	1.90	0.56	0.68	0.95	0.16	0,18	0.24	
9	9		2.02	2.19	3.43	0.67	0.61	1.54	0.19	0.20	0.44	
10	0		0.93	1,96	1,96	0 .22	0.36	0.16	C .03	80.0	0.16	

1 Adjusted concentrations in parts (b), (c), of the table refer to source strengths and wind speed estimates found in tables II, III of Appendix B.

Table 6. (cont.)

(n)

Integrated-crosswind concentration CIC (mg m⁻²) adjusted to a source strength of 1 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹

	Travel distance			50 m		100 m			200 m		
Sampling	time	(min)	10	3	0.5	10	3	0.5	10	3	0.5
Run	No.										
	1		45.38	53.97	59.01	17.30	19.02	22.03	L.7L	4.33	1.39
1	2		24.80	15.08	15.52	5.07	4.70	2.98	1.13	1.14	1.26
	3		32.10	37.50	27.72	8.57	9.56	9.59	2.17	2.09	1.87
Ĩ	1		30.81	35.82	57.98	7.61	8.22	2.1.2	1.72	1.79	2.19
(5		41.13	43.49	34.33	18.25	18.61	26.50	4.83	2.89	1.09
·	5		36.90	10.08	1.8,27	10.50	11.99	13.78	2.56	2.82	1.55
	7		27.17	25.92	21.99	6.99	6.69	3.81	1.69	1.50	0.33
i	3		25.73	28.66	21.05	6.69	7,57	7.02	1.72	1.88	1.48
Ģ			40.24	37.54	45.02	10.87	10.28	13.43	2.53	2.39	3.05
10)		27.05	26.77	21.42	5.56	5.05	1.34	0.87	0.78	0.68

£'...

.

-52-

Table 7. Effect of sampling time on plume parameters at three travel distances. Values for 3-min and 3.5-min sampling times are normalized with respect to the 10-min values.

(1)

Cross-- and standard deviation of concentration $\overline{J_{Y}}$.

	$\sigma_{\mathbf{y}}$	(3 min) /	σ , (10)	dn)	$\int_{\mathbf{y}} (0.5 \text{ min}) / \int_{\mathbf{y}} (10 \text{ min})$				
Run No.	50m	100m	200m	tican	50m	100m	2008	Mean	
1	0,92	0.87	0.88	0.89	0.80	0.93	0.84	0.88	
2	0.78	0.75	0.79	0.77	0.54	0.28	0.39	0.40	
3	0.87	1.00	1,10	0.9;	0.67	0.67	0.60	0.71	
i.	0.67	C.50	0.59	0.59	0.71	0.58	0.70	0.66	
5	0.85	0.90	0.83	0.86	0.64	0.80	0.97	0.60	
6	0.67	0.66	0,56	0.63	0.71	0.53	0.61	0,62	
7	0.78	0.81	0.93	0.84	0.84	0.69	0.60	0,71	
8	0.89	0.93	0.92	0.91	0.95	0.99	0.93	0.96	
9	0.94	0.90	0.08	0.91	0.83	0.51	0.58	0.64	
10	0.61	0.59	0.37	0,5	0.36	0.34	0.14	0.28	

(b) Peak concentration χ_p . Concentrations for each sampling time adjusted to a source strength of 1 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹.

	χ_{r}	(3 min) /	χ_{p} (10)	min)	$\chi_{\rm p}$ (0.5 min) $/\chi_{\rm p}$ (10 min)				
Run No.	50m	1.00m	200 m	Mean	50m	100n	200m	Mean	
1	1.41	1.34	1.12	1.29	2.08	1.30	0.33	1.24	
2	1.07	1.36	1.34	1,25	1.65	2.81	3.60	2.69	
3	1.49	1.27	0,91	1.22	1.08	1.75	1.43	1.42	
Ŀ	2.02	1.79	1.74	1.85	2.37	1.93	2,26	2.19	
Š	1.42	1.14	0.68	1.08	1.55	1.98	0.23	1.25	
6	1.85	1.73	1.79	1.79	1.75	2.39	0.85	1.66	
7	1.31	1.34	0.97	1.21	1,28	1.17	0.26	0.90	
8	1.75	1.22	1.17	1.38	1.19	1.71	1.53	1.48	
9	1.08	0.91	1.06	1.02	1.70	5.30	2.32	2.11	
10	2.10	1.64	2.39	2.OL	2.10	0.73	4.97	2.60	

Constant States and States and States

€__

Table 7. (Cont.)

(c) Integrated-crosswind concentration CIC. Concentrations for each sampling time adjusted to a source strength of 1 g sec⁻¹ and a mean wind speed of g m sec⁻¹.

	CIC	(3 min)	/ CIC (10	0 min)	CIC (0.	5 min)	/ CIC (10	CIC (10 mir.)		
Run No.	50m	100 n	200m	Mean	50m	100m	200m	Mean		
1	1.19	1.10	0.91	1.07	1.30	1.27	0.29	0.55		
2	0.77	0.93	1.01	0.90	0.63	0.59	1.12	C.78		
3	1.17	1.12	0.96	1.08	0.86	1.12	0.86	0.95		
Ŀ	1.16	J. . 08	1.04	1.09	1,88	1.24	1.45	1.52		
5	1.06	1.02	0.60	0.89	0.83	1.45	0.23	0.84		
6	1.09	1.14	1.10	1.11	1.31	1.31	0.61	1.08		
7	0.95	0.96	0.89	0.93	0.92	0.54	0.19	0.55		
8	1.11	1.13	1.09	1.11	0.82	1.05	0.86	0.91		
9	0.93	0.95	0.94	0.94	1.12	1.24	1.21	1.19		
10	0.99	0.91	0.50	0.73	0.79	0.24	0.78	0.60		

Table 8. Summary of observed variations in plume parameters with period of sampling "- daytive and nighttime experiments; entries are based on rati table 7.

		Dayt	ime	Nighttime		
	Ratio	Range Mean		Range	Mean	
χ_p (3 min)	$/ \frac{\lambda_p}{2}$ (10 min)	0.91-2.39	1.54 (1.27)	0.68-1.85	1.33 (1.04)	
() y (3 min)	/ Jy (10 min)	0.37-0.94	0.70 (0.81)	0.56-1.10	0.85 (0.96)	
CIC (3 min)	/ CIC (10 min)	0.77-1.16	0.97	0.60-1.19	1.03	
2 _p (0.5 min)	/ χ_p (10 min)	c.73-4.97	2.40 (1.64)	0.23-2.39	1.32 (1.26)	
$\mathcal{T}_{\mathbf{y}}^{-}$ (0.5 min)	/ σ_{y}^{-} (10 min)	0.14-0.83	0.50 (0.63)	0 .53-0.9 9	0.78 (0.80)	
CIC (0.5 min)	/ CIC (10 min)	0.24-1.88	1.02	0.19-1.45	0.88	

£___

Variations in characteristic plume parameters with sampling time are indicated in table 7 which presents ratios of $\chi_{
m p}$, $\sigma_{
m y}$, and CIC measured over 3and 0.5-min periods to their respective 10-min values. The data in table 8 show the extremes and arithmetic means of these ratios for both daytime and night time experiments. Table entries enclosed by parentheses are based on average ratios of σ_A (0.5-min and 3-min) to σ_A (10-min) obtained from the complete asimuth vane record¹. According to the data in the table, peak concentrations measured over periods of 0.5 and 3 min are on the average about 2.4 and 1.5 times larger, respectively, than the 10-min values for the daytime experiments. At night, both the 0.5- and 3-min peak concentrations exceed the 10-min peak concentration by a factor of 1.3. In the daytime experiments, the 0.5-min and 3-min J values are on the average about 0.5 and 0.7, respectively, of the 10-min σ_y . At night, both the 0.5- and 3-min σ_y values are about 0.8 of the 10-min σ_y . As might be expected, the indicated avera variation in CIC with sampling time is almost negligible. These results may be compared with Sutton's (29) estimate of 0.57 for the ratio of the instantaneous plume width at 100 m to the 3-min time-mean width, in conditions of near-neutral stability; and, Goeline's (28) measurements wear the base of a tall stack which show maximum concentrations for sampling intervals of a few seconds that are 3 to 4 times larger than similar concentrations for 1- to 3-min sampling intervals.

The sequence of 240 observations for each 10-min period was subdivided into consecutive sub-sections of 10, 20, 30, 40, 60, and 120 points. Standard deviations for each sub-section were then averaged to obtain representative values. See table III of Appendix B.

-55-

Some of the experimental results are rather surprising. Three of the nighttime experiments (Run Nos. 1, 5, and 6 in table 6) show 0.5-min peak concentrations at 200 m that are considerably lower than the 10-min peak concentrations; in each case the 0.5-min plume widths (as evidenced by the G^- values) are less than the 10-min widths. Assuming that the concentration measurements are approximately correct, the most likely explanation for these anomalies is that there are occasional large short-period variations in the height of the plume axis and/cr the vertical distribution of concentration. For some purposes it is desirable to remove inhomogeneities of this type from the data; this may be accomplished by normalizing the 0.5- and 3-min CIC values at each travel distance with respect to the 10-min CIC. Ratios of average peak concentration for the various sampling intervals are then given by the relative heights of the maximum ordinates of the lateral concentration profiles (see fig. 34). If the data are adjusted in this manner, the average ratios of the 0.5- and 3-min peak concentrations to the 10-min values are 2.69 and 1.58, respectively, for the daytime experiments. For the nighttime data, similar ratios have values of 1.48 and 1.28. These results do not appear to differ significantly from those previously obtained from un-normalized data.

Although the results obtained during the diffusion experiments indicate that the standard deviation of azimuth wind direction \mathcal{T}_A is a useful predictor of diffusion parameters over the 0.5- to 10-min range of sampling interval, it is difficult to establish statistically significant relationships between diffusion measurements for the 3- and 0.5-min periods and \mathcal{T}_A values for the same intervals. Linear correlations between these variates are below the level of

-56-

significance¹ unless the $\overline{f_A}$ are averages obtained from the entire length of azimuth vane record (see table III in Appendix B). Part of the difficulty is explained by the small sample size and by the impossibility of obtaining satisfactory short-period estimates of $\overline{f_A}$ and mean wind speed from available metcorological information. However, it appears likely that direct relationships between $\overline{f_A}$ and observed plume characteristics must eventually break down as the length of the sampling interval approaches some lower limit, say 1 uses. Whatever the exact nature of the physics of the disporsal process, the primary features of the plumo at any given instant represent an integration of turbulent structure over time and space. A wind-direction when with a small characteristic time is responsive, over short time intervals, to a fine structure of urbulence that may bear little relationship to the structural elements that determine the geometry of the plume at a given instant.

It is possible, however, to establish statistically significant relationships between the 10-min $\sigma_{\overline{A}}$ values and ratios of the type presented in table 7. Estimates of the ratios of $\sigma_{\overline{y}}$ and χ_p for the 0.5- and 3-min intervals to their respective 10-min values at all three travel distances are entered in table 9. The estimates are based on least-square regression lines obtained from the logarithms of the variates; the procedure is identical with that used for the Prairie Grass data shown in figs. 9 to 14. Correlation coefficients and standard errors of estimate appear in table 10. Concentrations used in the

For 8 degrees of freedom, the 95-per cent level of significance requires a correlation of abcut 0.70.

-57-

Table 9. Estimates of the ratios of \mathcal{T} and χ_{r} for 0.5- and 3-min sampling periods to their respective 10-min values as functions of \mathcal{T}_{r} for 10-min periods. Entries baued on regression analysis of the logarithms of the variates. Mean values obtained by averaging observed ratios at the three travel distances before computing regression equations.

	ा <u>प्</u> र (3 min)	/ Jy (10 min)	Jy (0	.5 min)	(10 min)	
JA (deg)	50m	100m	200m	Mean	50a	100m	200m	Mean
8	0.95	1.00	1.06	1.00	0.92	1.06	1.32	1.08
10	0.88	0.89	0.91	0.89	0.81	C.92	0.92	0.85
12	0.82	0.81	0.80	C.81	0.72	0.66	0.68	0.70
15	0.75	0.72	0.69	0.72	0.63	0.51	0.47	0.55
20	0.68	0.62	ئىر. ت	0.62	0.53	0.36	0 3، 0	0.40

	$\mathcal{X}_{\mathbf{P}}$ (3 min) /	2 _p (p (10 min)		χ_p (0.5 min)		/] _P	(10 min)	
(deg)	50m	100m	200m	Mean	1	50m	lcom	20 0m	Mean	
8	1.16	1.03	0.94	1.04		1.33	1.04	0.78	0.98	
10	1,28	1,15	1.09	1.18		1.46	1.36	1.14	1.32	
12	1.40	1.25	1.24	1.30		1.57	1.69	1.55	1.63	
15	1.55	1.39	1.45	1.47		1.72	2.21	2.27	2,11	
20	1.78	1.60	1.76	1.73		1.93	3.13	3.71	2.93	

analysis were adjusted so that the 0.5-min and 3-min CIC values at each travel distance were equal to the 10-min CIC. This tends to smooth the individual observations by minimizing inhomogeneities of the type discussed on page 55.

Rough estimates of the average 0.5- and 3-min standard peak concentration to be expected at the three travel distances are entered in table 11 for selected values of \mathcal{T}_A . These estimates were obtained by applying the mean ratios shown in table 9 to the concentrations indicated in fig. 9 for appropriate values of \mathcal{T}_A . The results generally apply for a range of thermal stratification from near-neutral to extreme instability; the data do not permit estimates Table 10. Correlations r between the logarithm of the standard deviation of azimuth wind direction σ_A and the logarithm of the indicated ratios. Standard errors of estimate S, are to be applied to ratios presented in table 9 and are expressed as factors by which estimates should be multiplied to give limits within which approximately two-thirds of the cases are found. Sample size is 10.

(0.5 min) / J- (10 min) $\mathcal{O}_{\mathbf{y}}$ (3 min) / $\mathcal{I}_{\mathbf{y}}$ (10 min) 50m 100m 50m 100m 200m 200m Mean Mean -0.76 -0.77 -0.67 -0.62 -0.58 -0.64 -0.59 -0.78 1.18 1.28 1.17 1.11 $1.2l_1$ 1.29 $1.l_1$ 1.24 U.05 0.78 0.85 0.90 0.81 0.71 0.77 0.80

r

S,

	Х _Р (3	min) /	, א ^ה (10 mir.)	X p (0.5 min)		$/\chi_{p}$	(10 min)	
	50m	100m	200m	Mean	50m	100m	200m	Mean	
r	0,66	0.63	0.61	33.0	0.39	0.76	0.84	0.77	
s,	1.15 0.87	1.16 C,86	1 . 26 0.79	1.17 0.86	1.28 0.78	1.31 0.77	1.33 0.75	1.27 0.79	

for stable thermal stratification. The extreme range in peak concentration that might be encountered during the shorter sampling periods is indicated by the entries in table 8. A table of σ_y estimates may be constructed by the same procedure, using the results shown in fig. 13. More reliable estimates require additional measurements.

Vertical concentration measurements obtained during the 1957 diffusion experiments are summarized in table 12. For convenience, all measurements have been normalized with respect to the concentration at a height of 1.5 m. Vortical profiles located near the edges of the plume were omitted iron the calculations. The results at 50 m show maximum concentrations at a height of 0.5 m for all the experiments. With the exception of Run Nos. 1, 5, and 6, made during light winds and moderately stable thermal stratification, the tracer is uniformly mixed within the layer from ground level to a height of 1.5 m after it has travelled 100 m from the source. In the presence of light winds and stable stratification, approximate uniformity is attained within this layer by the time the tracer reaches 200m.

Table 11. Estimates of peak concentration (at height of 1.5 m) for three periods of sampling as function of \mathcal{O}_A . Ten-minute concentrations are based on Prairie Grass data of fig. 9. Estimates for other sampling intervals were obtained by applying mean ratios presented in table 9. Concentrations are adjusted to source strength of 1 g sec⁻¹ and a mean wind speed of 5 m sec⁻¹.

Concentration (mg m^{-3})

Travel dist	anc e	50 m			170			200	a
Sampling time (min)	10	3	0.5	10	3	0.5	10	3	0.5
σ_{A} (deg)									
8	4.51	4.51	4.51	1.55	1.56	1.56	0.47	0.47	0.47
10	3.56	7.50	<u>4</u> .70	1.12	1.32	1.48	0.32	0.37	0.45
12	2 .29	2.98	3.73	0,60	0.78	0.98	0.15	0.19	0.24
15	1.85	2.72	3.90	بليا. ٥	0.64	0.92	0,10	0.14	0.20
20	1.41	يليا. 2	4.13	0.29	0.50	0.85	0,06	0.10	0.16

-60-

and the second second second

Travel distance	50m	1000	200m	50m	100m	200m	
Height (m)	Run No. 1			Run No. 2			
2.5	0.63	0.61	0.78	0.75	0.99	0.93	
1.5	1.00	1.00	1.00	1.00	1.00	1.00	
1.0	1 26			0.97	•		
0.5	1.42	1.31	1.10	1.07	1.04	1.08	
		Run No. 3	J		Run No.	4	
2.5	0.84	0,96	0.91	0.76	0.91	0.97	
1.5	1.00	1.00	1.00	L.00	1.00	1.00	
1.0	1.03			1.16			
0.5	1.04	1.06	1.06	1.17	1.09	0.97	
		Run No. 5	5		Run No.	6	
2.5	0.L 2	0.50	0.76	0.61	0.80	Ú.93	
1.5	1.00	1.00	1.00	1.00	1.00	1.00	
1.0	1.63			1.19			
0.5	2.59	1.30	1.15	1.24	1.20	1.02	
		Run No. 7	,		Run No.	8	
2.5	0.72	0.94	1.04	0.76	0.92	0.90	
1.5	1.00	1,00	1.00	1.00	1.00	1.00	
1.0	1.13			1.14			
0.5	1.22	1.01	1.01	1.29	0.97	0.94	
	Run No. 10						
2.5	0.79	0.81	0.92	0.71	0.88	0.96	
1.5	1.00	1.00	1.00	1.00	1.00	1.00	
1.0	1.10			1.13		-	
0.5	1.17	1.10	1.03	1.22	1.01	0.95	

£.

percentage of concentration at height of 1.5 a.

Station of the second second

Table 12. Relative concentration at various swapling heights expressed as
V. DEVELOPHENIS IN METECROLOGICAL INSTRUMENTATION

A. Lightweight cup anemometers

The conventional three-cup anemometers used in the field experiments at Round Hill during 1954-1955 and at O'Nei?1. Nebraska during Project Frairie Grass have starting and stopping speeds of the order of 1 m sec-1. Measurements based on the records of these instruments are consequently not representative for mean wind speeds below about 2 m sec⁻¹. In order to obtain satisfactory measurements at low wind speeds, low-inertia cup anemometers of the photocell-type (27) have been developed. Details of the construction of the anemometers are shown in fig. 37. The cups are spun from aluminum sheets measuring 0.038 cm in thickness and cadmium plated as a protection against weathering. The support arms are made from 0.159 cm aluminum tubing and fastened to the cups by small (00-90) brass scrsws. The cups are 3.35 cm in diameter and the distance from the cup center to the vertical shaft is 4.5 cm. The vertical shaft, much from 0.23 cm hardened-steel drill rod, is supported at the top and bottom by miniature ball bearings manufactured by Miniature Precision Bearings, Inc. Jewel bearings may also be used. The beam from the light source, a grain of wheat bulb manufactured by the General Electric Co., is interrupted by a single-slot chopper (metal disk attached to the lower part of the vertical shaft). The slot in the chopper permits the light beam to fall on a Clairex photocell (type Ci-3) once during each rotation of the cup wheel. Output of the photocell (photo diode) is amplified and shaped into a square wave that drives a binary scaler; the scaler provides a means for halving the mumber of cup revolutions counted by the

- 1947 義務会会、と「別を見してる

「「「「「「「」」を見ていた。」

「「「「」」

Fig. 37. Closeup of lightweight anemometer showing cadmium-plated aluminum cups (above) and (below) light source, photocell, and chopper for interrupting light beam. Fig. 38. Field installation of lightweight cup anomemoters mounted at heights of 0.5, 1.0, and 1.5 m. photo cell. The output of the scaler is amplified and serves to operate both a mechanical counter and the pen of an Esterline-Angus operations recorder. Field installation of three anemometers is shown in fig. 38; in this application, the instruments complement vertical profile information obtained from the conventional three-cup anemometers installed on the portable tower.

The instruments have been tested in the project wind tunnel to determine calibration characteristics and their response to rapid fluctuations in air speed. Based on the results for a range of tunnel speeds from 1 to 11 m sec⁻¹, the calibration is approximately given by the linear relationship

where i is the wind speed in m sec⁻¹ and N is the number of revolutions of the cup wheel per second. Investigations of the deceleration and acceleration characteristics of the anomometers were conducted with the instruments placed in the air stream at the rear of the tunnel. In the deceleration tests, the instruments were allowed to reach equilibrium with respect to various tunnel air speeds and were then suddenly isolated from the air stream by means of a large cardboard box placed over the cups. In acceleration tests, the box was first placed over the cups and then quickly removed to expose the cups to pre-determined tunnel air speeds. Results of acceleration tests indicate that it requires less than 0.5 sec for the cups to reach 63 per cent of the impressed wind speeds within the range from 2 to 10 m sec⁻¹. Similar characteristic times for deceleration varied from about 1 sec, for an initial wind speed of 10 m sec⁻¹, to about 8 sec for an initial wind speed of 2 m sec⁻¹. Due to the many uncertainties involved in the test procedure, these results provide only rough estimates of the actual response characteristics of the instruments to sudden changes in wind velocity.

_ * * -

B. Automatic data handling and processing system

One of the most formidable problems in empirical investigations of meteorological phenomena is that of data reduction. Fast-response instrumentation, in particular, produces a tremendous number of individual observations within a very short time. Success in obtaining measurements of the requisite type and in the quantity required for further investigations of the structure of turbulence depends in large measure upon the availability of automatic data handling and processing techniques; otherwise, the time and labor involved in the reduction of t' o data very seriously limits the scope of any experimental program that might be contemplated. Abstraction of the Prairie Grass fast-response observations from the original chart traces involved elaborate automatic equipment and required approximately 8 months for completion. Presentation of the original data in a more usable form would have eliminated the major part of this effort. For these reasons. considerable attention has been focused on the development of a system for the automatic collection and presentation of fast-response measurements; the system has purposely been made sufficiently versatile so that information from other instruments, particularly slow-response types, may also be accomodated. The data processing system performs four major functions: encoding of analog information (shaft rotation, temperature, voltage, etc.)

from sensing elements in the form of binary numbers; storage of these numbers in a relay memory until they can be placed on perforated paper taps; decoding of the perforated paper taps; and, presentation of the data either in the form of sequences printed on an IBM typewriter or as entries on punch cards. Photographs of various components of the system are shown in fig. 39 and a block diagram of the various staps involved in the data processing is presented in fig. 40.

There are a number of suitable analog to binary converters available. Two types have been tested as possible substitutes for the Giannini microtorque potentionators used in the present bivanes: a Bendix (Eclipse-Pioneer) converter (Tyre OS-1-Al); and, a perforated circular disk of our own design for use with multiple light sources and photocells. In each case, shaft rotation is represented by integral binary numbers between 2⁰ and 2⁰; this permits a minimum resolution of like deg for a 360-deg shaft rotation. In the case of the bivane, asimuth and elevation angle are sampled simultaneously once every second and the information stored in separate relay memories. The number of sensing-element outputs that may be sampled simultaneously is limited only by the number of memory units available; each unit consists of 10 single-pole, double-throw relays and is connected with a single analog to binary converter. If the data are sampled at longer intervals (1 min, for example) one relay memory can be used for more than one analog converter. The programming disk performs the following functions: determines the sampling sequence of observations and the rate of sampling of the cutputs of the analog

─(,F⊶

Fig. 39. Front view of data read-out panel (a) showing tape reader, relay memory I, and control switches. Rear view of data read-out panel (b) showing: distributor and power supply for tape reader; relay memory I; control relays and photocell amplifiers for programming disk; synchronous motor for driving programming disk; high voltage power supply for photocell amplifiers and 6 v d.c. power supply. Cablu at lower right leads to timery to decimal converter and relay memory II.

VISION THE BEST OF T

Decoder

£.....

to binary converters; selects data from the relay memories and reads them into the tape perforator along with an identification code; activates the perforator magnets which control the tape advance; clears the relay memories for storage of other data. The present tape perforator will accept 8 bits of information per second; if additional capacity is required, the number of perforators may be increased or a faster tape perforator of more recent design might be substituted.

The decoding operation is controlled by a programming disk similar, but less complicated, than the one used in coding the input data. A Multiplex transmitter (model No. 1A) is used to read the perforated tape; the information is channeled into the proper section of the relay memory I by a relay distributor. The binary to decimal converter decodes the binary numbers stored in relay memory I and the resulting 'ts of information are stored in relay memory II until they can be printed out on an electric typewriter and/ or entered on punch cards.

Assembly of the components of the data handling system has been completed only to the extent indicated in fig. 39. The binary to decimal converter, comprised of a series of telephone-type relays which decode the binary numbers and hold them in appropriate relay memories until they can be printed by an electric typewriter, is only partially completed.

REFERENCES

The second s

- 1. Sutton, O. G., 1947 a: The problem of diffusion in the lower atmosphere. Quart. J. r. met. Soc., 73, 257-281.
- 2. _____, 1947 b: The theoretical distribution of airborne pellution from factory chimneys. Quart. J. r. met. Soc., 73, 426-436.
- 3. Deacon, L. L., 1949: Vertical diffusion in the lowest layers (f the atmosphere. <u>Quart. J. r. met. Soc.</u>, 75, 89-103.
- 4. Calder, K. L., 1952: Some recent British work on the problem of diffusion in the lower atmosphere. <u>Proc. U. S. Tech. Conf. Air Poll.</u>, New York, Mc Oraw-Hill, 787-792.
- 5. Stewart, N. G., H. J. Gale, and R. N. Crooks, 1954: The atmospheric diffusion of gases discharged from the chimney of the Harwell Pile (BEPO). Atom. En. Res. Estab. Rep. HP/R 1452, Harwell, 40 pp.
- 6. Barad, M. L., and D. A. Haugen, 1958: An evaluation of Sutton's hypothesis for diffusion from a continuous point source. (Paper presented at New York Heeling of Am. meteor. Soc., 28 Jan. 1958.)
- 7. Hilst, G. R., 1957: The dispersion of stack gases in stable atmospheres. (To be published in J. Air Poll, Cont. Assoc.)
- 8. Hewson, E. W., H. E. Cramer, G. C. Gill, and F. A. Record, 1951: Research on turbulence and diffusion of particulate matter in the lower layers of the atmosphere. <u>Final rep. under Contract No. AF 28(099)-7</u>, Mass. Inst. of Tech., 80 pp.
- 9. Gramer, H. E., G. C. Gill, and F. A. Record, 1954: Research on atmospheric turbulence and associated diffusion of aerosols and gases near the earth's surface. Final kep. under Contract No. AF 19(604)-145, Mass. Inst. of Tech., 49 pp.
- 10. Cramer, H. E., and F. A. Record, 1953: The variation with height of the vertical flux of heat and momentum. J. Meteor., 10, 219-226.
- 11. Cramer, H. E., and F. A. Record, 1955: Power spectra of the eddy-velocity components. J. Meteor., 12, 146-151.
- 12. Record, F. A., and H. E. Cramer, 1957: Preliminary Analysis of Project Prairie Grass diffusion measurements. (Faper to be published in J. Air Poll. Cont. Assoc.)
- 31. Cramer. H. E., and F. A. Record, 1957; Field studies of atmospheric diffusion and the structure of turbulence. <u>Amer. Ind. Hyr. Assoc. Quart.</u>, 18, 126-131,

- 11: Cramer, H. E., 1957: A practical method for estimating the dispersal of atmospheric contaminants. Proc. First. Nat. Conf. on App. Meteor., C, 33-55.
- 15. Hay, J. S. and F. Pasquill, 1957: Diffusion experiments from a fixed source at a height of a few hundred feet in the atmosphere. <u>J. Fluid Mech.</u> 2, 299-310.
- 16. Davidson, B. and J. Halitsky, 1957: A method of estimating the field of instantaneous ground concentration from tower bivane data. (Paper to be published in J. Air Poll. Cont. Assoc.)
- 17. Lettau, H. H. and B. Davidson, 1957: Exploring the atmosphere's first mile. London., Pergamon Press, 2 vols, 578 pp.
- 18. Hastinge, C. S., 1949: A new type instrument for measuring air velocity. AIES Misc. Paper No. 49-23, 7 pp.
- 19. Hastings, C. E. and C. R. Hoislo, 1951: A compensated thermal anemoneter and flowmeter. AIEE Misc. Paper No. 51-149, 11 pp.
- 20. Lryden, H. L., G. B. Schubauer, W. C. nock, Jr., and H. K. Skramstad, 1937: Measurements of the intensity and scale of wind-tunnel turbulence and their relation to the critical Reynold's number of spheres. <u>N. A. C. A.</u> rep. No. 581, 32 pp.
- 21. Tukey, J. V., 1949: The sampling theory of power spectrum estimates. <u>Symposium on applications of autocorrelation analysis to physical</u> <u>problems at Woods Hole</u>, C. N. R., Washington, D. C., 47-67.
- 22. Mac Cready, P. B., 1953: Structure of atmospheric turbulence. J. Metwor., 10, 434-649.
- Panofsky, H. A., and R. J. Deland, 1957: Structure of turbulence at O'Neill, Nebraska and its relation to the structure at Brookhaven National Lacoratory, Upton, Long Island. Contract No. AF 19(604)-1027, AFCRC-TR-58-201.
- 24. Sucmi, V. E., 1957: Energy budget etudies at the earth's surface and development of the sonic anenometer for spectrum analysis. Contract No. AF 19(122)-461, AFCRC-TR-56-274.
- 25. Howcroft, J. G., and J. R. Smith, 1956: A selective analysis of the scale of atmospheric turbulence. J. Meteor., 13, 75-81.
- 26. Panofsky, H. A., V. R. K. Rao, and H. E. Cramer, 1958: An observational study of the relation between space and time spectra. (To be published in Quart. J. r. met. Soc.)

- 27. Kassander, A. R., Jr., R. M. Stewart, Jr., and H. Falk, 1954: A simple low-inertia anemometer of the three-cup type. <u>Sci. Rep. No. 3 under</u> <u>Contract AF 19(122)-440</u>, Iowa State College, Ames, Iowa.
- 28. Gosline, C. A., 1952: Dispersion from short stacks. Chem. Eng. Progr., 48, 165-172.

. Sec. 1

29. Sutton, O. C., 1953: Micrometeorology. McGraw-Hill, How York, p. 215.

-69-

ACKICWLEDGMENTS

The authors wish to acknowledge the helpful suggestions and other important contributions made by the project supervisor, Professor H. G. Houghten. The research described in this report would not have been possible without the splendid cooperation and vital contributions of the following members of the Round Hill staff: Helene Benvie, George Fontes, Harry V. Geary, John E. Luby, and James H. Peers. Mr. Gerald C. Gill, now at the University of Michigan, rarticipated in the research program during 1954 and the first half of 1955.

and the second state of th

APPENDIX A

SUMPLINY OF DIFFUSION NEASUREMENTS AND HETEROLOGICAL OBSERVATIONS OBTAINED AT ROUND HILL DURING 1954 - 1955

Table I. Ten-minute average concentrations of sulfur-dioxide gas

and frequency distributions of azimuth wind direction.

Explanatory Notes

Concentrations refer to measurements at height of 2 m along three semicircular area at travel distances of 50, 100, and 200 m from a continuous point source of sulfur-dioxide gas located 30 cm above ground level. Individual sampling stations were spaced at intervals of 3 deg and are identified in the table by post numbers of the sampling network, post no. 1 being located along the base line of the array directly north-northeast of the release point for the gas.

Frequency distributions of azimuth wind direction are based on records from a wind vane located at a height of 2 m near the source for mean wind speeds in excess of 2 m sec⁻¹; otherwise, the distributions were obtained from bivane data. Entries are in terms of percentage frequency of occurrence within 3-deg class intervals referred to the post numbers of the sampling network.

Although no data are available on the vortical distribution of concentrations, it is apparent from the measurements that the axis of the time-mean gas pluae was on occasion lower than the height of the samplers. This phenomenon is of particular significance at short travel distances in the presence of stable thermal stratification and light winds. On the basis of indirect evidence, the following concentration data are considered non-representative of axial plumo concentration. At 50 ms Run Nos. 6, 7, 9, 10, and 13; at 100 ms Run Nos. 9, 10, 13; at 200 ms Run Nos. 9, 10 are possibly non-representative. SULFUR_DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF ALIMATH WIND DIRECTION

AID										
mkor	ection sent)	Concen	tration (mg m ⁻³)	Laber	rection cent)	Concentration (ng m ⁻³)			
E	8 .		Arc					Are		
Past	wind (pe	SOM	100m	200m	Post	britt.	50m	100m	200m	
1	1				32	2.49	0.215	0.035	0.015	
2	1				33	0.42	0,235	0.045	0,025	
3					34	2,90	0,255	0.055	0,035	
4					35	2.90	0.385	0.075	0.040	
5				1	36	2.17	0.370	0.090	0.035	
6	Í				37	1.24	0.435	0.100	0.045	
7					38	2.70	0.375	0.075	0.040	
8					39	1.24	0.400	0.060	0.040	
9			Τ	0.010	40	2.07	0.395	0.075	0.050	
10	0.12			0.015	41	4.98	0.425	0.085	0.030	
11				0.005	42	4.56	0.480	0.100	0.035	
12			1		43	4.98	0.985	0.150	0.030	
13				0.015	44	7.05	0.830	0.165	0.015	
14	0.12	0.035	1	0,005	45	6.23	0.940	0.220	0.030	
15	O.h2	0.040		0.015	46	2.90	0.940	0.150	0.035	
16	0.42	0.040		0,015	47	5.40	1.13	0.050	0.020	
17	0.83	0.075	0.015	0.015	48	10.79	1.04	0.055	0.015	
18	0.12	0.145	0.040	0.015	49	4.15	0.755	0.035	0.005	
19	1.2h	0.140	0.040	0.010	50	2.49	0.595	0,020	0.005	
20	0.83	0.305	0.045	0.010	51	2.90	0.370	0.065	0.005	
21	1.24	0.315	0.095	0.225	52	2.07	0.240			
22		0.185	0.040	0.025	53	0.12	0.065			

DATE

areas a started to be

~* **

13 August 1954 - Fun #1

0.185

0.355

0.140

0,360

0.300

0.265

0.215

0.135

0.165

1.6%

0.83

1.66

0,12

0.83

0.83

1.24

0.33

1.24

23

24

25

26

27

28

29

30

31

0.065

0.065

0.085

0.095

0.065

0.065

0.045

0,070

0.030

0.005

0.025

0.035

0.040

0.040

0.035

0.035

0,020

0.030

54

55

56

57

58

59

60

61

>61

1.66

0.12

2.07

0.42

1.49

0.015

1

ŧ

TIME 0915-0925

T.2.3

-i-

SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH

DATE	7 Octo	ober 1954	– Run #2		TIME	11:00-	-1/10		E.S.T.
Post number	Wind Direction (par cent)	Concen 50m	tration (Arc 100m	mg m ⁻³) 200m	Post : umber	ilind Direction (per cent)	Concenta 50m	Arc 100m	g m ⁻³) 2005.
1				1	32	0.42			
2					33	0.42	0.040		
3					34	0.42	0.130		
4					35	0.12	0.160	0.025	
5					36	0.33	0.365	0.130	0.015
6					37	1.65	0.135	0.165	0.720
7					38	0.53	0.935	0.225	0.050
8					70	1.66	1.9?	0.365	0.050
9					40	4.55	3.23	0.605	0.110
10					41	5.91	4.93	1.14	0.280
11					42	7.47	6.15	1.92	0.320
12					43	7.58	7.05	2.06	0.160
13					44	9.13	6.76	1.95	0.430
24					45	6.22	6.24	1.45	0.320
125				T	46	4-15	4-41	1.58	0.335
16			1		47	7.05	3.65	1.25	0.280
17					48	5.40	4.23	0.980	0.270
18					49	4.56	3.97	0.725	0.155
19					50	6.64	3.16	0,695	0.135
20					স	2 49	2.09	0.685	0.115
21					52	4.15	2.97	0.685	0.145
22					53	3.73	1.80	0.585	0.090
23					54	4.56	1.56	0.285	0.060
24					55	2.49	1.29	0.255	0.015
25					56	0.83	0.530	0,200	[
26					57	2.56	0.605	0.130	
27					58	1.24	0,985	0.055	
28					59	1.24	1.09	0.015	
20					60	0.03	0.770	0.005	+
30					61	0.53	0.?35	0.005	[
31	1			1	62	0.12	1		

-11-

SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF ASIMUTH

DATE	21 0	21 October 1954 - Run #3			TIME	TIME 0910-0920			E.S.T.
Post number	Wind Direction (per cent)	Concen	tration (Arc 100m	mg m ⁻³) 200m	Post number	Hind Direction (per cent)	Cencents 50m	Arc 100m	g m ⁻³) 200m
1			1		32	1.24	1.45		1
2	1				33	1.24	2.22		
3	1				34	1.66	5.45	0.140	0.055
4				<u> </u>	35	4.50	11.2	0.770	
5					36	4.15	19.0	1.59	0.035
6					37	8.71	20.6	3,13	0.055
7				T	38	9.55	21.5	5.50	0.300
8	1		1		39	9.55	27.2	7.16	0.950
. 0	1				40	5.31	27.0	7.15	1.92
10					41	11.62	24.9	6.30	2.29
11	1.		1		42	9.55	28.3	8.92	2.29
12	1		1		49	7.88	28.7	9.39	2.16
13					44	7.48	25.3	8.03	2.24
14			1		45	4.98	22.9	6.02	1.30
15					46	3.73	13.8	3.59	0.970
16			1		47	3.32	7.30	1.72	0.340
17					48	2.49	h.18	0_650	0.055
18			1		49	0.42	1.18	0.240	
19					50	1	0.220	0.050	1 7.240
20	1		1	1	ার		0.010	0.020	0.090
21				1	52		0.010		0.005
22			† – – – – – – – – – – – – – – – – – – –	†	53	1			0.015
23	1			1	54		0.015		0.010
24			1		55	1	0.075	0.110	0.005
25	1				56	1	0.025	0.163	
26	1		1		57	1		0.120	0.015
27	1	0.050		1	58	1			0.060
28	1			1	50	1			0,115
20	1	0.075	1	╁╾╾╼	60	i		0.100	0.110
30	1	0.075	-+	0.050	61	T			0.160
31	1.66	0.120		0.030		1			

-111-

er and the second second second

PORTA-DIOXIDE CONTENTIATIONS AND ACCOUNTED FIRE DEDAY CONTENTION OF ALLENTH CALE FARED ION

28 October 1954 - Run #4

TIME

1040-1050

E.5.T.

200m

0.140 0.220 0.210 0.140 0.170 0.190 0,160 0.100

0.080 0.045 0.030 0..050 0.00 0,050 0.030

A THE PROVES AND A PROPERTY

1

and the second sec

のない、使い、空気

					· · · · · · · · · · · · · · · · · · ·			والمراجع المحاربة المحاربين المراجع	المرامزيين البحيريدين
nerber	traction tent)	Concen	tration ()	nr. m ⁻³)	iu:ber	cent)	Concents	ation (m	g m ⁻³)
н 1	10 1		Arc		L.			APC	
Pos	Mind T	50m	100m	200.	Ö.	ail:)	50m -	100m	2007
2					32	2.07	4.00	1.05	0.1
2					_ 33_	2.90	5.19	1.33	0.22
3					34	7.06	4.36	1,03	0.27
li,					_35_	2.07	2.56	0.890	0.1
5					35	2.07	2.36	0.980	0.17
6					37	0.83	2.32	0,800	0.1
7					38	2.40	3.12	0.750	0,1/
8					30	2.49	2.69	C.570	0.10
9					40	1.56	2.98	0.570	0.0
10				1	41	3.73	3.08	0.520	0.0
11	0.42				42	2.49	2.28	0,640	0.0
12					43	1.24	2.39	0,720	00
13		0.120			44	2.07	2.55	0.870	0.0
14		0.540	0.035		45	0.83	2,08	0,790	0.0
15		0.720	0.050	Ţ	46	2.49	2.53	0.770	0.0
16		1.46	0.070		117	2.49	2.39	0.500	
17	1.24	1.84	0.110		48	2.90	2.15	0.1.80	
18	0.12	1.13	0.260		49	1.66	1.74	0,130	T
19	1.24	1.02	0.390		50	0.42	1.74	0.025	
20	0.12	1.42	0.460	0.040	51	1.50	1.49	0.015	T
21	1.66	1.86	0.630	0.075	52	C_12	1.45		
22	0.12	3.51	1.24	0.100	53	0.1.2	0.970		T
23	2.49	5.32	1.13	0.150	54	2.07	C.970		Ţ
24	5.81	6.63	0.720	0.150	55	0,33	0.790		1
25	1	5.88	1.30	0.150	56	1.24	0.390		1
26	4.15	5.00	1.09	0.210	57	0.83	0.270	1	1
27	4-53	5.28	0.920	0.250	58	1.24	0.100		1
28	4.53	5.47	1.03	0.110	59	0,12	0.055		
29	2.70	1.81	0.760	0.100	60	0.42		••••••••••••••••••••••••••••••••••••••	+
30	h.15	3.93	0.720	0.150	61				1
31_	5.40	3.61	1.33	0.100	1 10	4. 4.9	··· ·······················		

SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREDUENCY DISTRIBUTION OF ACIMITH WIND DIRECTION

ATE	9 Nove	mber 195	<u>u – Run #</u>	5	TINE 1010-1020						
ost number	nd Direction (per cent)	Concen	tration (1 Arc	mg; m ⁻³)	ost nurber	nd Direction (per cent)	Concenta	ation (n Arc	r; m ⁻³)		
<u> </u>	5	50m	100m	200m	L-0	15	50m	Toom	200m	.1 1 •1	
1	ļ		<u> </u>		32	ļ			 	। 	
2				ļ	33				1	1	
3	ļ				<u></u>	, ,				•	
4	 		<u> </u>		35_	1	0.015	i 			
5			+				0.055		1. 1.	4	
6	ļļ		<u> </u>		-37-		0.110	0.080		4	
7	├ ──── ↓		ļ		- 23	1.28	0.3?0	0.115	0.005	4	
8	ļļ		ļ	•	2	2.50	1.04	0.483	0.135	·	
			·		40	0.85	2.23	0.1.60	0.190		
10					41	1.28	2.29	2.03	0.230		
11		والمحادثة المحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة و	ļ		42	2.14	2,01	1,09	0.300	1~	
12	l		ļ	ļ	. 43_	2.99	1.93	0.860	0.260	1.5	
13					<u>Lili</u>	4.70	2.15	0.570	, 0°11'0	4	
14,				(45	3.55	2.98	0.555	5	1 2	
15			L		46	1 6.54	3.73	0.8 '	·J.6.95		
16			<u> </u>		47	6.42	6.80	1.50	0.250		
17					48	9.53	10.3	3.22	0.790		
18					49	5.13	12.0	3.75	0.730		
19					50	6.41	13.0	2.97	0.700		
20					5-	10.68	12.4	3.05	0.730		
21					52	8.97	11.6	3.54	0.950		
22					.53	6.54	12.2	3.15	0.770]	
23			1		54	8.12	8.56	2.51	0.540		
<u>2</u> 4					55	2.14	6.30	2.20	0.420		
25					56	5.50	4.45	1.11	0.070	i	
26			1	Ι	57	2,50	2.75	0.340	1]	
27					58	0.43	1.27	0.030		1	
28					59	0.13	0.540	0.020		1	
20					60		0.230	0.025		i	
30					61		0.065	0.005		1	
27				1	1				· · ·	!	

.

SULFUR-DIOXIDE COMENTRATIONS AND ASSOCIATED FEEDMENCY DISTRIBUTION OF ADJUNCTH MALL LIRECTION

TIME

and the second second

104,5-1055

Sold States

E.S.T.

Turter	Direction er cert)	Concent	Arc	ug m ⁻³)	t nurber	l Direction er cent)	Concenti	ation (m	g m ⁻³)
Post	wind (pe	50m	100m	200m	Sc4	d) d)	50m	100m	200m
1					32	1.25	3.58	1.00	0.350
2					33	2.93	3.22	1.07	0.380
3					34	1.67	3.82	1.02	0.280
4					35	1.26	5.13	1.01	0.290
5					36	2.52	5.81	0,510	0.230
6					37	5.23	5.09	1.29	0.270
7					35	6.28	4.42	1.77	0.310
8					39	7.53	7.04	2.16	0.370
_9	'				110	8,76	8.97	2.41	0.570
10					41	6.50	9.21	3.02	0.520
11					42	12.77	8.70	3.01	0.660
12						8.78	7.04	2.62	0.1:30
13					44	3.14	7.37	2.18	0.320
14					45	2.09	8.25	1.32	0.360
15					445	1.67	5.70	1.16	0.085
16					47	1.40	3.33	0.470	0.085
17					_48	2.30	2.11	0.300	0.085
18					40	1.1.6	1.76	0.420	0.035
19					50	1.05	1.1.7	0.320	
20					51	0.42	0,940	0,140	0,090
21					52		0.720	0.085	0.020
22					_53		0.750	0.005	0.040
23					. 54	1	0.300		0.060
24		0.130			55		0,110		0.050
25	0.12	0.850	0.015		56		0.070		
<u>?6</u>	1.10	2.44	0.070		57		0.055		
27	3.77	2.57	0.350	0.005	59	 +	0.020		
28	2.57.	2.87	1.04	0.150	50				
20	3.77	3.90	1.54	0,290	- 60				
30	4.00	4.16	1.75	0.1:10	61	4			
131	4.60	4.77	1.08	260	:		1		1

-~1-

DATE 1 December 1954 - Run #6

SULFUR-DIOXIDE CONCENTRATIONS AND ABSOCIATED FREQUENCY DISTRIBUTION OF ALLAUTH WIND DIRECTION

Contraction of the second

ATE	2 March	1955 - 1	lun #7		TIME	1145-	1155		E.S.T.	
Inter	rection cert)	Concent	ration (m	vg m ⁻³)	turber	rection sent)	Concentration (mg m ⁻³			
n	L D		Arc		Ē	2 2		Arc		
Post	Wind (pe	50m	100m	200m	Post	Wind (Fe	50m	100m	200m	
1		0,125	0,030		32					
2		0,105	0,100	0.005	33					
3		0.320	0.075		34					
4		1.92	0.195	0.015	35					
5	1.60	2.90	0.660	C.095				_		
6	5.75	6.21	1.72	0,340	_37_					
7	4.79	11.2	3.47	0.810	38	İ				
8	74.38	13.3	4.55	1,20	_39					
9	10.54	14.1	5.12	1.35	40	5				
10	13.74	13.7	h.90	1.24	41	4				
11	12.66	11.7	4.01	1.07	47.					
12	1h.38	8.93	2.71	0,770	43					
13	6.39	v.05	1.48	0.350	44					
14	8.31	3.61	0.990	0,130	45			••		
15	4.15	2.31	0.370	0.030	46					
16	3.19	0,870	0,160	0.005	47	1				
17	0.32	0.155	0.005		48					
18		0.025			49		T			
19			0.010		50					
20		0,010	0.010		51					
21		0.010			52					
22		0.010			53					
23		0.010			<u>e1</u>				1 - 10	
<u>24</u>					55					
25					56				1	
26					57		I			
27					58	1				
28					59	1				
29					60		1	1		
30					61€	Į –		1	1	
31							T			

.

BULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH MAND DIRECTION

DATE

THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF

3 March 1955 - Pun #8

TIME 1035-1045

and the second secon

E.S.T.

İ.r.r	etion nt)	Concent	Concentration (mg m ⁻³)			ection ent)	Concentration (mg m^{-3})		
t nur	Dire er ce		Arc		t nu	l Dire er ce	· · ·	Arc	
Pos	d) d)	SOm	100m	200m	Pos	Jand (p	50m	100m	200m
1					32	3.35	6.34	0.780	0.145
2					33	7.95	5 مارا	1.07	0.125
3_					34	4.18	4.37	0.870	0.165
4					35	1,26	2,68	0.740	0.165
5					36	3.35	4.67	1.02	0.165
6					37	0.84	5.08	0.980	0.250
7					29	2.09	3.71	1.07	0.210
8					39	1.67	3.85	1.02	0.300
9	·				40	2.09	5.67	0.580	0.280
10					41	4.60	6.86	1.60	0.270
11					42	5.02	8.86	2.64	C.160
15	1				43	7,17	0,82	2,51	0.520
13					44	7.11	8.07	2.99	0.470
14					45	6.70	9.05	2.72	0-290
15					116	30.04	0.03	2.30	0.290
16					47	5.02	11.1	1.96	0.175
17					48	3.77	9.42	2.14	0.210
18					49	2.09	9.12	2.18	0.380
19					50	3.77	11.0	2.07	C.600
20					51	1.67	8.12	2.00	0.410
21			······································		52	0.42	7.02	1.12	0.290
22					53	2.93	5.54	0.760	0.145
23			· ··		54	0.12	2.69	0.870	0.370
24						0.42	1.51	0.680	0.050
25		0.290	0.380	0.135	56		0.450	0.105	
26	0.42	1.54	0.960	0.330	57		0.105		
27		2.36	1.16	0.310	58		0.125		
28	0.84	2.62	1.40	0.630	59		0.100		
20	2.09	3.68	2.07	0,690	60		0.040		†
10	:67	5.26	2.02	0.500	61		0.045		
31	7.u	5.02	1.18	0.320					1

SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF ALIMUTH MIND DIRECTION

ATE	<u>7 Ma</u>	rch 1955	- Run #	9	TIME	1110-3	<u>1150</u>		E.S.T.
					ورواي مساقعاتهم				
st number	d [Mrection per cert)	Concent	Arc	ug m ⁼³)	ost number	nd Direction (per cent)	Concent	tration (m	ng m ⁻³)
Po	ntW)	50m	100m	200m	<u> </u>	1111	50m	100m	200m
1	0.42	0.145	0.050		32				<u></u>
2		0.1.80	0.070		_33_				
3	0.12	1.85	0.145	0.010	24				-
4	6.8h	2.59	0.820	0.060	35				
5	2.53	4.77	Lotte	0.340				1	
6	5.91	6.65	2,10	0.640		\			
7	لاحظ	10.1	3.34	0,970		\			
8	13.08	That	4.95	1.24	_39_	<u>\</u>			
_9	12.66	16.5	5.97	1.56	40				
10	11.39	16 .4	5.03	1.30	41	1			
11	12.66	13.3	1,045	0.960	42				
12	10.12	8.82	2.92	0.680	<u>'·3</u>	: :			
13	6.33	6.97	2.07	0.460	<u> </u>				
14	5.91	4.67	7.23	0.410	45				
15	2.95	2.83	0.*20	0.330	45				
16	1.27	2.02	0.750	0.270	47	ļ	L		ļ
17	1.69	1.7 4	0.850	0.040	48	L			
18	2.11	2.16	0,260		49				
19	1,27	0.390	0.070		50	 			
20	1,69	0.070			51				
21	1.69	0.015			52				
22	0.42				53				
23					بنز ا				
24					55				
25					56				
26					57				
27					58				
28					59				1
29					- 60				1
30					61 [±]	_			
31									1

-17-

and the second states of the second second second second second second second second second second second second

Salar

ULFUR-DIOXIDE CONCENTRATIONS AND ADDICEMENT DISTRIBUTION OF AZIMUTH

ATE

23 March 1955 - Run #10

1200

TIME

ME 1125-1135

E.S.T.

Section of the sectio

e e

÷

rèer	tetion (t:t)	Concent	.ration (m	er m ⁻³)	Ther	rection cent)	Concenti	ration (mg	; m ⁻³)
E	L C L		Arc		E	E DT		Arc	
Pust	Wind (pe	50m	100m	200m	Post:	pctr.	50m	100m	200m
1					32	1.26	1.19	0.370	0,060
2					33	2.51	0.760	0.085	0.030
3					34	0.12	0.420	0.085	
4					35	0.12	0.330	0.035	
5					36		0.250		
6					_37_		0.115		
7					38	0.54	0.035		
8	0.42				39		0,030		
9	0.84	0.065			40		<u>\</u>		
10	0.42	0,120			41				
11	0.42	0.420	0.020		42				
12	0.42	0.850	0.065		43				
13	2,51	1.92	0.165		44				
14	2.93	2.11	C. 380		45				
15	4.18	3.61	0.780	r.030	46				
16	7.95	5.39	1.09	0.200	47				
17	5.86	7.32	1.98	0.370	48			,	
18	7,95	8.75	2.57	0.560	49				
12	8.79	8.71	2.34	0.630	50				
20	7.53	8.13	2.17	0.490	51				
21	5.85	6.90	2.14	0.440	52				
22	6.27	(نامان)	2.18	0.450	53				•
23	6,69	5,01	1.71	0.300	54	ĺ			
24	3.35	4.66	1.27	0.180	55				
25	6.69	4.74	1.26	0.310	56				
26	3.35	3.78	1.37	0.250	57				
27	3.77	3.28	0.790	0.230	58				
28	2.51	3.16	0.880	0,220	59				
29	1.67	2.51	1.19	0.350	60				
30	2.09	2.91	0.990	0.260	61	E			
131_	2.09	2.19	0.900	0.160					

SULFUR-DIOXIDE CONCENTRATIONS AND ADDOGL'TED FREQUENCY DISTRIBUTION OF AZIMUTH MIND DIRECTION

CONTRACTOR AND THE SECOND

DATE	23 Mar	rch 1955	- Run #11		ent.	1545-2	1555		E.S.T.
st number	d Direction per cent)	Concent	Arc	ne m ⁻³)	st nurber	d Direction pur cent)	Concents	ration (m	g m ⁻³)
Po	WIN	50m	100m	200m	с. 	Itr.	50m	100m	200m
1					32	1.67	1.23	0.260	1
2					- 33	0.83	0.830	0.025	
3					34	1.67	0.350		
4					35	0.83	0.100		
5					36	24-0			
6					37				
2					38				
8					39				T
9	1				40		**************************************		1
10	1				41	1			1
11		0.065			42				
12	·	0.280			43				1
13	1	0.290			44			[1
14	1	0.500	0.145		45				1
15	2.08	1.16	0-270		46				1
16	2.50	2.36	0.820	0.065	47	1			
17	1.25	3.09	0.850	0.135	48				
18	2.92	3.98	1.07	0,210	49				1
119	5.42	5.63	7.15	0.340	50				1
20	5.83	7.15	1.67	0.160	52				1
21	7.08	8.08	2.30	02160	52				1
22	13.34	8.15	3.21	0.530	53				1
23	11.67	8.15	2.30	0.650	54	1			
24	8.75	7.70	2.41	0.700	55				1
25	5.83	6.82	2.55	0.750	55				1
26	6.25	7.00	2.23	0.560	57		-		1

1.65

1.49

0.990

0.740

0.560

5.42

4.58

4.58

5.83

1,25

2<u>7</u> 28

39

30

31.

6.30

5.29

4.35

3.53

2.76

0.340

0,220

0.165

0.080

0.025

58

52

60

61

£:___

-x1:-

THEFUR-DIOXIDE CONCENTRATIONS AND ASSAULTED FEEDWEIKE DISTRIBUTION OF AZIMUTH THE MERECTION

•	٠		••	
Þ	43	•	•	
-				

25 March 1955 - Run #12

TIME 1050-1100

E.S.T.

A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF

-ber	astion art)	Concent	ration (r	n <u>e</u> m ⁼³)	nber	action ent)	Concentration (mg m ⁻³)			
			Are	• • • •	ne	710		Arc		
Post	Mind bai	50m	100m	200m	-2 03 (bc <i>li.</i> 99)	50m	100m	200m	
1					32	1.46	2.60	0.540	0.030	
2					_33	1.25	2.25	0.420		
3					<u></u> 4	0.63	1.00	0.410		
4				-	35	0.63	0.840	0.290		
5						0.84	0.930	0.015		
6					_37	0.63	0.590			
7		0.035			39	1.04	0.530			
8	0.63	0.160			32		0.910			
9	2.30	0 بليلو 0			40		0.115			
10	4.17	0.960	0.085		41		0.015			
11	6.89	4,19	0.0400	0.050	42		•			
12	4.80	5.67	1.73	0.330	113					
13	2,30	6.25	1.92	0.100	44					
14	3.13	5.71	1.04	0.125	45					
15	4.17	1.65	0.900	0_085	46					
16	2.50	3.78	0.950	0.130	47		-			
17	3.76	6.37	1.44	0,200	48					
18	4.17	8.68	1.94	0.340	42				1	
19	4.17	11.2	2.60	0.180	50					
20	3.76	10.3	3.27	0.490	51					
21	6.89	11.0	2.83	02130	52]	
22	3.34	10.4	2 .1 4	0.350	53				1	
23	3.76	7.50	1.26	0.240	54	1				
24	4.59	6.44	1.36	0.300	55					
25	3.75	7.12	1.50	0,290	56			-		
26	3.34	6.41	1.60	0.340	57					
27	6.17	6.19	1.80	0.410	58	1			1	
28	6.47	5.38	2.38	0.360	59					
20	3.76	5.24	1.45	0.230	60	·			+	
30	2.09	1!.1	0.600	0.180	61			1	1	
31	2.30	3.15	0.150	0.160	1	1				

-111-

SULFUR-DIOXIDE CONCENTRATIONS AND ADSCOLATED FREQUENCY DISTRIBUTION OF AZIMUTH WIND DIRECTION

DATE

28 March 1955 - Run #13 TIME 1505-1515 E.S.T.

urbc :	rection cent)	Concent	ration (m	ug m ⁼³)	uriber	recti on cent)	Concenti	ration (m	g m ⁻³)
Ē	12 F		Arc		4	Бу		Arc	
Post	bniw vg)	50m	100m	200m	Pos	d) pctr:	50m	100m	200m
1					32	3.73	3.49	0.800	0.290
2						3.93	3,30	0,810	0,220
3					34	3.93	2.82	0,750	0.165
4					35	2.28	2.65	0,600	0.085
5					36	4.56	1.75	0.470	0.055
6					_37	1.24	1.15	0,220	ļ
7					38	1.24	0.840	0.110	
8					99	2.45	0.430	0.035	
9					40	0.21	0.300		
10	0.21				41		0,145		
11					42	0.21	0,030		
12	0,21				43		0.025		
13					444				
14					45				
15	۲۴۰ 0				46				
16	ا حبوه	0,030			1.7				
17		مدر•٥			48				
18	2.1.5	0.350	0.025		49				
19	0,62	0,600	0.055		50				
20	2.07	1.31	0.140		স				
21	4.14	2.31	0.340		52				
22	5.59	3.34	0.340	0.055	53				
23	7.25	4.65	1.12	0.205	54				
24	9.52	և.79	1.57	0.370	55				
25	6.83	6.35	1.88	0.610	56				
26	9.73	7.35	2.48	0,700	57				
27	7.04	8.16	2.53	0.490	58				1
28	7.66	7.53	1.75	00,40	59				
30	1.55	5 81.	1.65	0.370	60		1		
30	6.00	5.68	1.41	0.310	61	ī			
31	3.52	4.28	0.990	0.33C					

SUBJER DICKIDE CONCENTRATIONS AND ACCICITED FREQUENCY DISTRIBUTION OF AZIMUTH

PATE

29 ilarch 1955 - Run #14

TIME

E 1120-1130

E.S.T.

-

Isquit	.rection cent)	Concent	tration (ng m ⁻³)		nurber	irection cent)	Concent	ration (m	g m ⁻³)
ם גר	A L		Arc			it i	L L L L L L L	-	Are	· ·
So ^c	d)	50m	3.00m	200m		ю. Ч	ultre (1	50m	100m	200m
1						32	4.15	5.10	1.26	0.250
2						33	1.45	3.75	0.730	0.050
3						34	5.39	2.13	0.390	0.030
14					i	35	2.70	1.50	0.490	0.030
5	0.62					36	3.32	1.72	0.130	0.01
6	0.41					37	0.83	1,52	0.110	
7	0.62	0.085				38	1.66	1.21	0.015	
8	0.41	0.170			1	39	1.04	0.640		
9	1.04	0.300				40	5.41	0.375		
10	0.83	0.340	0.015			41		0.110		
11	0.83	0.480	0.055	0.030		42		0,170		
12	1.04	1.26	0.085	0.040	I	43	0.62			
13	1,04	1.35	0.205	0.070		44	U.21			
14	1.45	1,94	0,390	0.060		45	_0.21			
15	1.97	3.07	0.690	0,115		46	0,41			
16	2.07	3.91	1.15	0.200		47				
17	2.07	5.56	1.16	0.100		48	0.83		,	
18	4.56	4.86	1.10	0.100		49	0.21			
19	1.87	3,35	1.15	0.090		50				
20	3.11	3.55	1.11	0,135		51			1	
21	1.66	5.50	0.970	0.720		57.				
22	3.74	6.84	1.62	0.240		53				
22	<u>ó.óu</u>	10.3	1.81	0,330		54				
211	6.02	12.1	2.64	0.410		55				
25	3.53	10.0	2.56	0.650		56				
26	6.64	7.27	3.25	0.960		57				
27	5.19	7.77	3.04	0.200		58				
28	S . 30	6.52	2.16	0.620		59				1
20	4.15	7.59	2.0?	0.1110		60				<u> </u>
30	4.98	7.40	1.69	0.490]	61	E	_		
_1ر ا	1.57	5.57	1.63	0.460	ļ	1				!

SULFUR-DIOXIDE CONCENTRATIONS AND ACCOCLATED FREQUENCY DISTRIBUTION OF ACTIVATION MIND DIRECTION

TIME

CARLES AND SALES

1030-1040 107

3.3.7.

unber	rection cent)	Concent	ration (m	e m ⁻³)	nunber	lroction cent)	Concentration (mg m ⁻³)			
ية ب	X		Arc					Art		
Poe	Wind q)	50m	100m	200m	Poa	Jand J	50m	100m	200	
1					32	3.53	2.71	1.09	0.0	
2					33	1.04	3.56	0.390	0.0	
3					34	1.66	3.24	0.240	0.0	
4					35	2.49	3.41	0.740	0.0	
5					36	3.11	5.08	1.04	0.0	
6					37	2.49	7.07	1.23	0.1	
7					38	2.49	7.43	1.68	0.1	
8					39	3.73	7.42	1.91	6.3	
9					40	3.94	5.88	1.71	0.4	
10					41	2.70	2.50	1,80	0.3	
11					42	2.08	3,18	1.75	0.3	
12					113	3.53	4.49	1.16	0,1	
13					44	3.94	14.62	1.19	0.2	
14					45	4.15	4.03	1.30	0.1	
15					46	7.05	5.30	1.12	0.3	
16					47	5.81	6.14	2.04	0.5	
17					48	6.43	6.26	2.55	0.6	
18	0.21	0.025			49	4.56	8.59	2.47	0.6	
19	0.1.1	0.140		• • •	50	4.98	12.6	2.46	0.4	
20		0.145			51	7.05	8.93	2.68	0.6	
21	0.83	0.550			52	3.94	5.44	1.88	0.5	
22	0.21	1.34	0.030	· ••••••	53	1.04	3.03	1.07	0.2	
23	1.25	1,60	0.145		54	0.83	1.97	0.660	0.2	
24	1.97	2.65	0.350		55		2.05	0.770	0.1	
25	0.83	3.69	J.430		56	[2.13	0.540	0.1	
26	1.97	2 .44	0,600	0.035	57		1.65	0.530	0.1	
27	1.25	1.97	0.710	0.070	58	0.11	0.170	0.360	0.0	
28	2.08	1.97	0.330	0.125	59		0.150	0.290		
22	2.15		0.330	0.035	-60	<u>†</u>	0.035	0.030		
30	0.41	2.11	0.230	0.045	61	£			1	
31	1.35	3.62	0.1.80	0.115				••••••••••••••••••••••••••••••••••••••	1	

30 March 1955 - Run #15

DATE

THE FUEL DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH

	18 31 March 1955 - Run #16					2.5.1			2.5.1.	
rumbe r	lirection r centi	Concent	tration (m Árc	e m ⁻³)	Juhčer	Direction r cert)	Concentration (mg m ⁻³)			
Post	butiv tec	50m	100m	200m	-?ost	ed)	50m	100m	200m	
1	1				32	5.19	11.1	2.69	0.610	
2					33	3.94	6.20	2.11	0.185	
3					34	2.07	3.32	1.26	0.065	
4					35	2.70	2.53	0.1,90	0.040	
5					36	1.25	2.50	0.095	0.005	
6					37	1.66	1.46	0.045		
7					38	1.45	0.450	0.025		
R					39	0.41	0.025	0.010		
9	0.21				40	0.21	0.035	0.010		
10					41	0.21				
11	0.21	0.010			42	0.21				
12	·	0.010			1 4.3					
13	0.21	0.030			-44	0.21				
14		0.025			45					
15		0.055			46					
16		C.020	0.005		47					
17		0.075	0.020		84					
18		0.045	0.010		49					
19	0.41	0.050			50					
20	0.21	0.420	0.020		51					
21	1.25	1.52	0.030		52					
.22	3.11	2.49	0,220	0.005	53					
23	4.98	4.27	0.130	0.020	54					
24	8.92	6.66	0.780	0.060	55					
25	4.29	12.0	1.99	0.185	56					
26	10.15	15.2	5.40	0.590	57					
27	13.50	16.4	6.59	1.50	58					
28	15.14	16.4	6.90	2.23	59					
20	6.43	18.6	7.44	2.55	1 60					
30	5.60	19.0	5.74	2.13	61			1		
1 31	1.77	15.9	3.3.3	1.28				•		

SULFUR-DICKIDE CONCENTRATIONS AND ISSOCIATED FREQUENCY DISTRIBUTION OF ALIMUTH WIND DIRECTION

TA	TE

31 March 1955 - Run #17

TIME 2215-2225

E.S.T.

st number	1 Direction per cent)	Concent	tration (m	ng m ⁻³)	st number	d Direction per cent)	Concent	ration (mg m ⁻³)
Po	WLD I)	50m	100m	200m	Po	uti:	50m	100m	200m
1					32	0.21	1.45	1	1
2					33		0.095		
3					34	0.21	0.010		
-					35	0.21	0.035		
5					36				
6					_37				
7					38				
8					39	\backslash			
9					1:0				
10					41				
11					42	:			
12					43				
13					44				
14	0.21				45				
15	0.41				46				
16	0.21				47				
17	1.24				48				
18	1.87	0,215			49				
19	0.62	2,63			50				
20	3.73	6.16	0,055		51				
21	6.22	11.7	0.450		52				
22	71.00	26.0	4.91	0.045	53				
23	10.17	49.8	32.6	n ,86 0	54				
212	2.75	2.3	31.1	7.03	55				
25	11.41	59.9	32.4	14.1	56				
26	15.97	55.4	24.2	9.50	57				
27	11.93	LLL .9	15.1	3.18	58				
28	12.56	20.1	4.51	0.670	59			1	i
122	0.33	5.50	0.550	0.030	1 10	i		_1	
30	0.52	4.13	0.105		61				
31	0.62	3.38					1	1	

STATAFICSI S CONTENTRATIONS AND ANCONTED FREMENCY DISTRIBUTION OF ADDITH.

13 June 1955 - Pun #18

TINE 2035-2045

E.S.T.

nurber .	Direction r cent)	Concent	tration (m Arc	ng m ⁻³ >	number	Direction er cent)	Concentration (mg m ⁻³) Arc			
- 30C	N4nd (per	50m	100m	200m	1 8 0-2	inil: cq)	50m	100m	200m	
1					32					
2					33					
3_	0.41				34					
4	0.62				35					
5	1.04			· · ·	35	1				
6	1.04	0.500			37					
7	1.85	2.61	0.035		38	/				
£	3.10	5.98	0.300	0.035	<u>ې</u> د	<u>/</u>				
q	4.14	11.1	1.14	0.190	40	1				
10	7.66	19.7	3.92	0.500	41	-		-		
11	5.38	37.1	8.58	1.75	42					
12_	12.42	38.2	Ц.9	3.34	113		ж. П			
13	7.87	33.3	13.7	3.67	44					
14	9.94	28.5	9.27	2.59	45					
15_	6.83	23.3	8.27	1.99	46					
15	₫ ₀ γŪ	20.8	6.51	1.27	7					
17	6.62	16 مل	3.95	0.540	118					
18	7.66	11.2	1.76	0.150	40					
10	5.18	5.86	0.170	0.030	50					
20	1.36	2.26	0.030		51					
21	2.90	0.250			52					
22	1.66	0.100	1		53					
23	1.04				. 54		Í	1		
<u>.</u>	1.04				55					
25	0.21				56			i		
25	0.1.1				57					
27	0.21				59					
16					50					
<u>.</u>					40	i	1			
20					61	E			í	
31				i !		· · · · · · · · · · ·]	1	1	

SULFUR-DIOXIDE CONCENTRATIONS AND AND AND FREQUENCY DISTRIBUTION OF ALIMUTH WIND DIRECTION

DATE	E 13 June 1955 - Run #19				TIFE	2240-2	250		E.S.T.
		4				1			
numbor	trection cent)	Concent	Arc	ng m ⁻³)	nunter	Utrection • cent)	Concenti	ration (r	ng m ⁻³)
130 0-	Wind D (per	50m	100m	ينى20 تىل	² ost	Jind .	50m	100m	200m
1					32	1.04	0.090		1
2			į;		30	0.21			1
5					34				
11					35				
5					36				
6					37	1			
7					38				
8	0.21				39	\mathbf{h}			
3	0.21	0.030			ing				
10	0.21	0.030			111				
11	0.41	0.125			47	•			
12	0.41	0.320	0.010		43				
13	0,21	1.31	0.010		2424				
14	2.28	1.94	0.095		45				
15	2.90	3.06	0.280	-	46				
16	4.14	5.53	0.390		47				
17	3.73	9.55	1.64	0.025	449				
18	6.21	17.7	3.51	0.550	49				
19	7.25	24.0	5.28	1.20	50				
20	7-15	26.8	7.27	2.10	5				
21	7.04	34.7	11.0	3.33	52				
22	6.62	34.7	12.4	4.33	53				
23	9.52	26.7	10.6	3.28	54				
24	7.15	20.7	7.93	1.67	55				
25	9.07	16.0	4.13	0.880	56				
26	8.07	13.7	2.38	0.390	57				
27	6.00	8.35	0.660	C.190	58				
28	4.27	3.73	0.230	0.040	59				
20	2.69	1.57	0.030	0.020	-60				
30	1.56	0.140			61	£			
İ 31	1.01	0.460			; 				1

Ŕ

-xt--

THEFUE-DIOXIDE CONCENTRATIONS AND ANOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH

-XX-

DITE

15 June 1955 - Run #20

TEÆ ___

2050-2100

E.S.T.

urber	:rection cent)	Concent	tration (1	ne m ⁻³)	Tedenr	irection cent)	centry	Concent	ration (m	ng m ⁻³)
St :	d H		Arc		St.	jų ta		-	Arc	
Fo	utu)	50m	100m	200m	od.	ITP.		50m	100m	200m
1					32					
2					_33_					
3					34					
4					35				-	
5				 	36	•				
6	1.66	0.310			37		1			
7	3.83	2.09	0.040	0.015	_38_		Ì			
8	6.82	8.88	1.53	0.610	_32					
9	10 مل ان	34.4	10.5	8.75	40					
10	12.98	77.3	39.1	25.1	41			e . La		
11	15.81	131	67.7	21,8	42					
12	12.98	116	43.6	12.3	43					
13	12.14	58.0	29.2	3-46	44					
14	9,15	41,1	21,5	2.24	45					
15	5.99	51,3	24.6	2.09	46					
10	3.99	53.0	10.2	0.450	47					
17	1.83	33.5	6.79	0.035	48					
18	1.00	17-4	2.38		49					
19	1,00	4.15	0.870		50					
20	0.17	1.82	0.060		ภ					
21		0.250			52					
22	0.17	0.025			_53					
23					54					
74					55					
25					56					
26					57					
27					58					
28					59					
20					60					
30					61		E			
31									1	

SULFUR-DICKIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH

		4							
mber	ecti.on enc)	Concent	tration (m	mg m ⁻³)		ection ent)	Concenti	ration (r	ng m ⁻³)
3	LÜ		Arc		2	DAr		Arc	
Sat Sat	b d			r	ost	p d			
ď	N.	50m	100m	200m	D.	М	50m	100m	200m
1					32	0.50	0,120		
2					33	0.17			
3					34	0,33			
4					35	0.17			
5					36	0.17			
6					37	/			
7					35				
Ŗ					32	\ \			
9					40				
10					41				T
11					42				
12					43				
13					44				
14					45				1
15					1.5				1
16	0.17				47				
17	0.83	0.075			48				1
18	0.33	0.960			49				
19	0.83	3.57	0.020	-	50				
20	1.00	14.0	0.120		ম				
21	1.83	19.3	1.35	0.015	52				1
22	5-49	21.8	5.41	0.340	53				1
23	14.97	37.6	17.8	1.84	54				
24	11.65	39.4	28.1	6.62	55				
25	20.30	41.1	30.3	11.0	56				1
26	11.65	39.8	26.1	9.21	57				1
27	10-18	31.9	18.2	4.86	58				1
28	9.98	20.3	7.96	2.81	59				1
20	5.32	14.4	2.44	0.470	60				
30	1.83	5.64	0.320	0.025	61	1			
31	2.00	0.620	0.025						

1112

1.

DI.TE]

19 October 1955- Run #21

TIME 2245-2255

E.S.T.

-im-

SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH

DATE

20 October 1955 - Run #22

2 11ME 0050-0100

E.S.T.

L ag	ection ent)	Concent	ration (m	ug m ⁻³)	1901	estion ent)	Concentration (mg m^{-3})			
5	1 2		Arc		2	LAr Ir c		Ârc		
Post	hel (pe	50	100-	200-	Post	per (50m	100m	200m	
ļ	3			~~~~~					· · · · · · · · · · · · · · · · · · ·	
1					32			<u> </u>		
2	ļ				32				4	
3									•	
4					25					
5					36			<u></u>		
6						<u> </u>		4		
2	<u> </u>							J	1	
8					22					
9					40					
10			Ì		41					
11					42					
12					43					
13					44.					
14					45					
15					46				•	
16					47					
17		0.015			48			2		
18		0.400	0.015		49					
19	0.16	2,76	0.065		50					
20	1.93	14.4	1.92	0.070	51					
21	5.00	30.1	9.20	1.03	52					
22	13.39	40.1	21.8	6.33	53					
23	20.32	41.1	34.2	12.3	54					
24	20.77	41.8	35.7	15.7	55				•	
25	16.93	37 Ju	27.3	10.4	55					
26	8.23	23.4	7.95	1.43	57			I	1	
27	7.10	10.2	0.780	0.090	58					
28	3.23	1.45	0.085	0.015	59		1			
29	1.45	0.100	0.010		60			1		
30	0.32	J.030			61	E.			1	
31	0.97	0.030						1	1	

SULFUR-DICKIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF A MARTH

PATE

E 25 October 1955 - Run #23

TIME

E 2235-2245

E.S.T.

t nurber	Direction ir cent)	Concentration (mg m ⁻³)			radar.n .	Lirection or sent)	Concentration (mg m ⁻³)		
Post	W1nd (pe	5ūm	100m	200m	so _d .	futi: q)	50m	100m	200m
1					32			1	
2					33	1		1	
3					34				
4					35				
5					36				
6					_37				
2					38	/			
8		0.050			39				
9		0.530	0.015		40	<u>\</u>			
10	0,17	3.53	0,100		41	1			
11	0.33	10.4	0.830		. 42				
12	0.50	13.8	3.77	0.055	43				
13	1.33	22.8	8.89	0.330	44				
14	4.31	32.5	13.5	2.01	45				
15	6_80	1.5.3	17.7	6.57	46				
16	6.80	38.2	19.9	7.37	47	l			
17	12.27	35.7	تنوينة	<u>4.20</u>	46				
18	13.76	32.8	15.2	5.02	49				
19	16.25	32.2	18.6	5.24	50				
20	13.43	27.0	17.8	4.76	51			1	
21	14.43	22.8	10.9	4.19	52				
22	6.14	28.7	13.0	4.20	_53				
23	1.82	20.9	10.9	3.41	54	l			
21:	1.16	13.0	2.71	0.940	55				
25	C.50	4.44	0.50	0.035	55			1	
26		0.560	0.110		57				
27		0.095	0.010		58				
28		0,020			59				
20					60				
30	İ				61	-			
31	•		ļ			1		1	
SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRUBUTION OF ALIMUTH STOLD DIRECTICH

ATE	<u>27 0c</u>	tover 195	55 – Run /	124	TIME	TIME 2035-2045				
rucher	frection :=nt)	Concont	ration (m	ur m ⁻³)	r.unber	lirstion tent)	Concents	ر د - ۳		
1			AI Ç		t t			AFC		
Pos	utu i)	50m	100m	200m	×o _d	nutl: I)	50m	100m	200m	
1					32	20.17	25.8	19.1	13.0	
2					_ 33	22.67	25.9	22.9	17.8	
3					34	17.50	17.4	25.1	13.4	
4					35	8.17	4.24	5.51	0.170	
5					36	1.50	0.180	0.260		
6					37	10.33	0.010	0.005		
2					38	1				
8				میہ ۵۰ سے جبہ مطلبتگریزیں	39					
9					40					
10					41					
11		-			42					
12					43					
13				ومعارفتها والمفاقي ومعاليه	44					
14					45	L				
15					115					
16					47					
17	ii				48					
18					49					
19					50					
20	!				51					
21					52	Į				
22					53	L			1	
23					54	ļ			1	
<u>_:</u> ;	 	0.25			55_	ļ		L		
25		0.260			56					
26	0.83	0.710			57					
27	<u>.00</u> r	2.83	0.095	·····	58					
28	4.33	5.10	0.750		59					
20	3.83	9.76	5.94	0.000	-60					
30	4.50	13.7	11.3	4.13	<u>e1</u>	-				
1 31	15.17	25.5	11.1	7.52		,		i .	1	

-xx1v-

SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF ALIMITH MIND DIRECTION

ATE	27 Oct	ober 1955	5 – Run #2	25	TIME	2]1,5-2	2155		E.S.T.	
Post number	<pre>ind Direction (p.r cent)</pre>	Concent 50m	aration (m Arc 100m	200m	Post number	find Direction (per cent)	Concent: 50m	ration (m Arc 100m	ug m ⁻³) 200m	
	3	_			12	1.09	17.1	2.30	1 0.015	
						4 60	01. 7	20.0	0.029	
2	<u> </u>				22	0.02	24.07		0.150	
<u></u>	╀╼╍╼╍╉					7.70	23.0		2.00	
					24	17 88	27 0	21, 2	6 00	
	<u></u> ╋╼╼╼╌┥				27	12 1.1	10.2	20.3	10 1	
					27	10.10	17.07	20.5		
7	╞───┥				0	10.10	12.5	13.1	12.3	
8	├─── ┤					0.93	11.0	8.33	11.3	
_9	<u></u>				-"0	3.48	11.2	6.60	11.1	
10	┟────┽				41	4,30	12.4	6.25	7.82	
11	╞───┥			-	42	2,98	8.14	6.89	6.99	
12	 					0.17	5.73	10.0	7.70	
13	ļ				<u> </u>		6.37	8.99	6.63	
14					45		6.49	6.38	5.64	
15					1 <u>115</u>		6.53	7.62	0.350	
16	ļļ				47		5.03	6.55	0,015	
17					48		بليا. 3	4.48		
18					49		1.38	0.640		
19					50		1.%	0.035		
20					E.		0.160			
21					52		0.030		T	
22			N. Contraction of the second s		53					
23					54					
24					55					
25	††				55			t	+	
26	<u> </u>				57					
27	<u>† – – †</u>				58			 	+	
28	<u>├</u> †				60			<u> </u>	+	
20	<u> </u>	0.020	0.000		22			<u> </u>	+	
30		0.050	0.010		67	·				
20	<u> </u>	0-400	0.010		01				<u> </u>	

-***-

* 1.4.1

No. the

SULTUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH

31 October 1955 - Run #26

r unit cor	cerit)	Concentration (mg m ⁻³) Arc			Ter	d Direction (per cent)	Concentration (mg m ⁻³)			
<u>م</u>	E P		Arc			ы Б С С С	· · ·	Arc		
Pos	d)	50m	100m	200m	Pcs	hutk d)	50m	100m	200m	
1					32	13.31	17.5	8.20	2.62	
2					33	8.73	18.1	8.02	2.07	
3					24	7.28	20.0	7-49	2.29	
4					35	8.73	17.9	5.31	1.21	
5						3.74	13.3	2.69	0.230	
6				دور دور المنادين ويبرون المالة		3.33	8,57	0.790	0.025	
7					38	1.66	3.71	0.170		
8					30	2.08	0.970	0.010		
9					40	0.21	0.160	0.005		
10					41	0.21	0.020			
11					42	0,21				
12					47	0.21				
13					44	0.21				
14					45					
15					45					
16					47					
17					48				_	
18					49					
19	0.21				50				مىرى خە ھىرىلىكىرىيون	
20	0.21				51					
21	0.41				52					
22	0.41				53					
23	0.62	وبلد.٥	0.005		54					
24	C.1.1	0.610	0.010		55					
25	2.29	1.95	0.050		56				• خالت - بيندي يات - اوكار بارا	
26	2.91	4.99	0.045		57				ه استحده و والا المحداد	
27	8.11	8.34	1.66	0.085	58					
28	7.28	12.6	2.94	0.380	59		·		و من حي ميمنالياني خوا	
30	8.73	19.9	4.99	1.13	100 -					
30	7.90	20.6	6.24	1.67	61					
31	10.60	19.5	7.25	2.59						

-::::-

DATE

TIME

2105-2115

E.S.T.

SULFUR-DICKIDE CONCENTRATIONS AND ASSOCIATED PREQUENCY DISTRIBUTION OF AND WITH MIND DIRECTION

ther	netion ent)	Concentration (mg m ⁻³)			nber	action ent)	Concentration (mg m ⁻³)			
5			Arc		1 5	L DIL		Arc		
	d I bei				ost (bc bc				
Po	LE X	50m	100 <i>.</i> n	200m	, d	141.	50m	100m	200m	
1					32	2.07	1.04	0.200	0.015	
2					33	3.11	2.52	0.520	0.015	
3					34	3.11	5.36	0.730	0.180	
4					35	7.26	7.84	1.70	0.690	
5					36	9.13	11.2	2.96	0.560	
6					37	11.62	16,9	3.24	1.14	
7					39	7.88	17.5	4.06	1.22	
8					39	9.13	13.3	4.86	1.16	
9					140	10,15	11.5	3.75	1,00	
10					41	7.47	10.6	3.65	0.900	
11					42	4.56	9.81	2.81	0.660	
12					43	3.32	9.49	2,59	0,500	
13					44	4.36	9.98	1.94	0.540	
14					45	3.11	8.72	0_830	0.260	
15					46	2.49	4.25	0.340	0.160	
16					47	1.04	3.69	0.610	0.010	
17					48	1.04	2.78	0.390		
18					jug.	1.56	1.24	0.470		
19					50	0.62	0,690	0,270		
20					51	0.21	0.640	0,015		
21					52	0.42	0.320	0.015		
22	0.12				53		<u>0,105</u>			
23	0.21				54		0.010			
24	0.62				55					
25	0.21	0.045			56					
26	0.42	0.150			57					
27	0.83	0.160			58					
28	0.12	0.1.1.0			59					
20	1.24	0.330	0.065		60					
30	1.04	0.300	0,150		61					
31	0.931	0.590	0.115!	0.03.5				·····		

-77 -11-

DATE 31 Oc tober 1955 - Run #27

2.20%的是一个问题的意思

2250-2300 TIME

E.S.T.

-#X/111-----

THEFT DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF ADDAUTH

-1778

8 November 1955 - Run #28

TTME

E 2130-2140

E.S.T.

8

 ${}^{1}\frac{2}{2k}$

† 1

urber	retion cont)	Concent	ration (m	ne n ⁻³)	Liber.	roction cent)	Concent	ration (mg	5 m ⁻³)
	ក រ		Åre			er D		irc	
Pot	Wind (F	50m	100m	200m	Po:	1 .11.1 (1)	50m	100m	200m
1					32	į			
2					33				
3					34				
4					35				
5					36	1	1	8	
6					37				
7					38	N N			
3					30	(
9					40				
10		namaga e dan an sa radis di ka			41				
11	0.17			alitica - animana - ani	42				
12	C.83	0.110			43				
13	1.33	4.83	0.030		نننا				
14	2.79	15.2	3.52		45	1	1	ĺ	
15	6.99	40.8	11.7	0.300	46			1	
16	10,48	47.4	27.8	9.37	47				
17	11.31	51.3	41.4	22.0	48				
18	11.31	34.7	22.2	10.2	40				
19	10.47	26.8	8.39	2.39	50				
20	11.15	16.8	3.80	1.13	51				
21	6.19	25.9	8.97	570	52		ĺ		
22	4.33	19.5	11.9	4.65	53				
23	2.83	17.5	7.55	3.46	54				
24	2.33	8.24	5.00	0.940	55				
25	2.33	3.11	0.660	0.210	56				
26	2.33	1.20	0.020		57				
27	0.93	0.060			58				
28	0.17				59				<u></u> ·
20	0.33				60			† 	∲
30	· · · · ·				61				•
31_								·	

STRINGLDICKIDE CONCENTRATIONS AND ASSOCIATED FREDERCY DIABANSAN OF ALLINING AND DIRECTICN

TIÆ

-xada:-

i

2310-2320

48

に変い

Ż,

E.S.T.

Post nu	Wind finicts (par cent)	Concent:	hrc 100m	e m ⁻³) 200m	Post ruter	.lind Eirection (per cert)	Concent 50m	ration (r Arc 100m	nr m ⁻³) 200m
1	<u> </u>	1			32				
				/	22			1	
3					34	ļ			+
4	1			; ;	35				
5					36				
6					37				1
7					39				
8					39				
9					40				
10					41				
11					42				
12				····· · ··· · · · · · · · · · · · · ·	1.3				
13	0.17				44				
14	0.17	0.015			45	l			
15	0.33	0.160	0.020		46	L			
16	0.50	2.20	0.040	0.015	47	ļ	· · · · · · · · · · · · · · · · · · ·		
17	0.83	7.97	0.160	0.030	48		[] 		
18	1.50	15.3	0,360	0.020	49	ļ			
19	3.16	29.6	5.22	0.330	50	L	ļ		_ _
20	6.31	47.8	13.7	1.86	51	ļ			<u> </u>
21	8.80	60.8	22.2	5.39	52	<u> </u>			
<u>22</u>	17.77	68.5	36.4	12.4	53) 	·	
23	18.60	63.9	34.6	16.4	. 54	_	ļ		
:4	19.10	42.1	18.2	8.67	55_	<u> </u>			
25	9.30	17.7	8.15	2.54	56	 	 		
26	8.17	6.55	1.74	0.340	57	<u> </u>			
27	1.32	3.33	0.380	0.035	58	! 	 		
28_	0.50	0.720	0.070		59		· · ·		
<u> 50</u>	<u> </u>	<u> </u>			60		! 		

8 November 1955 - Run #29 DATE

Table II. Surmary of source strengths Q for the 1954-1955 diffusion experiments and correction factors by which concentration data presented in table 1 should be multiplied to compensate for evaporational loss of impinger solution during acration.

- • `						
Runt			1	Ar	c radius ((m)
No.	Date	Time(EST)	$Q(g sec^{-1})$	50	100	200
1	8-13-54	0915-0925	1.00	C.93	0.93	0.92
2	10- 7-54	1700-1710	4.43	0.91	0.94	0.93
3	10-21-54	0710-0720	11,49	C.90	0.91	0.92
Ц,	10-28-54	1020-1050	6.67	0.91	0.97	0.86
5	11- 9-54	1010-1020	8.82	0.95	0.94	0.96
6	12- 1-5	101.5-1055	7.24	0.96	0.91	0.92
7.	3- 2-55	1145-1155	9.16	0.95	0.94	0.96
8	3- 3-55	1035-104,5	9.31	0.96	0.94	0.93
9	3- 7-55	1140-1150	9.84	0.98	0.99	0.97
10	3-23-55	1125-1135	10.04	0.96	0.97	0.97
11	3-23-55	1545-1555	9.96	0.98	0.97	0.98
12	3-25-55	1050-1100	9.92	0.97	0.97	0.97
13	3-20-55	1505-1515	9.98	0.99	0.96	0.97
14	3-29-55	1120-1130	9.90	0.97	0.97	0.97
15	3-30-55	1030-1040	9.95	0.97	0.97	0.97
16	3-31-55	2040-2050	9.96	0.95	0.95	0.95
17	3-31-55	2215-2225	9 . 85	0.96	0.96	0.96
18	6-13-55	2035-2045	8.; <	0.98	0.98	0.98
19 ்	6-13-55	2240-2250	8,58	0.97	0.97	0 .96
20	6-15-55	2050-2100	8.18	0.98	0.98	0.97
21	10-19-55	2245-2255	6.23	0.95	0.94	0.94
22	10-20-55	0050-0100	6.42	0.97	0.97	0.96
23	10-25-55	2235-2245	6.60	0.93	0.98	0.99
24	10-27-55	2035-2045	5.72	0.96	0.36	0.97
25	10-27-55	21 <u>1</u> 5 - 2155	5-77	0.96	0.97	0.97
26	10-31-55	2105-2115	6.87 i	0.98	0.98	0,98
27	10-31-55	2250-2300	6.65 1	0.98	0,96 '	0.97
28	11- 8-55	<u>5730-5770</u>	7.91	0.56	0.95	0.95
29 -	11- 8-55	2310-2320	7.96	0.96	0.96	0.97
						• •

-xxx-

£...

Table III. Summary of meteorological observations for 1951-1955 field experiments at Round Hill. Explanation of symbols: \vec{v}_z , \vec{T}_z are the mean wind speed in m sec⁻¹ and the mean air temperature in deg C, respectively (subscripte refer to the height of the measurements in m); σ_E , σ_A are standard deviations of elevation and azimuth angle, respectively, in deg; M signifies missing data.

Run				Vertical	profi	les cf	mean wind	speed a	and air	tempe	rature
NC.	⊽ ₂ ົ	σE	(TA	v 1. 5	7 3	⁷⁷ 6	₹ 1 2	Ŧ 1 .5	Ī3	₹ ₆	₹ <u>1</u> 2
1	2.17	11.2	30.4	И	M	М	M	M	M	M	M
2	և.Դև	6.1	17.5	11	M	M	M	M	M	M	M
3	2.84	5.3	12.5	M	11	••	M	M	11	M	1
4	2.62	10.8	31.5	M	M	M	M	n N	M	М	M
5	5.25	4.6	13.9	M	M	М	M	M	M	M	M
ó	և.21	4.9	15.5	3.73	4.34	4.70	5.00	4.00	3.73	3.59	3.38
7	8.76	4.0	8.4	7.94	9.21	10.32	M /	6.00	5.69	5.43	5.18
8	3.86	5.7	19.8	3.53	4.04	4.39	4.59	2.20	1.91	1.58	1.44
9	7.46	M	11.0	6.77	7.79	8,65	9.46	0.40	0.10	-0.15	-0.41
10	7.12	M	16.6	6.77	7.84	8.65	9.56	5.10	4.91	4.78	4.61
11	7.76	M	13.0	7.08	8.24	ö•95	9.71	6.00	6.01	6.02	5.99
12	1. 30	5.2	18.6	3.22	1.42	1.05	5.20	5.90	5.re	5.27	1.80
13	9.20	M	15.3	9.31	10.73	11.69	12.63	4.00	3.92	3.89	3.81
14	4.38	5.1	22.0	4.39	4.90	5.25	5.61	3.80	3.32	3.04	2.70
15	և.46	5.2	25.9	և օևև	4.90	5.35	5.71	12.75	12.30	12.01	11.76
16	4.56	7.4	12.8	L.70	5.35	5.91	6.47	6.80	7.07	7.23	7.36
17	2.40	6.7	9•5	2.26	2.92	3.23	3.48	6.80	7.30	7.61	7.85
18	2.94	5.5	10.8	2.62	M	2.63	2.09	15.00	15.17	15.26	15.31
19	2.71	5.9	11.8	2.47	M	3.43	3.78	17.00	17.14	17.22	17.29
20	1.87	4.0	8.5	1.76	2.11	2.52	2.97	17.00	17.23	17.40	17.54
21	1.49	4.2	7.7	1.49	1.76	2.21	2.65	13.20	13.31	13.39	13.45
22	1.79	2.8	5.9	1.64	2.13	2.65	3.13	9.70	10.09	10.33	10.55
23	1.74	3.1	7.5	1.84	1.94	2.12	2.70	3.90	4.19	6.61	1.60
24	1.98	1.8	5.1	1.93	2.10	2.69	3.43	5.70	6.57	6.91	7.32
25	1.63	1.7	5.8	1.55	1.89	2.47	2.91	4.50	6.39	7.03	7.43
26	2.79	5.5	10.6	2.70	2.94	3.33	3.75	11.00	11.17	11.26	11.32
27	3.32	5.8	13.8	3.51	3.85	4.26	4.52	11.50	11.59	11.60	11.59
28	1.79	2.9	8.9	1.85	2.05	2.55	2.76	5.10	5.53	5.76	5,90
29	1.78	3.2	6,8	1.72	2.06	2.5?	3.11	2.60	3.02	3.29	3.44

*Averages of values from cup anemometer near source and from vertical profile data.

Averages of data from bivanes and vane near source except for wind speeds below 2 m sec⁻¹ when only bivane data were used.

SUMMARY OF DIFFUSION MEASUREMENTS AND MELEUROLOGICAL DESERVATIONS OBTAINED AT ROUND HILL DURING 1957

Table I. Sulfur-dioxide concentrations for three periods of sampling

and 10-min frequency distributions of azimuth wind direction.

Explanatory Notes

Concentration data comprise average values, determined at a height of 5 m, for sampling periods of 10, 3, and 0.5 min at travel distances of 50, 100, and 200 m from a continuous point source of sulfur-dioxide gas. The sampling network consisted of three independently-operated. overlapping arrays located along semicircular arcs. The 10-min array extended over 180 deg of arc and individual stations were spaced at 3-deg intervals; the 3-min array extended over 150 deg of arc and individual stations were spaced at intervals of 1.5 deg; the 0.5-min array used a 1.5-deg separation and extended over an arc of 120 deg. entries in the table refer to consecutive post numbers of the sampling network, post No. 1 being directly north-northeast of the release point for the tracer. Post Fos. 1 to 6 and 106 to 111 utilized a 3-deg separation interval; the separation between all other consecutive post numbers is 1.5 deg. Vertical sampling was also carried out within the 10-min array at intervals of 15-deg alon- each semicircular arc. Concentration data are available at these locations for the following additional heights: (50-m arc) 0.5, 1.0, 2.5 m: (100- and 200-m ares) 0.5, 2.5 m.

The 10-min frequency distributions of azimuth wind direction are based on the records of a vane located at a height of 2 m near the source. Entries represent percentage frequency of occurrence within 3-deg class intervals centered on posts of the sampling network.

In the conduct of the diffusion experiments, the tracer was released horizontally at a height of 1.5 m and permitted to traverse the entire array before the individual samplers were set in operation. The three networks were turned on simultaneously and operation of each network terminated after the appropriate sampling time had elapsed. The emission of the tracer was discontinued after the end of the 10-min sampling period.

AFPEIDIX E

SULFUR-DIOXIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH 'IIND DIRECTION - Run #1

1.0

36.23

17.22

Same of the second

L	tt ou	Concent	ration (m	g m ⁻³)		f u .
numte	d d rec		Arc	r.		numte
Post	d)	50m	100m	200m		Fost
38	0.42					
40						
42					İ	
44						
46						
48	0.42				_	
50	1.67				ſ	با در
52		0,630				Pos
54	2.91	5.45				2
56	3.75	29.2	0.672			56
58	3.33	138	8.12			
60	9.58	282	50.5	1.80		
62	14.17	457	<u> 17'1</u>	20.7		66
64	12.92	471	270	74.8		
66	25.42	450	285	117		
6 8	8.33	1.37	.190	54.9		76
70	6.25	257	53.9	5.96		
72	5.00	85.0	6.15	0.231		
74	2.91	24.5	0.75?			
76	0.83	1,68	0.106			
78	1.25					
80	0.42					d
82	C-h2					
					ſ	

direction r cent)	Concentration (mg m ⁻³) Arc							
buiw (pai	50m	10Cm	200m					
	Wind direction (par cent)	Concent Mind direction (par cent) 20m	E () Concentration (m provention (m Arc put M 50m 100m					

Post umber	Height (m)	Concent	ration (m	n (mg m ⁻³)		
			20016	20014		
56	2.5	19.6	1.93			
	1.0	40.9				
	0.5	49.3	0.182			
66	2.5	265	174	91.2		
	1,0	510				
	0.5	520	374	129		
76	2.5	2.45	0.031			
	1.0	2.19				
	0.5	1.66	4.15			
	2.5					
	1.0					
	0.5					
-	2.5					
-	1.0					
	5.3					
	2.5					
	1.0					
	0.5					
	2.5					
	1.0					
	0.5					

SULFTR-DICKTOR DENELTRATICIES

ر المحلة الروائي) ماري محلة روايي ال

DATE 24 September 1957 THE 1935 F.S.T. PERIOD OF SAMPLING 3 MEMORS

i. Afai

	Concentration (mg m^{-3})				Concentra	ation (mg r	· ⁻³)
Post No.	50m	Arc 100m	200m	Post No.	50m	re 100m	200m
25				52			
16				53	1		
17				5/1	0,603		•
18				55	2.03	l	
19				56	9.80		
2')				57	28.0	0.290	
21				58	63.0	1.31	
22				59	160	3.67	0.357
23				60	272	16.9	0.343
24				<u>61</u>		57.0	1.00
25				1 62	533	151	7.97
26				63	580	269	27.3
27				天上	620	357	78.0
28				65	663	383	131
29				66	61.3	31.3	123
30				67	650	240	75.7
31				68	540	200	35.7
32				69	390	120	15.9
33				70	298	53.0	5.33
34				71	193	13.4	1.23
35			n air ann ann an Aillinn ann	72	125	3.83	0.283
36				73	66.3		
37			استيد بالكلادانة الجريج ويستطلنا	74	27.4		1
38				75	5.43		
32	ĺ	ĺ		76	3.10		
40				77	0.560		
4]		2		78			
42				79			
43				Pņ			
214				81			
45				82			
46				_ 63			
47				84			
49				85			· · · · · · · · · · · · · · · · · · ·
<u> </u>				<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			
	·			00			
		1		; · <u> </u>	:		

SULFOR-DIOXING CONCLEMENTIONS

				_
TINE 1935 C	.S.T.	PFRIMD C	F SINTLING	0.5 minutes

-34

Concentration (mg m ⁻³) Concentration (mg m ⁻³) No. 50m 100m 200m 14 52 16 52 17 54 18 55 18 55 20 21 18 20 21 22 23 24 25 26 27	DATE _2	4 September	<u> </u>	TINE 1935	C.S.T.	PITIND C	F SAMPLING	0.5 vinute
Post No. for Som for Som <td></td> <td>Concentr</td> <td>ation (mg</td> <td>m⁻³)</td> <td></td> <td>Concentra</td> <td>ation (mg m</td> <td>-3)</td>		Concentr	ation (mg	m ⁻³)		Concentra	ation (mg m	-3)
15 52	Post No.	50m	100m	200m	Post No.	50m	irc 100m	200m
16 53 17 54 18 55 20 56 4.52 20 57 11.3 21 58 47.2 5.20 22 59 92.2 7.60 23 60 17.3 22.2 24 61 34.8 89.7 25 62 490 11.2 26 63 618 221.1 26 63 618 221.1 27 64 806 228 $2.11.1$ 28 65 822 376 8.20 29 66 816 112 20.0 30 67 1088 398 33.2 31 69 610 316 25.2 32 70 506 161 20.0 34 71 258 50.0 14.68 35 72 121 18.41 73 36 75 3.51]5		-1		52			
17	16		محصوب و شارا المتوجد ال		53			
18 55 56 h_{2} 52 20 57 h_{4} 5 52 21 58 h_{7} 2 5.2C 22 59 $92 \cdot 2$ 7.60 23 60 173 22 \cdot 2 24 61 348 $89 \cdot 2$ 25 62 h_{90} h_{22} 26 63 618 224 27 64 808 228 2.11 28 65 822 376 8.20 29 66 84.6 h12 20.0 30 67 1088 398 33.2 31 68 783 410 38.1 32 70 506 161 20.0 34 71 258 50.0 4.68 35 72 121 18.4 73 36 72 12.2 1.36 77 37 74 2.22 36 75 3.51 37 75 3.51 79 43	17				54			
12 56 1.52 20 57 11_{12} 21 58 17.2 5.20 22 59 92.2 7.60 23 60 173 22.2 24 61 $31,6$ 89.2 24 61 $31,6$ 89.2 25 62 190 112 26 63 618 221 27 64 808 228 2.11_{h} 28 65 622 376 8.20 29 66 916 112 20.0 30 67 1088 398 33.2 31 69 610 316 35.2 23 70 506 161 20.0 34 71 258 50.0 1.668 72 121 18.4 72 74 2.22 38 75 3.51 72 74 2.22 <td>18</td> <td></td> <td></td> <td></td> <td>55</td> <td></td> <td></td> <td></td>	18				55			
20 57 14.3 21 58 47.2 $5.2C$ 22 59 92.2 7.60 21 60 173 22.22 24 61 34.8 89.2 25 62 490 142 25 62 490 142 26 63 618 224 27 64 806 228 2.14 28 65 622 376 8.200 29 66 846 $h12$ 20.0 30 67 1088 398 33.2 31 68 763 $h10$ 35.4 32 70 506 161 20.0 34 71 258 50.0 $h.68$ 35 72 121 18.4 73 36 73 23.2 1.36 37 74 2.22 75 3.54 39 76 72 72 72	19				56	4.54		
21 58 47.2 $5.2C$ 22 59 92.2 7.60 23 61 34.8 89.2 24 61 34.8 89.2 25 62 490 142 26 63 618 224 27 64 808 228 $2.31h$ 28 65 822 376 8.20 29 66 34.6 $h12$ 20.0 30 67 1088 398 33.2 31 68 783 410 $28.h$ 32 70 506 161 20.0 34 71 258 50.0 4.68 35 72 121 18.4 73 36 72 121 18.4 74 2.22 75 38 72 23.2 1.36 77 23.2 1.36 37 74 2.22 75 3.51 79 43 60 </td <td>20</td> <td></td> <td>ببدوار فحدده والأعيون</td> <td></td> <td>57</td> <td>14.3</td> <td></td> <td></td>	20		ببدوار فحدده والأعيون		57	14.3		
22 59 92_2 7.60 23 60 173 22_2 24 61 $3L8$ 89.2 25 62 490 $4L2$ 26 63 618 224 27 64 808 228 2.414 28 65 822 376 8.20 29 66 846 408 228 2.414 28 65 822 376 8.20 29 66 846 412 20.0 30 67 1088 398 33.2 31 68 763 410 28.4 32 70 506 161 20.0 71 258 50.0 4.68 72 221 18.44 73 23.2 1.36 77 74 2.222 75 3.51 72 21.36 79 75 3.51 72 24.22 799 43 <	21				58	47.2	5.2C	
23 60 173 22.2 24 61 $31,6$ 89.2 25 62 490 112 26 63 618 2214 27 64 808 228 2.114 28 65 822 376 8.200 29 66 $81,6$ 412 20.00 30 67 1088 398 33.2 31 68 783 410 28.4 32 70 506 161 20.0 34 71 258 50.0 4.68 35 72 121 18.4 73 36 72 23.2 1.36 37 74 2.222 74 2.22 38 75 3.51 72 74 2.22 38 75 3.51 72 72 72 41 72 72 72 72 72 43 60	22				50	92.2	7.60	
24 61 348 89.2 25 62 490 142 26 63 618 224 27 64 808 228 2.11 28 65 822 376 8.20 29 66 816 412 20.0 30 67 1088 398 33.2 31 68 783 410 28.4 32 70 506 161 20.0 34 71 258 50.0 4.668 35 72 2121 18.44 73 36 72 22.2 1.366 37 72 23.2 1.36 73 23.2 1.36 75 3.54 39 75 3.54 72 2.22 74 2.222 72 2.22 1.36 140 72 $2.3.2$ 1.36 2.22 74 2.222 <td>23</td> <td></td> <td></td> <td></td> <td>60</td> <td>173</td> <td>22.2</td> <td></td>	23				60	173	22.2	
25 62 490 142 26 63 618 224 27 64 808 228 2.14 28 64 808 228 2.14 28 65 822 376 8.20 29 66 946 $h12$ 20.0 30 67 1088 398 33.2 31 68 783 $h10$ 38.41 32 70 506 161 20.0 34 71 258 50.0 4.68 35 72 121 18.41 73 36 72 121 18.41 73 36 75 3.51 76 74 2.222 76 38 75 3.51 72 72 74 2.222 75 38 77 79 79 79 79 79 79 79 73 73 73	24				61	348	89.2	
26 63 618 224 27 64 808 228 2.11 28 65 822 376 8.20 29 65 822 376 8.20 30 67 1088 398 33.2 31 68 788 110 38.1 32 70 506 161 20.0 34 71 258 50.0 1.68 35 71 258 50.0 1.68 35 72 121 18.4 73 36 72 121 18.4 73 36 72 121 18.4 73 37 76 74 2.222 75 3.51 38 77 76 77 79 79 79 79 79 79 79 79 79 70 70 70 70 70 70 70 70	2.5				62	490	142	
27 64 808 228 2.11_{-} 28 65 822 376 8.20 29 66 816 112 20.0 30 67 1088 398 33.2 31 66 783 110 28.1 32 70 506 161 20.0 34 71 258 50.0 1.668 35 72 121 18.4 73 23.2 1.36 37 74 2.222 75 3.51 72 121 18.4 36 75 3.51 74 2.222 75 3.51 37 76 77 72 72 72 72 72 72 73 73 72 72 73 72 73 73 73 74 72 72 74 72 72 73 73 74 73 74 73 74 73 <td>26</td> <td></td> <td></td> <td></td> <td>63</td> <td>618</td> <td>224</td> <td></td>	26				63	618	224	
28 65 622 376 6.20 29 66 946 112 20.0 30 67 1088 398 33.2 31 68 789 110 38.44 32 70 506 161 20.0 34 71 258 50.0 14.68 35 72 121 18.44 73 36 72 121 18.44 73 36 77 74 2.22 75 38 75 3.54 77 72 37 76 74 2.22 75 38 77 76 74 2.22 77 41 79 79 79 79 73 42 73 80 73 73 73 44 82 73 73 73 73 44 82 82 73 73 73 73 <	27				64	808	228	2.14
29 66 916 112 20.0 30 67 1088 398 33.2 31 68 768 110 38.1 32 70 506 161 20.0 34 70 506 161 20.0 34 71 258 50.0 4.68 35 72 121 18.4 73 36 72 121 18.4 74 2.22 38 75 3.51 76 74 2.222 38 75 3.51 76 77 79 41 79 79 79 79 79 43 80 73 73 73 73 73 44 79 82 73 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 <td>28</td> <td></td> <td></td> <td></td> <td>65</td> <td>822</td> <td>376</td> <td>8.20</td>	28				65	822	376	8.20
30 67 1088 398 33.2 31 67 1088 398 33.2 32 68 788 410 38.4 32 70 506 161 20.0 34 71 258 50.0 4.68 35 72 121 18.4 73 36 73 23.2 1.36 77 23.2 1.36 774 2.222 38 75 3.54 76 77 41 78 79 79 79 42 79 79 73 73 73 43 80 79 79 79 43 82 73 73 73 73 44 82 79 79 79 73 43 80 73 73 73 73 73 44 82 79 73 73 73 73	29				66	846	412	20.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30				67	1088	398	33.2
32 69 610 316 35.2 34 70 506 161 20.0 34 71 258 50.0 4.68 35 72 121 18.44 73 36 72 121 18.44 73 37 74 2.222 74 2.222 38 75 3.544 76 77 40 77 76 77 78 41 73 23.2 -1.36 77 41 73 23.2 -1.36 77 41 76 77 -76 -77 -76 42 9 80 -77 -78 -79 -78 43 -79 -79 -78 -79 -79 -78 -79 -79 -78 -79 -79 -79 -79 -79 -79 -79 -79 -79 -79 -79 -79 -79 -79 -79 -79	31				68	789	410	38.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32				69	610	316	35.2
34 71 258 50.0 4.68 35 72 121 18.4 36 73 23.2 1.36 37 74 2.22 75 38 75 3.51 76 27 76 77 78 42 79 78 79 43 80 81 82 45 82 82 82 43 82 82 82 43 85 85 85 47 86 85 85 47 86 85 86	33				70	506	161	20.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34				71	258	50.0	4.68
36 73 23.2 1.36 37 74 2.22 75 38 75 3.51 76 39 76 77 78 41 78 79 78 42 79 79 79 43 80 73 23.2 44 76 76 77 43 79 78 79 43 80 79 79 44 81 73 73 45 82 100 100 44 9 9 9 100 49 9 9 9 100 100 51 100 100 100 100 100	35				72	121	18.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36				_73	23.2	1.36	
38 75 3.51 37 76 77 40 77 78 41 78 79 42 79 80 43 80 81 44 81 82 46 73 82 47 85 85 49 85 85 50 87 93	37				74	2.22		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38				75	3.54		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39				76			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41				78			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42		محمد التكريم					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	<u> </u>			80			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44				_ 81			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45				82			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46				<u>m</u>			
45 85 49 86 50 87 51 35	47							
	40				85			
51 35	50				87			
	51	ł_			35			

BUIFUR-DICKIDE CONSTRUCTIONS AND ASSOCIATED TREQUENCY DISTRIBUTION OF AZIMUTH MIND DIRECTION - Run #2

	(† ()	Concent	; m ⁻³)	
n'arcer	direct er cent		Arc	
Post	brii: q)	50m	100m	200m
21	0.42	0.092		
26		2.54		
28	0.42	4.59	0.117	
30	7.56	14.2	0.655	
32	2.49	29.9	2.38	0.252
31.	2.07	57.2	7.68	0.851
36	1.66	69.1	10.8	1.73
38	4.98	76.9	16.6	2.73
1,0	4.56	85.1	19.9	3.79
42	6.64	93.1	21.4	4.85
114	4.56	89.8	22.8	5-44
46	5.81	162	21.9	4.89
18	7.38	115	23.0	5.75
50	5.39	103	22.5	5.50
52	6.22	97.7	22.1	5.7h
51	8.71	110	20.5	5.68
56	9.54	94.9	18.5	L.69
58	6.22	65.8	19.9	3.59
60	2.49	40.9	12.1	1.92
62	2.07	30.5	9.50	2.28
6ц	2.91	30.7	7.53	1.66
66	4.15	18.1	4.53	1.07
69	3.32	9.51	1.89	1.26
70	1.25	6.73	1.97	0.941
72	1.25	3.95	1.73	0.191
711	0.83	7.51	2.49	0.302
76	1.?5	10.5	2.10	0.079
73	0.12	20.0	0.14	
80	0.83	11.34	0.1.34	
52		1.90	0.046	

nurber	é durection Far cent)	Concentration (mg m ⁻³)						
Post	Wilmó (F	50m	100m	200m				
84		1.41						
86		0.077						
			[

ost ber	a)	Concont	ration (m	g m ⁻³)	
d Er	5.	50m	100m	200m	
26	2.5	2.54			
	1.0	1.74			
	0.5	1.49			
36	2.5	52.3	11.6	1.52	
	1.0	71.5			
	0.5	73.7	10.5	1.70	
46	2.5	81.6	19.7	4.77	
	1.0	105			
	0.5	110	23.3	4.52	
56	2.5	79.0	19.0	4.04	
	1.0	98.6			
	0.5	110	19.7	4.66	
66	2.5	17.4	1.73	1.09	
	1.0	20.1			
_	0.5	22.3	5.43	3.56	
75	2.5	7.15	1.93	0.177	
	1.0	10.5			
	0.5	12.5	1.89	0.036	
रज	2.5	0.093			
	1.0	0.020			
	0.5	0.050			

and and

STREEDICKING CONCAMERATIONS

DATE 2 October 1957 THE 1320 FURIOD OF SHATTING 3 Minutes

い、読みましてま

	Concent	ration (mg m	™ 3)		Concentr	etion (mg m	-3,
Post No.	50m	irc 100m	200m	Post No.	50m	rc 100m	200m
15				52	47.7	22.2	6.80
16				53	52.7	23.0	7.10
17				511	61.7	2h.1	7.60
18				55	66.7	22.0	7.40
19			• • • • • • • • • • • • • • • • • •	56	72.3	.71.7	7.60
20				57	71.3	19.1	6.13
21				58	86.C	18.1	3.83
27				59	69.7	16.2	3.05
23			، میدونی برد می خود در ایندوی ایندوی	60	12.C	12.1	1.43
24			، - هجیری، «کندیسی، موندایی»» : 	61	28.5	7.30	0.750
25			· · · · · · · · · · · · · · · · · · ·	62	21.5	4.63	0.257
26			یہ کلیف یہ کلی پر وہ میں ۔ جی م i	63	16.9	1.91	0.243
27				64	10.7	1.1.1	
28	0.1:67	0.363	·	65	5.83	0.620	
29	0.643	0.660			2.20	0.187	
30	2.87	1.38	• • • • • • • • • • • • • • • • • • •	67	0.693		« <u> الله الله الم</u> الية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية ال
31	6.80	1.31	0.257	68			
32	13.3	1.24	0,517	69			
33	21.3	2.08	068.0	70			
34	24.1	2.64	1.45	71			
35	32.5	3.57	1.78	72			· «
36	45.3	6.10	1.75	73	,		
37	71.0	7.90	2.51	74			
38	78.7	13.1	3.31	75			
39	76.7	16.5	3.93	76			
40	105	ш.9	3.77	27			ب میرود ماندرین وی و اترود
41	139	21.7	3.05	78			
42	376	25.7	3.80	79			
43	126	27 . Ŭ	4.07	C0			
44	116	24.9	5.03	P1			
45	102	25.6	5.73	22			میں ، منظل بار اندازی پر میں ہے۔ نیمنو ک جوری انہوں کے انہوں ہے
46	93.7	29.5	6.00	<u></u>			
47	95.0	31.2	6.00	<u></u>			
<u>- 43</u>	<u>UL 7</u>	20.5	6,27	<u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	 		
- 40	53.6	20.3	6-53				
50	<u> </u>	18 0	- 5.50	· · · · · · · · · · · · · · · · · · ·		۱ موجود می این این این این این این این این این ای	

SULFUR-DICKEDE CONCENTRATIONS

1

DATE	2 Octob	0 1 1957	TTMT 1120	_3.5.T.	TFILIOD C	F SAMPLING	0.5 11.00
	Concon	tration (me	m ⁻³)		Concentr	ation (mg m	-3)
Post No.	50m	Arc 100m	200m	Post No.	50m	/.rc 100m	200m
15				52	23.8	8.04	5.65
16				_ 53	56.4	8.04	13.6
17		1		54	68.4	10.2	19.2
18				55	m	18-h	19.2
12				56	124	34.5	16.C
20				57	176	57.5	15.6
21				50	210	62.1	10.6
22				59	196	47.7	5.36
23	• • • • • • • • • • • • • • • • • • •			60	135	34.1	5.36
24		1		61	101	15.3	9.80
25		1		62	79.0	7.54	1.64
	<u>مى مەركالكەر بايدا مە</u> ر			63	70-2	1.82	1.54
27				64	1.1.6	2,50	0.520
28		1		65	19.8		0.960
29				6.6	11.8		2.36
30	فسبدي فالتكلكي ويسني ور			67	1.66		
31		1		63]	
32				59			
33		-j		70			
71.				21	برايرانده مزدوا المتناعة •		
35		1		72			
36		1		73			
37	1.30			74			
38	6.06			75			
30	7.86		<u> </u>	26			
20	8.46						
40	10.7	+	<u> </u>				
112	10 1	+		70		· · · · · · · · · · · · · · · · · · ·	
42	16.9	• • • • • • • • • • • • • • • • • • •		30			
111	22.1	1	j		<u></u> .		
45 1	21.2		·	92			
46	22.9			83			
47	15.9			04			-
48	10.9		1.28	Ú.	······································		
		1 00	1 222	C.(=		1	
50	22.1	3.30	0.500	37	1	•	
11	22.8	3.72	2.38	1.5			

644

SULFUR_DICKIDE CONSTRUCTIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH VIND DIRECTION - Run #3

PERIOD OF SAMPLING 10 min

it nurber	wd direction per cent)	Concenti	ration (mg m ⁻³)		ost numbor		Ind direction (par cent)	Concent	Concentration (mg m ⁻³) Are		
Pos		50m	100m	200m	10	ĺ	[<u>k</u> :	50m	100#	200m	
16	0.42										
<u>1:8</u>		0.031									
50	1.25	0.1186			l i	1				• • • • • • • • • • • • • • • • • • •	
92	0.83	0.616									
54	1.25	4.32				1					
56	2.50	11.9	0.203			1					
ŝ	3.33	21.1	1.34	i) .03 8	-		t t	Concentration (mg m^{-3})			
60	2.50	8. بليا	4.51	0.265	01		c15 (m)		tre	•	
62	7.50	82.1	21.9	2.08		1	::: 	<u>50m</u>	100m	200m	
64	5-42	121	36.6	٤.30	56		2.5	11.7	0.218		
60	9.17	154	56.6	16.3		i	1.0	10.7			
68	5.00	238	69.8	20.4		I	0.5	9.10	0.211		
70	10.00	262	73.9	22.3		i i	2.5	107	50.1	14.9	
72	10.83	205	59.1	20.1			1.0	189			
74	9.17	136	8. الل	10.3			0.5	211	62.4	16.3	
76	5.42	110	25.4	3.24	76		2.5	80.9	25.9	<u>N</u>	
78	7.50	86.5	13.3	0.855			1.0	125			
80	5.25	39.3	3.84	0.102			0,5	フ テ0	25.6	3.65	
82	4.58	16.8	0.509		86	Ì	2.5	2.71	M		
84	2.92	6.01	0.179			i	1.0	2.41		-	
86	2.08	2.87	0.051				0.5	2.19	0,135		
88	1.66	0.706				Ī	2.5			-	
90		0.072				Ī	1.0				
92	0.42	0_0.27				Ţ	0.5				
94		0.031				- T -	2,5				
						Ι	1.0				
						T	0.5				
					<u> </u>		2.5				
						- 4-	2				
				i - 1	f i	Î	· •				

i

ş

THE REPORT OF THE THE CANCENTRATIONS

DATE	10 Optro	or 1957	TINE _ 2020	<u></u>	PERIOD CE	r slotung	<u>3 intes</u>	
	Concent	ration (mg	m ⁻³)		Concentration (mg m ⁻³)			
Post No.	50m	Arc 100m	200m	Post No.	50m	irc 100m	200m	
15	ĺ			52		Ţ		
16				53			• • • • • • • • • • • • • • • • • • •	
17				54				
18				55			•••••••••••••••••••••••••••••••••••••••	
19				56	0.193			
20				57	4.33	0.557		
21				58	5.10	0.383	0.103	
22				59	12.2	3.60	0.457	
23				60	22.6	4.07	0.543	
24				61	39.0	15.3	1.34	
25				62	60.3	24.1	3.07	
26				65	77.7	27.2	6.07	
27				64	81.3	21.6	9.23	
28			+	65	115	33.3	16.2	
29				66	1.59	43.7	18.4	
30				67	200	51.0	18.1	
31				68	235	72.0	16.0	
32				69	324	83.7	9.83	
33				70	360	67.3	72.1	
34				71	350	77.7	18.8	
35				72	299	67.7	10.0	
36				73	229	60.3	15.9	
27				74	157	53.0	11.9	
38				75	218	40.0	5.10	
39				. 76	99.0	29.2	2.04	
40		,		77	102	23.6	1.37	
41				75	99.0	16.4	0.307	
42				- 79	62.0	11.3	0.243	
41				80	<u>h1.</u> ;	3.10		
1+14				81	38.7	0.163		
45				82	21, 3			
415				23	9.23			
47				<u> </u>				
				PE				
47				<u>E_00</u>		· • •	· · · · · · · · · · · · · · · · · · ·	
<u>- 50 </u>	1		······		01 	••••••••••••••••••••••••••••••••••••••		
1			i			,		

「「「「「「「「「」」」

jar.

a she ta ta ta ta

- 44 · · ·

SULFUR-DIONTEE CONCENTRATIONS

Post Arc Post Post Som Post Som Som Post Som So	1100 (mg m /.rc 100m	-3) 200m
Post No. Arc 50m Post 100m Post No. Post 50m 15	/.rc 100m	200m
15 52 16 53 17 54	1.10	
16 53 17 54	1.10	
27 54	1.10	
	1.10	
18 55	1.10	
19 56 2.70	1.10	
20 57 15.8	1.10	·
21 58 26.2	1.10	
72 50 li2 di		0.5%0
23 60 87 Ju	5.18	1.30
24 61 112	27.0	5.46
25 62 185	42.4	7.16
26 63 216	39.8	11.4
27 64 173	48.8	9.%
28 65 197	69.2	16.2
29 66 200	80.4	21.6
30 67 218	92.2	27.0
31 68 173	107	27.8
32 69 246	זנר	14.6
<u>۲0 232</u>	105	6.32
34 71 115	52.2	4.10
35 72 56.4	14.9	2.50
36 73 13.0	5.70	1.18
37 74 13.2	0.800	، میکارد خده دکره چینان در
38 75 1,20		
37 76 0.720		
40 77		
41 78		
42 79		
43 80		
44 81		
45 82		
45 83		
47 64		
53		

Arres attace

SULFUR-DICKIDE CONCEPTS FILLS AND ADDOCIATED FRECUENCY LIGTRIBUTION OF ALINUTH

200m

200m

1.83

10.9

12.2

5.53

5.53 2.71

2.59 0.235

0.153

-	nuricer	i direction per cent)	Concent	rition (m Arc	^{((- ر} m		t number	nd direction (par cent)	Concent	ration (m	ŗ m ⁻⁾)	
	Fost	brift:	50m	100m	200m		rcs1	Vi Lr	50m	100m	200m	
	26						66		5.69			
	28			0.171			50		2.47			
	30		1.16	0.534			90		0.110			
	32	0.83	5.23	2.07	0.076	!	1/2		0.321			
	34	1.67	6.99	3.17	0.270							
	36	3.33	25-4	8.03	1.77							
	38	5.00	51.1	18.?	4.55		يو به	ht	Concent	ration (m	$(mg m^{-3})$	
	40	6.67	100	32.9	6.75		ros Tros	57 E	Arc			
	42	7.92	126	43.3	12.0			1.	<u>50m</u>	100m	200m	
	44	5.42	162	46.1	11.2		36	2.5	23.6	6.89	1.1	
	116	5.93	187	54.7	12.8			1.0	21.1			
	48	8.75	191	52.2	11.3			0.5	28.3	9.10	M	
	50	9.58	171	42.5	10.4		1.6	2.5	130	50.1	10.	
	52	4.17	116	30.3	8.20			1.0	216			
	54	5.00	101	24.5	1:.96			0.5	236	56.7	12.	
	55	8.33	96.6	20.2	5.58		56	2.5	61.6	19.3	5.	
I	58	5.42	r.	22.3	4.76			1.0	103			
	60	5.00	116	22.8	4.41			0.5	125	23.3	5.	
	62	0.42	133	21.5	3.3		66	2.5	64.9	15.9	2.	
	64	2.08	94.5	17.5	3.05			1.0	105			
	66	1.25	94.2	1/1.2	2.69	İ		0.5	112	15.0	2.	
t i	66	2.92	71.3	16.5	1.93		76	2.5	5.37	1.09	0.	
Ī	70	2.08	51.9	6.86	0.950			1.0	10.0			
	72	2.50	29.4	4.25	0.613			0.5	11.0	2 1.7	0.	
	74	2.08	9.00	3.53	0.410		23	2.5	4.09			
	76	2.09	8.14	2.30	0.197	ļ		1.0	5.00			
Ì	78	0.12	S.31.	1.15				0,5	1:.50			
ĺ	03		3.1.3	1.37				2 5	1			
	32	0.03	2.54	0.31:1:				······································	· · · · · · · · · · · · · · · · · · ·			
1	84	0.10	1.62	0.043		•		6.5				

DATE L November 1957 THE 3200 D.C.T. PERIOD OF SAMPLING 10 min

-____

SULFUR-DICKIDE CONCENTRATIONS

 $= \left\{ \left\{ k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}, 990) 1997 - 1997

DATE _	4 Novem	ber 1957	TIME 1200	_E.S.T.	PERIOD	F SIMPLING	3 Minutes
	Concent	ration (mg	m ⁻³)		Concontr	ation (mg m	n ⁻³)
Post No.	SOM	Arc 100m	200m	Post No.	50m	/.rc 100m	200m
15	<u> </u>	T	I	52	183	28.6	5.03
16				53	160	16.8	4.40
17				54	118	9.23	2.50
18	T			55	65.7	5.33	1.93
19				56	74.0	4.50	3.13
20				57	60.7	2,11	3.83
21				58	56.0	1.34	3.63
22				59	38.7	0.450	2.97
23				60	30.7	0.303	0.327
24				61	28.6		0.193
25				62	27.8		
26				63	37.3		
27				64	37.7		
28		0.867		65	34.7		
29	0.780	1.5		66	23.4		
30	3.10	2.74		67	27.8		
31	14.5	4.30		68	15.7		
32	17.7	7.23	0.170	69	25.0		
33	14.6	7.87	0.193	70	18.8		
34	15.7	7.97	٥.ليا.٥	71	13.2		
35	32.7	10.7	0.697	72	h.53		
36	57.0	17.2	1.23	73	1.1.3		
37	101	22.C	2.67	74	0.1.50		
38	811	31.9	7.13	75	0.340		
39	155	47.7	10.2	76			•
40	213	61.0	3. شآ	77			
41	211	74.3	يله 17	78			
<u>.</u>	246	87.3	26.2	79			
113	305	76.7	20.8	80			
44	315	96.0	24 -44	81			
45	323	99.0	22.0	82			
46	<u>117</u>	112	19.6	83			
47	1.27	97.3	18.0	84			
_48 _	<u> </u>	97.7	17.4	85			
47	397	91.7	17.2				
<u></u>	263	(3.3		67			
24	205	I 7797	7.77	1 00 1			

. .

and the second second second second second second second second second second second second second second second

and the state of the second and

SULFUR-DICKIDE CONCENTRATIONS

DATE _	L Novem	19 57	TIME 1200	_3.S.T.	PFRICD C	F SAMPLING	0.5 Minite	
	Concent	tration (mg	m ⁻³)		Concentration (rg m ⁻³)			
Post		Arc		Fost		rc		
lio.	50m	100m	200m	No.	50m	100m	200m	
15				52	1.22	17.9	18.8	
16				53	540	20.2	17.2	
17				54	510	11.9	7.58	
18			•	55	Li26	7.22	6.98	
19				56	246	10.3	15.8	
20				57	124	3.40	21.6	
21				58	64.0	1.16	23.4	
2.2				59	41.6		20.2	
23				60	10.y		3.52	
24				61	6.06		3.12	
25				62	և.ջև			
26				53	3.46		, <u></u>	
27				64	2.71			
28		4.50		65				
29	13.6	9.92		66				
30	51.0	16.1		67				
31	185	27.0		68				
32	195	43.4		62				
33	139	45.6		70				
34	111	38.0		71				
35	115	34.6		72				
36	11.2	1.1.h		73				
37	234	63.8	2.46	74				
38	316	100	6.98	75				
39	126	116	11,2	76				
40	T85	104	5.18	77				
41	386	115	9.78	78				
42	396	119	9.96	79		1		
	375	121	11.8	60				
44	380	103	16.4	81		1		
45	320	76.0	18.2	92				
46	3118	76.0	18.2	- 63				
47	358	56.9	23.0	84				
48	374	46.2	33.8	35				
40	<u> </u>	32.6	41.0	<u>86</u>	 		······································	
50	<u> </u>	20.8	24.4	87	 			
51 -	<u>ьсо</u>	22.8	23.0	1 15 1	I	i		

NOT THE PARTY OF THE

SULFUR-DICKIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH VIND DIRECTION Run #5

DATE 6 November 195? TIME 1745 E.S.T. PERIOD OF SAMPLING 10 min

and the second second second second second second second second second second second second second second second

number	directica r cent)	Concent:	ration (m Arc	g π ⁻³)	Techann	l direction bar cent)	Concent	tration (m Arc	g m ⁻³)
Post	tiind (pe	50m	100m	200m	Post	thind (p	50m	100m	200m
32	0.42								
34									
36									
38	0-42						ļ		
10	0.83	1.28					 		<u> </u>
12	1.24	5.56			\ 				
:4	2.90	21.7	0.170		+ + +	a training the second s	Concon	tration (m	g m ⁻³)
6	3.32	17-11	6.88		Å Å	iei m		Arc	
18	7.88	106	15.3			يان مريد ويسيع	<u>50m</u>	100m	200m
50_	9.13	190	77.5	2.11	46	2.5	18.3	3.33	
2	9.96	317	189	20.3		1.0	71.3		······
21	14.52	325	273	203		0.5	112	6.15	
56	18.25	<u>h2h</u>	283	137	56	2.5	ग्रीम	247	104
78	8.30	494	256	75.5		1.0	783		
50	6.64	127	209	30.8		0.5	1225	482	158
\$2	7.88	386	70.8	2.24	66	2.5	59.6	1.87	
54	2.90	283	19.8	المال .0		1.0	161		
56	3.32	121	2 217			0.5	264	1.70	
58	0.83	19.9	0.571			2.5			
?0	0.42	0.737	0.239			1.0			
72	0.42	0.385	0.160			Ū.5			
74	0.42		0.166			2.5			
						1.0	1		
						0.5		1	
						2.5			
						1.0			
						0.5	1		
						2.5	+		
						1.0	1		
			i		1	0.5	1	1	

i

OFFFPLOTER . CONSISTENTALIS /

10TD 6 November 1957 TINE 1745 D.J.T. FURJOD OF DAMPLING 3 MIRUSAS

the second second second

÷,

	Concentration (mm m^{-3})			Concentration (mg m^{-1})			
Post	5 0m	Arc 100m	200m	Post	50m	.'rc 100m	200m
	2013		20011				
15				37	163	172	2.27
16				53	229	192	25.2
17				54	300	21,6	69.7
13				55	393	253	80.7
19				56	413	243	84.3
20				57	557	284	67.3
21				58	640	272	<u>46.0</u>
22				59	633	294	14.5
23				60	487	258	4.87
24		i		61	390	161	0.713
25				< <u>.</u> /	450	116	0.187
26	1			is 1	343	68.7	
27			j	6.	317	26.7	
28			+	65	238	10.0	
29				66	203	2.28	
30				67	1775	0.240	
27	1			68	20.6	0,177	
32				60	1,30	0,150	
33				70	0.363	0.190	
34		+		71			
35				72			
36	1		······································	73			
37				74			
38				75			
39				76			
40	1			77			
41	1			78			
42	1			70			
43	0.3671			ÖÜ			
1324	1.99 1			81			
45	8.17			92			
- 415	1.3	1,15		<u>P3</u>			
47	19.0	2.19		- 24			
48	27.0	8.40		95			
40	12.5	13.2	0.170	-86E			
50	26.1	16.3	1.79				
7 - 1	· · · · · · ·	3. • 3		••••••			

STAFUR-DICKIDE CONCENTRATIONS

:

i	Concentre	tion (mg	-3		Concentration (mg m ⁻²)			
Post				Post	••••••		. ,	
No.	50m	100m	200m	Nc.	50m	1.00m	200m	
25				52	170	272	7.72	
16				53	206	332	26.4	
17				54	294	կ68	23.0	
18				55	186	100	24.2	
19				56	52.8	476	19.7	
20				57	652	2بليا	22.0	
21				58	572	370	8.54	
22		·		59	484	296	6.20	
23		Í		60	464	175	2.80	
24				61	232	19.3	1.20	
25				62	121			
26				63	39.0			
27				64	14.8			
28				65	1.03			
20				66				
30				67				
31				60				
32				69				
33				70				
34			-	71				
35				72				
36		1		73				
37				74				
38				?5				
39				76				
40				77				
4]				78				
42				79			······································	
43		1		80				
111	5.60	ĺ		81				
45	43.6			82			========	
46	38.0	5.90		;				
47	10.1	12.3		84	_			
<u>'+S</u>	8.28	<u> </u>		65				
_49	13.9	63.2		₹₽G				
50	25.	53.0		7				

.

SULFUR-DIOXIDE CONSENTRATIONS AND ASSOCIATED FREDUENCY DISTRIBUTION OF AZIMUTH THE DIRECTION - Run #6

DATE 17 November 1957 TIME 1700 E.S.T. PERIOD OF SAMPLING 10 mi.

and the second second

12 63 6

					,		يصبحون كالمتعاد المتكري والمحالي		والمحادثة والتركي والمحاد
mber	trection cent)	Concent	ration (m	g m ⁻³)	umbor	ilrection r cent)	Concent	ration (mg	: m ⁻³)
ڭ د	15 L			•	^ي تا	o pu o pu			
Post	n L)	5ûm	100m	200m	ras	WIL	50m	100m	200m
?6	0.83								
28	2.08								
30	1.25	1.00							
32	2.92	5.27							
34	5.42	14.3				١			
36	3.33	17.4	0.433			\			
38	11.25	35.1	ۇر.1	0.039	بد به	14	Concent	ration (m	; m ⁻³)
40	7.08	65.8	8.69	0.562	100	eis (E)		hre	- •
42	8.33	107	26.3	2.79	2		<u>50m</u>	100m	200m
44	7.08	147	50.7	8.70	36	2.5	12.5	0.280	
46	11.67	205	62.1	19.5		1.0	17.2		
18	10.42	268	69.9	28.1		_0.5	16.4	0.351	
50	7.91	241	79.7	20.5	45	2.5	105	45.7	17.1
52	6.67	210	64.3	16.1		1.0	268		
54	5.42	186	55.3	14.5		0.5	330	73.1	20.0
56	3.75	174	50.7	11.9	56	2.5	102	44.0	11.7
58	0.83	21י2	38.5	8.43		1.0	222		
60	1.67	88.3	20.1	3.68		0.5	269	61.7	12.1
62	1.25	37.9	8.79	0.662	66	2.5	2.96	6.092	
64	0.42	11.5	1.64	0.200		1.0	1.61		
12		2.71	0.102			0.5_	1.00	0.016	
69		0.442				2.5		· ·	
70		0.055				1.0			•
72						0.5			
74						2.5			
76	0.42					1.0			<u>مارد میں م</u> الک معرفی ک
						0.5			
						1.0			
		i					1		يستكريبي فليتشيرون

SULFUR-DIOXIDE CONCENTRATIONS

DATE

17 November 1957 TINE 1700 C.S.T. PERIOD OF SAMPLING 3 Minutes

4

10 10 10

!!	Concentr	ration (mg m	(^{t-} ,		Concentration (mg m^{-3})			
Post		Are		Post		i.rc		
No.	50m	100m	200m	No.	50m	100m	200m	
15				5,2	161	66.7	24.0	
16	1			<3	223	54.7	11.7	
17				54	115	32.4	7.27	
13				55	58.0	24.4	2.14	
19				56	37.3	13.6	1.06	
20				57	9.07	5.00	0.343	
21				58	Լ	2.32		
22				59	1.77	0.860		
2)				60	1.37	0.407		
24				61 -	0.547			
25				62	C.123			
26				63	¢.183			
27		Ĩ		64	U.320			
28				65				
29				66				
30				67				
31				ંઇ				
32	1.10	I		69				
33	2.47			20				
24	4.90			1 74 1				
35	6.07			72				
36	9.63			73				
37	19.0	0.210		74	ويتبعدي			
38	έυ . υ	1.04		75				
39	220	2,82		76				
40	146	8.77	0.087	77				
41	191	19.0	0.360	73				
42	273	37.7	1.57	-79				
113	269	53.7	ت.14	50				
144	324	92.3	10.5	<u></u>				
45	326	131	17.2	<u>°.2</u>				
46	387	136	36.3	- ?3				
47	530	156	51.3					
48	493	166	54.3					
	383	155						
50	<u> </u>	26 2	20 4					
1 24 1	<u> とう</u>	10.5	TA*0 '					

TTE BORNER OF THE RATE OF

- -

LATE 17 Howerber 1957 THUS 1769 C.C.T. FURTHED OF SAMPLING 19-5 Minutes

d.

	Concentration (mm m ⁻³)				Concentration (mg m^{-3})			
Post	50m	1.rc 100m	200m	Post No.	50m	rc 100m	200m	
15				52	226	210	13.7	
16				53	240	174	14.5	
17				. =4	252	102	14.7	
18				55	32.4	99.4	3.02	
19				56	13.4	54.2		
20				57	1.62	16.0		
21				58	1.18	8.40		
22				59		1.86		
23				60		1.12		
24				<u>61</u>				
25				62				
26				63				
27				<u>(</u> 44			4. 	
28				65				
29				- 66				
30				67				
31				68				
32	^			69				
33				70				
34	2.76			71				
35	12,9			72				
36	17.7			73				
37	31.2			?!;				
38	34.6			75				
39	104	0.880		76				
40	192	1.74		_77				
41	332	1.7ů		76				
42	316	1.1.1.		70				
ون	298	1.02		<u>Aù</u>				
- 111	318	8.56	1.28	<u></u>				
1:5	272	16.11	7.1.6	- 22				
46	362	28.4	15,5	- 23		 	: 	
47	1.32	1.1.0	<u>17.3</u>			ļ		
	1.60	138	21 0	<u>- 75</u> 64 E				
50	100	156	23.6				+	
	211	162		·· · · · ·			· · · · · · · · · · · · · · · · · · ·	

SULFUR-DICKIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH VIND DIRECTION - Run 77

a state of the second of the

! ĩ

THE 1700 E.S.T. FERIOD OF SUMPLING 10 min

ost number	the direction (per cent)	Concentration (mg m ⁻³) Arc		ost number	Wind direct.on (par cent:	Concept 50m	nation (m Arc 100m		
			1001	20011					
24	0.93	0.57?							· · · · · · · · · · · · · · · · · · ·
26	2.08	2.04			,				
28	2.08	5.33	0.215						
30	4.16	19.0	0.930			; ;	1		
32	6.25	31.3	3.25	0.050	\		1	İ	I
34	6.67	39.9	8.53	۵. ٪ښنې		\ •			
3ć	2.92	58.6	15.1	1.63	+1 Fe	+) 	Concent	ration (m	r. m ⁻³)
38	9.17	89.7	20.8	4.35	Pode	Gi E		Are	•
40	9.58	יזנו	25.9	7.26	2		50m	100m	200m
1,2	10.42	112	39.9	9.03	26	2.5	3.03		
لننا	7.08	106	35.8	13.7		1.0	2.49		
46	6.67	104	35.3	12.0		0.5	1.59		
48	6.67	92.3	8-يلز	8.38	36	2.5	45.5	ับ.2	1.80
50	7.50	102	26.1	5.41		1.0	63.2		
52	5.00	91.2	15.4	3.00		0.5	.71.5	15.2	1.77
IJ.	3.75	49.1	8.05	1.33	! 46	2,5	69.3	31.3	10.5
56	3.75	29.0	4.66	0.615		1.0	122		
58	2.08	13.9	2.21	0.239		0.5	11.14	38.1	11.9
ەن	0.42	10.?	0.500		56	2.5	21.0	11.52	0.695
62	1.67	5.88	0.065			1.0	32.8		
04		0.599				0.5	30.5	4.25	6.725
66						2.5			
68	0.53					1 1.0			· · ·
70				,		0.5	•		••••••••••••••••••••••••••••••••••••••
72	0.42					2.5			
						1.0		i I	
						0.5	1	· · · · · · · · · · · · · · · · · · ·	• * * * ******************************
					E.	2.5	•		
						1 2.0	8)
i	ſ					5.5	•		

STRUCTURE CONTRACTOR

au.

LATE

20 November 1957 THE 1706 J.J.T. FERIOD OF SIMPLING 3 Minutos

ł

	Concentr	Concentration (mm m^{-2})			Concentration $(m; m^{-2})$		
Post No.	50m	1rc 100m	200m	Post No.	50m	lire 100m	200
15				52	227	23.7	1.83
16				53	107	20.5	4.07
17				54	92.0	17.2	3.33
18				55	87.3	13.6	2.19
19				56	62.0	10.1	2.26
20				57	33.1	7.13	1.32
21				58	М	4.17	0.920
22				50	26.9	3.10	0.447
23				60	M	1.94	
24				61	19.8	0.257	
25				62	10.5	0.073	
26				63			
27				64	1.97		
28				65			
29				66			
30				67			
31				68			
32				60			
33	0.666			70			
34	2.02			71			
35	3.25	0.160		73			
36	6.57	2.00		73	 		
37	12.9	2.67	0.177	74			
38	25.1	4.33	0.577	175	1		
39	38.0	6.20	2.04	76			
40	57.0	6.83	2.26	77			
41	67.3	15.8	2.05	75			
42	75./	30.2	2.52	70			
43	<u>^</u> ,7	35.0	5.17	<u>. 80</u>		1	
	178	37.7	8.60	13			
1:5	16.	33.7	11.5	02			
44	25/1	39.0	17.7		1 		; +
4.7	3.0	1:5.0	<u> </u>		-	1	!
		<u> </u>	<u> </u>	<u> </u>	 		
			····			1 	•••
	1 11 11			· .		-	
I	•··•	<u> </u>	ن			•	

STREFUR-LIOXIDE CONCENTRATIONS

ł

	20 Nove	ber 1957	THE 1700	_2.S.T.	FFRICD	OF SAMPLING	0.5 Hinuse	
	Concent	ration (mg	m ⁻³)		Concentration (mg m ⁻³)			
Post		Are		Post		/.re		
No.	50m	100m	200m	No.	<u>50m</u>	100m	200m	
15				52	120	29.0	4.36	
16				53	158	23.6	4.32	
17				54	บเร	34.4	4.52	
15				55	197	29.4	2.84	
19				56	175	20.2	2.72	
20				57	128	12 .4	2.88	
21				58	110	6.08		
22				59	M	9.04		
23				60	130	10.4		
24				61	115	1.36		
25				62	62.2			
26				63	21.6	1		
22		in and the second second second second second second second second second second second second second second s		64	73.5			
28				65				
20				66				
30				67				
				68	مر بي _{الم} ينا كانت مينا الارتماع عن			
32				60		+		
33				20		1		
34				71		1		
35	0 960					1		
-26	1. 08							
32	1. 26			- 7/2				
38	4.20				مور میرندانه می ماکنور و مک			
-20	2.66			26		+		
-27	0.01				فيعربونه فيستغاليها مردو	+		
10	20.0	0.620		78		<u>†</u> †		
	1.0.0	0.800				<u>+</u>		
12	52.2	7 30		<u> </u>		+		
	82.2	ر در د . ۱۱, ۱،				+		
	177	12 1.		<u>- 51</u>	·····	+		
46	187	11_8		82	ويتقربون والمراجعة والمراجعة	+		
47	125	711.2		<u> </u>		1		
48	81.4	29.4	1.68	Ar		+		
49	138	25.0	2.08	86		1		
50	121	62.4	4.70	37				
51	ו סננ	56.6	4.56	15		,		

	Concentration (mg m ⁻³)							
Post No.	<u>50m</u>	/.rc 100m	200m					
52	120	25.0	4.36					
53	158	23,6	4.32					
54	N12	34.4	4.52					
55	197	29.4	2.84					
56	175	20.2	2.72					
57	128	12 4	2.88					
58	110	6.08						
59	M	9.0L						
60	130	10.4						
61	115	1.36						
62	62.2							
63	21.6							
64	13.5							
65	· · ·							
66								
67								
69								
69								
70								
71								
72								
73								
74								
75								
76								
77								
78								
79								
80								
51								
52								
83								

SULFUR-FICKIDE CONCENTRATIONS AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH

1

and a second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second

DATE 22 November 1957 TIME 2030 F.S.T. PERIOD OF SAMPLING 10 min

i

reissi i S

في ا

• 3

гə	ction nt)	Concontration (mg m^{-3})						
t numb	d dire per ce	Arc						
Fos) UŢE	50m	200m					
26	0.42				 -			
23	1.25				1.			
30	1.25	0.893			1_			
32	0.83	6.91			-			
34	2.50	20.5	1.13					
36	3.33	29.8	5.95	0.228				
38	5,25	56.1	12.3	1.17				
40	7.92	66.5	22.2	3.69	1			
42	11.25	84.3	28.1	9.36				
14	5.83	101	29.8	11.7	3			
46	8.75	13/1	36.7	13.3				
48	9.59	128	119.7	1: 0				
50	y.17	7/17	47.7	11.?	l			
\$2	6.25	11/2	34.4	7.38				
54	8.75	103	20.5	2.72				
56	4.58	76.9	8.14	0.936				
58	4.58	37.6	2.55	0.207				
60	2.08	13.2	с 110					
62	1.67	5.89	0.109		ć			
64	0.42	0.833						
66	1.25	0.278						
68	0.42							
70	0.83							
72	0.83							
				-				
	!				1			

S.	ction at)	Concentration (mg m^{-3})					
านาระ	d dire par ce		irc	L			
r'ost	utm ()	50m	100m	ה-200			
		!					
			·				
	i l						

331 1321	reht (Concentration (mg m ⁻³)					
		50m 100m		200m			
36	2.5	27.6	5.38	0,218			
	1.0	30.7					
	0.5	33.5	6.03	0.196			
40	2.5	85.4	32.5	12.1			
	1.0	164					
	0.5	192	37.5	12.5			
56	2.5	54.9	7.05	0.944			
	1.0	90.3					
	2.5	101	7.28	C.384			
66	2.5	0.026					
-	2.0	0.330					
	0.5	0.297					
	2.5						
-	1.0						
	0.5						
	2.5		•••				
	1.0	·					
	0.5		_				
	2.5	İ					
	: <u>;</u>						
	· · <	,					

DATE __

22 November 1957 TINE 2030 E.S.T. PFILLED OF SAMPLING 3 Minutes

*

	Concentration (mg m^{-3})		
No. 50m 100m 200m No. 50m 100m	200m		
15 57 132 26.	1, 3.37		
16 53 87.7 11.	1 1.07		
17 54 66.0 L.	40 0.133		
18 55 51.0 2,	.60		
19 56 33.7 3.	43		
20 57 13.6 2.	40		
21 58 5.57			
22 59 3.90			
23 60 7.07			
24 61 5.53			
25 5.93			
26 63 3.90			
27 64 2.05			
28 55			
29 0.287 66			
30 0.483 67	1		
31 4.03 68			
32 10.9 69			
33 21.5 0.613 70			
34 2.63 71			
35 43.3 5.10 0.180 72			
36 59.0 9.93 0.697 73			
37 85.3 17.6 1.01 74			
38 85.0 26.3 3.83 75			
<u>99 76.0 37.3 6.17 76 </u>			
40 73.0 43.3 5.53 77			
41 86.3 12.0 17.4 78			
47 124 47.7 18.8 79			
43 14.3 16.7 90			
44 169 17.7 15.6 51			
<u>45 235 51.7 Ill. 82</u>			
<u>46 285 56.3 16.3 92</u>			
47 249 61.3 10.4 74			
5] 115 40.7 5.03			

-xxiv-

SULFUR OTOXIDE CONCENTRATIONS

DATE _	22 Novemb	<u>er</u> 1957	TINT 2030	_E.S.T.	PERIOD	OF SIMPLING	0.5 Minutes
	Concent	ration (mg	m ⁻³)		Concentration (mg m ⁻¹)		رد- (د-
Post No.	50m	ire 100	200m	Post. No.	50m	i.re 100m	200m
15					69.8	22.2	3.56
16	· · · · · · · · · · · · · · · · · · ·			5.2	73.0	12.6	1.20
17				54	75.0	15.8	
19	1			55	56.8	9.24	
12				56	44.5	74.3	
20				_ 57	3/1.02	6.34	
21				58	22.8	1.06	
22				59	25.2		
23					39.2		
24				61.	36.0		
25				62	34.2		
26				63	24.6		
2.2				64	بليل 8		
28				65			
29				66			
.30				67			
31				68			
32				69			
33				70			
34				71			
35		1.08		72			
36	4.06	6.42		73			
37	8.52	13.4		74			
<u>38</u>	끄.?	17.2	1.86	75			
39	32.2	21,8	6.18	76			
40	16.2	22.8	7.76	77			
41	80.2	27.8	11.6	78			
42	M	26.0	23.0	79			
43	<u>, iii</u>	23.4	11.4	80			
114	11.2	26.6	21.0	81			
45	182	31.4	<u>11.0</u>	<u>82</u>			
1.15	165	53.0	9.40	83			
47	176	82.4	10.4	- 84			
49	120	91.2	11.0	85			
40		74.4	5.60	86			
50	215	10.8	2.00	87	· · · · · · · · · · · ·		
	10 . 2	<u> </u>	1 4.511	<u> </u>		1	·

SULFUR-DIOXIDE CONCENTENTIONS AND ADDE MATED FREQUENCE DEVICIDETE VOE ALMUTH VIND DIRECTION - Run #?

- ,

DATE 26 November 1957 TINE 1120 E.S.T. PERIOD OF S.MTUING 10 min

	lon)	Concentration (mg m ⁻³)					
redenn	direc ^t er cent	Ârc					
Post	d) d)	50m	100m	200m			
10		0.181					
12		1.90					
24		10.5	0.041				
16	0.42	23.7	1.37	1			
18	3.33	43.4	2.50	0.051			
20	2.08	51.4	6.85	J.673			
22	3.75	69.3	23.4	2.05			
24	5.00	106	17.7	4.45			
26	4.58	136	29.3	5.21			
28	7.92	1119	48.2	8.11			
Ut	10.42	153	57.1	12.7			
32	11.25	174	59.2	17.4			
3/1	8.33	177	51.1	16.6			
36	7.50	155	47.7	ш.3			
-38	7.92	129	40.4	11.2			
40	7.08	98.7	2.8ر	5.79			
1,2	7.08	81.7	23.9	4.67			
44	3.75	70.6	12,1	3.27			
46	4.17	40.4	6.73	0.160			
48	2.50	6. بلا	2.92				
50		5.57	0.686				
52		2.32	0.127				
54	1.25	3.68					
56		2,82					
58	0.83	0.275					
60							
62	0.1.2						
64							
65							
68							

L	ection mt)	Concent	Concentration (mm m^{-3})				
ost nurb	find dira (par cu	50-	Arc	2007			
1 1	-3.	50m	100m	200m			
70	0.42		1				
· !	1	1 1 1					
	1			1			
	t	i					

ost ber	a) a)	Concentration (mg m ⁻³)				
с. Ę	5 <u>1</u>	50m	100n	200m		
16	2.5	21.3	1.79			
	1.0	24.4				
	0.5	23.7	0.741			
?6	2,5	101	23.1	4.59		
	1.0	156				
	0.5	173	30.2	5.60		
36	2,5	112	41.0	12.7		
	1.0	171:				
	0,5	201	52.7	14.2		
Цо	2.5	2.7	5.88	0.518		
	10	5- بلبا				
-	0.5	<u>іш.5</u>	ز8.7	0.369		
56	2.5	2.73				
	1.0	2.26				
-	<u> </u>	0.686				
				and a second second second second second second second second second second second second second second second		
	1.0					
_ <u>_</u>	0.5					
	2.5					
	1.0			-		
	0.5					

-xxvi-

CONFERENCES IN THE CONCENTRATIONS

- 11TE _____ 26 Howmber1057 THE 1120 .S.T. PERIOD OF SAUTLING 3 Hinutes

	Concentration (mg m^{-3})			Concentration (mg m^{-3})		m ⁻³)	
Post	50m	Arc 100m	2007	Fest	50m	/.rc 100m	200m
	100		2001				
	C.077	į		12	C.117		
16	0.593			53	0.057		
17	2.26			54		. *	
18	5.57			55			
12	20.3			55			
20	31.4			5?			
21	66.0			58			
22	86.3	1.49		59			
23	108	2.46		60			1
24	113	6.17	0.320	61			
25	7117	10.6	0.507	62	ъ.		
26	98.3	24.6	2.44	63			
27	94.7	36.3	2.91	F4			
28	94.0	45.7	3.63	65			
29	102	1.6.7	7.60	66	· · · · · · · · · · · · · · · · · · ·		
30	1.04	46.7	.12.3	67			
31	110	42.3	21.3	69			
32	107	39.7		62			
33	131	43.0	17.7	70			
<u>54</u>	ידי.	48.7	16.9	71			
35	156	52.07	Ш.,5	72			
36	173	50.7	12.0	73			
37	176	47.0	9.80	74			
38	197	<u>18.7</u>	10.8	75			
29	193	53.0	12.0	76		1	
40	154	55.3	9.93	_77			
եղ	129	45.3	8.70	78			
47	721.	36.3	9.80	70			
:3	114	31.3	10.1	- 80			
<u>1</u> 11	94.7	22.6	8.00	<u></u>			
45	77.0	18.6	<u>lia17</u>	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>			
1:6	53.0	12.6	0.950			 	
47	32.7	7.20	0.037	<u> </u>		ļ	
48	1/04			85			
<u>- 49</u> 50	<u> </u>	0.101		<u>00 E</u>		<u> </u>	
51	U-347	· · · · · ·)		

-:ovii-

SULFUR-DIOXIDE CONCENTRATIONS

DATE 26 November 1957 TIME 1120 D.S.T. PERIOD OF SAMPING C.5 Minutes

	Concentration (mg m ⁻²)			Concentration (mg m ⁻⁷)			
Post		in c		Post		rc	
No.	50m	100m	200m	No.	50m	100m	200m
15		İ		52		1	
16				53			
17	1			54		-	r
18	0.880			55		1	
19	16.1	T		56			
20	39.2			57			
21	015			58			1
22	93.8	2.06	0.640	5?			
23	122	4.56	2.10	60			
24	272	20.0	2.04:	61			
25	306	79.6	5.60	62	X		
26	21:11	108	7.54	63			
27	165	116	12.2	64			
28	138	121	15.6	65			
29	159	117	33.6	65			
30	162	124	36.2	67			
31	212	011	32.6	65			
32	260	80.C	29.2	62			
33	2?6	48.2	19.4	70			
34	136	53.0	16.6	71			
35	96.8	33.6	13.4	72			1
36	127	15.0	3.22	73			
37	129	5.84	3.40	71+			
38	101	4.72	2.50	75			
39	52.8	4.72	1.64	76			
40	1:0.0	1.20	1.18				
41	36.4.	0.560	0.820	73			
42	55.4						
43	52.0			80			1
44	80.0			31			
145	58.0			53		1	
- 43	36.2						
47				<u> </u>		 	
- 119	+			85			
40				00	£	+	
			·				
	ا سر 1 السريانية محمد المراجع	: ب هيرواند جو ميد مدينا م					
TREVE-DICKIDE CONSERVENCES AND ASSOCIATED FREQUENCY DISTRIBUTION OF AZIMUTH LUZ DIRECTION - Run #10

•

DATE 3 December 1957 TIME 120 E.G.T. PERIOD OF SAMPLING 10 min

_ __

nuter	Jirection er oint)	Concentration (mg m ⁻³) Arc						
Post	с, С,	50m	100m	200m				
12	0.4?	0.546						
14		5.57						
16	0.L2	10.6	0.013					
16	1.25	19.7	0.402	0.1111				
20	1.67	23.3	3.28	0.367				
22	2.50	29.8	6.72	1.06				
21	3.33	35.9	7.52	7.18				
26	6.25	51.8	14.1	1.93				
28	3.75	86.6	22.6	3.59				
30	4.58	98.2	25.0	4.71				
32	4.58	97.4	28.1	3.03				
34	7.08	115	24.8	3.79				
36	3.75	119	20.2	4.26				
38	5.00	101	16.1	3.23				
40	5.83	79.0	16.0	2.92				
42	4.58	61.8	13.8	1.46				
24	3.75	82.4	24.4	1.00				
Ļб	4.16	96.9	20.2	2.43				
48	3.75	105	24.2	2.79				
ະດ	5.42	101	19.0	3-49				
52	5.42	105	16.6	2.41				
54	1.67	49.9	1)1.2	3.11				
56	3.33	40.0	10.3	2.78				
۲Å	2.08	40.7	4.37	1.05				
60	2.92	22.3	2.19	0.597				
6	2.52	15.7	1.04	0.527				
61:	3.75	Щ.3	2.55	0.967				
66	2.50	28.2	4.72	1.17				
68	0.83	8.96	3.50	0.166				
70	1.27	3.49	0.932					

Ľ	ction nt)	Concentration (mg m^{-3})								
st numbe	lind Street (par cel	17e								
ro L	3	50m	10Cm	200m						
72	2نار ٦	0_200	0_018							
74	0.42	0.039								
76										
78	0.12									

Fost	Hoight (m)	Concentration (mg m ^{-j}) Arc 50m 100m 200m					
15	2.5	7.36	0.053				
	1.0	12.9					
	0.5	13. 9	0.004				
26	2.5	35.5	12.6	1.70			
	1.0	55.9					
	0.5	60.8	12.0	1.97			
36	2.5	91.0	19.0	3.92			
	1.0	131					
	0.5	11:3	22.1	4.03			
45	2.5	69.5	19.6	1.40			
	1.0	17.5					
	0.5	332	18.9	1.30			
56	2.5	26.4	8.87	2.32			
	2.0	17.6					
	0.5	52.5	11.5	2.11			
66	2.5	20.2	4.56	1.21			
	1.0	28.3					
	0.5	26.9	4.51	1.1?			
1	-2.5			······			
	1.2.0						
	0.5						

STREPHICKIDE C MCCUTRATICKS

DATE	3 Decerito	1957	T1111 _ 1120	_3.3.T.		FOUTLING	<u>3 :::m:t.o.s</u>
	Concentr	maticn (mm	m ⁻³		Concenti	ration (mg m	n ⁻³)
Post No.	50m	Are 100m	200m	Post No.	50m	Are P Sum	200m
15					279	47.0	7.23
10				53	193	1.12.0	7.20
17				154	151	13.7	9-47
18			ĺ	55	1.39	39.0	10.5
19				56	130	31.6	S.70
20				57	132	19.4	6.07
21				58	118	15.4	2.93
22				5?	105	13.3	1.50
23				60	73.3	7.60	1.02
24				- 61	50 .3	4.27	0.633
25			1	62	53.7	9.10	0.857
26			1	63	47.0	5.70	0.967
27				64	L8.0	9.13	1.13
23				65	54.3	15.1	0.967
29		- 1		66	92.0	15.3	0.323
30		1		67	61.7	16.5	0.090
31				69	31.3	11.7	
32	2.02			60	16.5	7.20	·
33	L.80			70	12.6	3.23	
34	11.7		1	71	9.73	0.697	
35	16.8			72	1.05	1	
36	20.7			72			
37	13.5			74	****		
28	13.7	0.110		75			• •
39	13.3	0.117		70		1	
μŋ	14.5	C.240		77	میں پر میں میں میں میں اور اور اور اور اور اور اور اور اور اور		•
41	21.8	2.34		75			1
42	35.7	3.50	0.070	1			· ····
43	<u></u>	5.5	ن ترو. ن	£0			
44	63.0	23.3	0.030	[<u> </u>		1	
45	1 212		0.730			1	1 1
46	230	<u></u>	1.77	: مىلىمىر مىلىمى			
- 107		37.0	1	:			•
49	<u></u>	1-07	5.77) 	
40		39.3 1	.20			· • •	• • • •
50	200	<u> </u>		و ۲۰۰۰ و هر مستقدم ۲۰۰۰ و ۲۰۰۰ م		l	
<u></u>	449 1	44	<u> </u>			_	

1

SULFUR-DICXIDE CONCENTRATIONS

D: TB _	3 Decen	iber 1957	TIME 1120	_E.S.T.	PFFIOD (F SAPLING	0.5 Minutes	
	Concontration (mg m ⁻³)				Concentration (mg m^{-3})			
Post	1	Are	i	Post		Arc		
No.	50m	100#	200m	No.	50m	100m	200m	
15				52	204	13.6	0.480	
16				53	206	고0	4.92	
17				54	157	13.0	<u>1: -5</u>	
18				55	103	12.6	24.8	
19				56	55.0	8.34	21.0	
20				57	50.6	9.34	13.1	
21				58	81.2	21: - Li	6.02	
22				59	65.2	22.2	2,19	
23				60	21.8	7.00		
24				61	1.42	4.78		
25				62				
26				<u>ί</u> ί3		1		
27				64				
28				65				
29				- 56				
30				67				
1 31				57	 			
32				69				
33				70				
34				71				
35				72		1		
36				73	1			
37				74				
38	- <u> </u>			75	•		{	
30				1 75				
40				77				
41	3.16			73			•	
42	13.0			79				
1:3	62.8			80				
44	103			51				
45	228			82				
116	256	0.750		_ 52				
47	258	1.62						
48	210	2.68		85 €		ļ		
- 40 -	211	<u>°.95</u>		85	• •	<u> </u>	İİ	
	2:0		0.1.00			1		
i	an Sala	، ۵۰٬۰۰۰ ،	V+490 [•	•	: 1	

1.1.

Table II. Summary of source strengths and correction factors by which concentration data presented in Table I should be multiplied to compensate for evaporational loss of impinger solution during aeration.

			Source	strength	$(g \ sec^{-1})$	Corre	ection fa	actors
Run No.	Date	Time(EST)	10-min	3-min	0.5-min	10-min	3-min	0.5-min
						• • •		
1	9-24-57	1935	45+1	45.1	45•1	0.90	0.92	ون₊ں
2	10- 2-57	1120	109.0	114.0	115.0	0.91	0.93	0.90
3	10-10-57	2020	53.4	53.4	53.4	0,93	0.95	0.95
4	11- L-57	1200	100.0	108.0	108.0	0.92	0.92	0.91
5	11- 6-57	1745	49.2	49.2	49.2	0.97	0.99	0.98
6	11 -17- 57	1700	53.1	54.2	54.2	0.96	0.98	0.97
7	11-20-57	1700	56.5	56.5	56.5	0.92	0.94	0.95
8	11-22-57	2030	53.8*	71.2	71.2	0.91	0.94	0.95
9	11-26-57	1120	71.2	73.6	73.6	0.96	0.97	0.98
1 0	12- 3-57	1120	93.4	97•5	97.5	0.94	0.96	0.97

During last 8 min of release period, source strength decreased from about 79 g sec⁻¹ to about 35 g sec⁻¹.

"At 200 m, correction factor is 0.93.

Table III. Mean wind speeds and standard deviations of azimuth wind direction $\overline{\mathcal{T}_{F}}$ measured at height of 2 m during diffusion experiments.

Run No.	Wind speed 10-ain	(m sec ⁻¹) 3-min	at s = 2 m 0.5-min	(deg) at s = 2 m 10-min 3-min 0.5-min [#]				
1	2.14	2.10	2.1	9.4	5.3 (8.3) ^{##}	L.7 (7.1) ^{#'}		
2	5.15	5.28	6.0	16.5	15.2 (15.8)	8.4 (12.7)		
3	3.00	3.16	3.4	12.9	10.9 (12.7)	9.1 (10.8)		
Ĺ	3.98	3.85	3.9	16.7	9.1 (11.5)	11.4 (8.8)		
5	1.65	1.76	1.9	9.2	9.8 (8.9)	6.3 (7.2)		
6	2.61	2.43	2.7	11.8	10.4 (10.9)	6.4 (8.9)		
7	3.06	3.66	2.8	13.5	11.2 (12.7)	12.2(10.7)		
8	3.31	3.69	4.0	12.8	11.3 (12.5)	10.1(10.4)		
9	4.39	4.42	և.9	13.1	10.6 (12.0)	5.7 (8.9)		
10	4.07	4.05	4.0	20.7	11.4 (13.8)	21.2 (11.0)		

"Estimates not enclosed by parentheses applicable strictly at 100 m.

Entries in parentheses are average values based on entire length of record (10 min); see p. 55 of text.

Run No.		Wind speed (m sec ⁻¹)			Air temperature (deg C)				
	2(m)	1.5	3.0	6.0	12.0	1.5	3.0	6.0	12.0
1		2.52	2.87	3.28	3.78	12.12	12.51	12.73	12.94
2		5.36	6.12	6.57	6.95	20.00	19.54	19.33	18.97
3		3.19	3.57	3.97	4.34	14.92	15.12	15.24	15.30
4		3.99	4.44	4.85	5.05	13.40	13.27	13.19	13.09
5		M	2.11	2.46	2.92	4.45	4.86	5.09	5.25
Š		2.88	:.27	3.61	3.97	11.60	11.87	12.04	12.13
7		4.04	4.70	5.20	5.78	7.60	7.79	7.92	8.04
8		3.53	4.04	4.49	5.00	4.30	1.16	4.56	4.62
9		4.29	4.80	5.20	5.46	2.95	2.49	2.27	1.98
10		14.04	4.70	5.10	5.46	3.75	3.37	3.16	2 •92

£.___

Table IV. Summary of mean wind speeds and air temperatures measured at four heights on portable tower during the diffusion experiments; entries refer to 10-min samping time.